1. Importar la base de datos

titanic <- read.csv("/Users/santiago/Downloads/titanic.csv")
library(ggplot2)

2. Entender la base de datos

summary(titanic)
##      pclass         survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1310        Length:1310       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##  NA's   :1       NA's   :1                                            
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1310       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :264       NA's   :1        NA's   :1                         
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1310        Length:1310        Length:1310       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :2                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1310       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1189
str(titanic)
## 'data.frame':    1310 obs. of  14 variables:
##  $ pclass   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ survived : int  1 1 0 0 0 1 1 0 1 0 ...
##  $ name     : chr  "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...
##  $ sex      : chr  "female" "male" "female" "male" ...
##  $ age      : num  29 0.917 2 30 25 ...
##  $ sibsp    : int  0 1 1 1 1 0 1 0 2 0 ...
##  $ parch    : int  0 2 2 2 2 0 0 0 0 0 ...
##  $ ticket   : chr  "24160" "113781" "113781" "113781" ...
##  $ fare     : num  211 152 152 152 152 ...
##  $ cabin    : chr  "B5" "C22 C26" "C22 C26" "C22 C26" ...
##  $ embarked : chr  "S" "S" "S" "S" ...
##  $ boat     : chr  "2" "11" "" "" ...
##  $ body     : int  NA NA NA 135 NA NA NA NA NA 22 ...
##  $ home.dest: chr  "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" ...
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#count(titanic, name, sort = TRUE)
#count(titanic, sex, sort = TRUE)
#count(titanic, ticket, sort = TRUE)
#count(titanic, cabin, sort = TRUE)
#count(titanic, embarked, sort = TRUE)
#count(titanic, boat, sort = TRUE)
#count(titanic, home.dest, sort = TRUE)

Observaciones 1. Tenemos 2 registros de nombres repetidos 2. Hay NAs

3. Limpieza de la base de datos

# Cambiar de nombre a la variable pclass
colnames(titanic)[1] <- "class"

#Extraer las variables de interés
Titanic <- titanic [,c("class","age","sex","survived")]

#¿Cuántos NA tengo en la base de datos?
sum(is.na(Titanic))
## [1] 266
#¿Cuántos tengo por variable?
sapply(Titanic, function(x) sum(is.na(x)))
##    class      age      sex survived 
##        1      264        0        1
#Eliminar renglon en blanco
Titanic <- Titanic [-1310,]

#Convertir las variablea categóricas en factores
Titanic$class <- as.factor(Titanic$class)
Titanic$sex <- as.factor(Titanic$sex)
Titanic$survived <- as.factor(ifelse(Titanic$survived==0, "Murió", "Sobrevivió"))
str(Titanic)
## 'data.frame':    1309 obs. of  4 variables:
##  $ class   : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ age     : num  29 0.917 2 30 25 ...
##  $ sex     : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...
##  $ survived: Factor w/ 2 levels "Murió","Sobrevivió": 2 2 1 1 1 2 2 1 2 1 ...
#¿Cuántos tengo por variable?
sapply(Titanic, function(x) sum(is.na(x)))
##    class      age      sex survived 
##        0      263        0        0
#Eliminar NA
Titanic <- na.omit(Titanic)

#¿Cuántos tengo por variable?
sapply(Titanic, function(x) sum(is.na(x)))
##    class      age      sex survived 
##        0        0        0        0

4. crear el arbol de decisión

library(rpart)
library(rpart.plot)

arbol <- rpart(formula = survived ~ ., data = Titanic)
arbol
## n= 1046 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1046 427 Murió (0.59177820 0.40822180)  
##    2) sex=male 658 135 Murió (0.79483283 0.20516717)  
##      4) age>=9.5 615 110 Murió (0.82113821 0.17886179) *
##      5) age< 9.5 43  18 Sobrevivió (0.41860465 0.58139535)  
##       10) class=3 29  11 Murió (0.62068966 0.37931034) *
##       11) class=1,2 14   0 Sobrevivió (0.00000000 1.00000000) *
##    3) sex=female 388  96 Sobrevivió (0.24742268 0.75257732)  
##      6) class=3 152  72 Murió (0.52631579 0.47368421)  
##       12) age>=1.5 145  66 Murió (0.54482759 0.45517241) *
##       13) age< 1.5 7   1 Sobrevivió (0.14285714 0.85714286) *
##      7) class=1,2 236  16 Sobrevivió (0.06779661 0.93220339) *
rpart.plot(arbol)

prp(arbol, extra = 7, prefix = "fracción/")

CANCER DE MAMA

1. Importar la base de datos

cancer_de_mama <- read.csv("/Users/santiago/Downloads/cancer_de_mama.csv")

2. Entender la base de datos

summary(cancer_de_mama)
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave.points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave.points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750
str(cancer_de_mama)
## 'data.frame':    569 obs. of  31 variables:
##  $ diagnosis              : chr  "M" "M" "M" "M" ...
##  $ radius_mean            : num  18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num  122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num  1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num  0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num  0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave.points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num  1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num  0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num  153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num  0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave.points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num  0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num  0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num  25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num  17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num  184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num  2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num  0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num  0.712 0.242 0.45 0.687 0.4 ...
##  $ concave.points_worst   : num  0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...
library(dplyr)
count(cancer_de_mama, diagnosis, sort = TRUE)
##   diagnosis   n
## 1         B 357
## 2         M 212

3. crear el arbol de decisión

library(rpart)
library(rpart.plot)

arbol <- rpart(formula = diagnosis ~ ., data = cancer_de_mama)
arbol
## n= 569 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 569 212 B (0.62741652 0.37258348)  
##    2) radius_worst< 16.795 379  33 B (0.91292876 0.08707124)  
##      4) concave.points_worst< 0.1358 333   5 B (0.98498498 0.01501502) *
##      5) concave.points_worst>=0.1358 46  18 M (0.39130435 0.60869565)  
##       10) texture_worst< 25.67 19   4 B (0.78947368 0.21052632) *
##       11) texture_worst>=25.67 27   3 M (0.11111111 0.88888889) *
##    3) radius_worst>=16.795 190  11 M (0.05789474 0.94210526) *
rpart.plot(arbol)

prp(arbol, extra = 7)

LS0tCnRpdGxlOiAiQXJib2wgZGUgZGVjaXNpw7NuIgphdXRob3I6ICJTYW50aWFnbyBNYWNpYXMiCmRhdGU6ICIyMDIzLTA5LTE5IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6ICJyZWFkYWJsZSIKICAgIGhpZ2hsaWdodDogInB5Z21lbnRzIgotLS0KPGNlbnRlcj4KIVtdKC9Vc2Vycy9zYW50aWFnby9EZXNrdG9wL1RpdGFuaWMuZ2lmKQoKCjxjZW50ZXI+CiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjEuIEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CgpgYGB7cn0KdGl0YW5pYyA8LSByZWFkLmNzdigiL1VzZXJzL3NhbnRpYWdvL0Rvd25sb2Fkcy90aXRhbmljLmNzdiIpCmxpYnJhcnkoZ2dwbG90MikKYGBgCgoKPGNlbnRlcj4KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+Mi4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CnN1bW1hcnkodGl0YW5pYykKc3RyKHRpdGFuaWMpCmxpYnJhcnkoZHBseXIpCiNjb3VudCh0aXRhbmljLCBuYW1lLCBzb3J0ID0gVFJVRSkKI2NvdW50KHRpdGFuaWMsIHNleCwgc29ydCA9IFRSVUUpCiNjb3VudCh0aXRhbmljLCB0aWNrZXQsIHNvcnQgPSBUUlVFKQojY291bnQodGl0YW5pYywgY2FiaW4sIHNvcnQgPSBUUlVFKQojY291bnQodGl0YW5pYywgZW1iYXJrZWQsIHNvcnQgPSBUUlVFKQojY291bnQodGl0YW5pYywgYm9hdCwgc29ydCA9IFRSVUUpCiNjb3VudCh0aXRhbmljLCBob21lLmRlc3QsIHNvcnQgPSBUUlVFKQpgYGAKCk9ic2VydmFjaW9uZXMKMS4gVGVuZW1vcyAyIHJlZ2lzdHJvcyBkZSBub21icmVzIHJlcGV0aWRvcwoyLiBIYXkgTkFzCgo8Y2VudGVyPgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4zLiBMaW1waWV6YSBkZSBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPgoKYGBge3J9CiMgQ2FtYmlhciBkZSBub21icmUgYSBsYSB2YXJpYWJsZSBwY2xhc3MKY29sbmFtZXModGl0YW5pYylbMV0gPC0gImNsYXNzIgoKI0V4dHJhZXIgbGFzIHZhcmlhYmxlcyBkZSBpbnRlcsOpcwpUaXRhbmljIDwtIHRpdGFuaWMgWyxjKCJjbGFzcyIsImFnZSIsInNleCIsInN1cnZpdmVkIildCgojwr9DdcOhbnRvcyBOQSB0ZW5nbyBlbiBsYSBiYXNlIGRlIGRhdG9zPwpzdW0oaXMubmEoVGl0YW5pYykpCgojwr9DdcOhbnRvcyB0ZW5nbyBwb3IgdmFyaWFibGU/CnNhcHBseShUaXRhbmljLCBmdW5jdGlvbih4KSBzdW0oaXMubmEoeCkpKQoKI0VsaW1pbmFyIHJlbmdsb24gZW4gYmxhbmNvClRpdGFuaWMgPC0gVGl0YW5pYyBbLTEzMTAsXQoKI0NvbnZlcnRpciBsYXMgdmFyaWFibGVhIGNhdGVnw7NyaWNhcyBlbiBmYWN0b3JlcwpUaXRhbmljJGNsYXNzIDwtIGFzLmZhY3RvcihUaXRhbmljJGNsYXNzKQpUaXRhbmljJHNleCA8LSBhcy5mYWN0b3IoVGl0YW5pYyRzZXgpClRpdGFuaWMkc3Vydml2ZWQgPC0gYXMuZmFjdG9yKGlmZWxzZShUaXRhbmljJHN1cnZpdmVkPT0wLCAiTXVyacOzIiwgIlNvYnJldml2acOzIikpCnN0cihUaXRhbmljKQoKI8K/Q3XDoW50b3MgdGVuZ28gcG9yIHZhcmlhYmxlPwpzYXBwbHkoVGl0YW5pYywgZnVuY3Rpb24oeCkgc3VtKGlzLm5hKHgpKSkKCiNFbGltaW5hciBOQQpUaXRhbmljIDwtIG5hLm9taXQoVGl0YW5pYykKCiPCv0N1w6FudG9zIHRlbmdvIHBvciB2YXJpYWJsZT8Kc2FwcGx5KFRpdGFuaWMsIGZ1bmN0aW9uKHgpIHN1bShpcy5uYSh4KSkpCgoKYGBgCgo8Y2VudGVyPgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij40LiBjcmVhciBlbCBhcmJvbCBkZSBkZWNpc2nDs248L3NwYW4+CmBgYHtyfQpsaWJyYXJ5KHJwYXJ0KQpsaWJyYXJ5KHJwYXJ0LnBsb3QpCgphcmJvbCA8LSBycGFydChmb3JtdWxhID0gc3Vydml2ZWQgfiAuLCBkYXRhID0gVGl0YW5pYykKYXJib2wKcnBhcnQucGxvdChhcmJvbCkKCnBycChhcmJvbCwgZXh0cmEgPSA3LCBwcmVmaXggPSAiZnJhY2Npw7NuLyIpCmBgYAoKCgo8Y2VudGVyPgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHBpbms7Ij4gQ0FOQ0VSIERFIE1BTUE8L3NwYW4+CgohW10oL1VzZXJzL3NhbnRpYWdvL0Rlc2t0b3AvY2FuY2VyZGVtYW1hLmdpZikKCjxjZW50ZXI+CiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcGluazsiPjEuIEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CgpgYGB7cn0KY2FuY2VyX2RlX21hbWEgPC0gcmVhZC5jc3YoIi9Vc2Vycy9zYW50aWFnby9Eb3dubG9hZHMvY2FuY2VyX2RlX21hbWEuY3N2IikKYGBgCgoKPGNlbnRlcj4KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwaW5rOyI+Mi4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CnN1bW1hcnkoY2FuY2VyX2RlX21hbWEpCnN0cihjYW5jZXJfZGVfbWFtYSkKbGlicmFyeShkcGx5cikKY291bnQoY2FuY2VyX2RlX21hbWEsIGRpYWdub3Npcywgc29ydCA9IFRSVUUpCmBgYAoKPGNlbnRlcj4KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwaW5rOyI+My4gY3JlYXIgZWwgYXJib2wgZGUgZGVjaXNpw7NuPC9zcGFuPgpgYGB7cn0KbGlicmFyeShycGFydCkKbGlicmFyeShycGFydC5wbG90KQoKYXJib2wgPC0gcnBhcnQoZm9ybXVsYSA9IGRpYWdub3NpcyB+IC4sIGRhdGEgPSBjYW5jZXJfZGVfbWFtYSkKYXJib2wKcnBhcnQucGxvdChhcmJvbCkKCnBycChhcmJvbCwgZXh0cmEgPSA3KQpgYGAKCgoK