1.변수명바꾸기

mpg <- as.data.frame(ggplot2::mpg)
library(dplyr)
## 
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
mpg_new <- mpg
mpg_new <- rename(mpg_new,city=cty)
mpg_new <- rename(mpg_new,highway=hwy)
head(mpg_new)
##   manufacturer model displ year cyl      trans drv city highway fl   class
## 1         audi    a4   1.8 1999   4   auto(l5)   f   18      29  p compact
## 2         audi    a4   1.8 1999   4 manual(m5)   f   21      29  p compact
## 3         audi    a4   2.0 2008   4 manual(m6)   f   20      31  p compact
## 4         audi    a4   2.0 2008   4   auto(av)   f   21      30  p compact
## 5         audi    a4   2.8 1999   6   auto(l5)   f   16      26  p compact
## 6         audi    a4   2.8 1999   6 manual(m5)   f   18      26  p compact

2.교과서 123쪽 문제 수행하기

Q1.

midwest <- as.data.frame(ggplot2::midwest)
head(midwest)
##   PID    county state  area poptotal popdensity popwhite popblack popamerindian
## 1 561     ADAMS    IL 0.052    66090  1270.9615    63917     1702            98
## 2 562 ALEXANDER    IL 0.014    10626   759.0000     7054     3496            19
## 3 563      BOND    IL 0.022    14991   681.4091    14477      429            35
## 4 564     BOONE    IL 0.017    30806  1812.1176    29344      127            46
## 5 565     BROWN    IL 0.018     5836   324.2222     5264      547            14
## 6 566    BUREAU    IL 0.050    35688   713.7600    35157       50            65
##   popasian popother percwhite  percblack percamerindan  percasian  percother
## 1      249      124  96.71206  2.5752761     0.1482826 0.37675897 0.18762294
## 2       48        9  66.38434 32.9004329     0.1788067 0.45172219 0.08469791
## 3       16       34  96.57128  2.8617170     0.2334734 0.10673071 0.22680275
## 4      150     1139  95.25417  0.4122574     0.1493216 0.48691813 3.69733169
## 5        5        6  90.19877  9.3728581     0.2398903 0.08567512 0.10281014
## 6      195      221  98.51210  0.1401031     0.1821340 0.54640215 0.61925577
##   popadults  perchsd percollege percprof poppovertyknown percpovertyknown
## 1     43298 75.10740   19.63139 4.355859           63628         96.27478
## 2      6724 59.72635   11.24331 2.870315           10529         99.08714
## 3      9669 69.33499   17.03382 4.488572           14235         94.95697
## 4     19272 75.47219   17.27895 4.197800           30337         98.47757
## 5      3979 68.86152   14.47600 3.367680            4815         82.50514
## 6     23444 76.62941   18.90462 3.275891           35107         98.37200
##   percbelowpoverty percchildbelowpovert percadultpoverty percelderlypoverty
## 1        13.151443             18.01172        11.009776          12.443812
## 2        32.244278             45.82651        27.385647          25.228976
## 3        12.068844             14.03606        10.852090          12.697410
## 4         7.209019             11.17954         5.536013           6.217047
## 5        13.520249             13.02289        11.143211          19.200000
## 6        10.399635             14.15882         8.179287          11.008586
##   inmetro category
## 1       0      AAR
## 2       0      LHR
## 3       0      AAR
## 4       1      ALU
## 5       0      AAR
## 6       0      AAR
tail(midwest)
##      PID     county state  area poptotal popdensity popwhite popblack
## 432 3047 WASHINGTON    WI 0.025    95328  3813.1200    94465      125
## 433 3048   WAUKESHA    WI 0.034   304715  8962.2059   298313     1096
## 434 3049    WAUPACA    WI 0.045    46104  1024.5333    45695       22
## 435 3050   WAUSHARA    WI 0.037    19385   523.9189    19094       29
## 436 3051  WINNEBAGO    WI 0.035   140320  4009.1429   136822      697
## 437 3052       WOOD    WI 0.048    73605  1533.4375    72157       90
##     popamerindian popasian popother percwhite percblack percamerindan percasian
## 432           208      337      193  99.09470 0.1311262     0.2181940 0.3535163
## 433           672     2699     1935  97.89902 0.3596804     0.2205339 0.8857457
## 434           125       92      170  99.11288 0.0477182     0.2711262 0.1995488
## 435            70       43      149  98.49884 0.1496002     0.3611040 0.2218210
## 436           685     1728      388  97.50713 0.4967218     0.4881699 1.2314709
## 437           481      722      155  98.03274 0.1222743     0.6534882 0.9809116
##     percother popadults  perchsd percollege percprof poppovertyknown
## 432 0.2024589     59583 81.34032   23.39090 4.014568           94143
## 433 0.6350196    195837 87.98899   35.39678 7.667090          299802
## 434 0.3687316     30109 72.13790   16.54987 3.138596           44412
## 435 0.7686355     13316 70.00601   15.06458 2.620907           19163
## 436 0.2765108     88960 80.61938   24.99550 5.659847          133950
## 437 0.2105835     46796 78.29515   21.66638 4.583725           72685
##     percpovertyknown percbelowpoverty percchildbelowpovert percadultpoverty
## 432         98.75692         3.237628             4.069854         2.584500
## 433         98.38767         3.121060             3.785820         2.590061
## 434         96.33004         8.488697            10.071411         6.953799
## 435         98.85478        13.786985            20.050708        11.695784
## 436         95.46038         8.804031            10.592031         8.660587
## 437         98.75008         8.525831            11.162997         7.375656
##     percelderlypoverty inmetro category
## 432           4.280889       1      HLU
## 433           4.085479       1      HLU
## 434          10.338641       0      AAR
## 435          11.804558       0      AAR
## 436           6.661094       1      HAU
## 437           7.882918       0      AAR
View(midwest)
dim(midwest)
## [1] 437  28
str(midwest)
## 'data.frame':    437 obs. of  28 variables:
##  $ PID                 : int  561 562 563 564 565 566 567 568 569 570 ...
##  $ county              : chr  "ADAMS" "ALEXANDER" "BOND" "BOONE" ...
##  $ state               : chr  "IL" "IL" "IL" "IL" ...
##  $ area                : num  0.052 0.014 0.022 0.017 0.018 0.05 0.017 0.027 0.024 0.058 ...
##  $ poptotal            : int  66090 10626 14991 30806 5836 35688 5322 16805 13437 173025 ...
##  $ popdensity          : num  1271 759 681 1812 324 ...
##  $ popwhite            : int  63917 7054 14477 29344 5264 35157 5298 16519 13384 146506 ...
##  $ popblack            : int  1702 3496 429 127 547 50 1 111 16 16559 ...
##  $ popamerindian       : int  98 19 35 46 14 65 8 30 8 331 ...
##  $ popasian            : int  249 48 16 150 5 195 15 61 23 8033 ...
##  $ popother            : int  124 9 34 1139 6 221 0 84 6 1596 ...
##  $ percwhite           : num  96.7 66.4 96.6 95.3 90.2 ...
##  $ percblack           : num  2.575 32.9 2.862 0.412 9.373 ...
##  $ percamerindan       : num  0.148 0.179 0.233 0.149 0.24 ...
##  $ percasian           : num  0.3768 0.4517 0.1067 0.4869 0.0857 ...
##  $ percother           : num  0.1876 0.0847 0.2268 3.6973 0.1028 ...
##  $ popadults           : int  43298 6724 9669 19272 3979 23444 3583 11323 8825 95971 ...
##  $ perchsd             : num  75.1 59.7 69.3 75.5 68.9 ...
##  $ percollege          : num  19.6 11.2 17 17.3 14.5 ...
##  $ percprof            : num  4.36 2.87 4.49 4.2 3.37 ...
##  $ poppovertyknown     : int  63628 10529 14235 30337 4815 35107 5241 16455 13081 154934 ...
##  $ percpovertyknown    : num  96.3 99.1 95 98.5 82.5 ...
##  $ percbelowpoverty    : num  13.15 32.24 12.07 7.21 13.52 ...
##  $ percchildbelowpovert: num  18 45.8 14 11.2 13 ...
##  $ percadultpoverty    : num  11.01 27.39 10.85 5.54 11.14 ...
##  $ percelderlypoverty  : num  12.44 25.23 12.7 6.22 19.2 ...
##  $ inmetro             : int  0 0 0 1 0 0 0 0 0 1 ...
##  $ category            : chr  "AAR" "LHR" "AAR" "ALU" ...
summary(midwest)
##       PID          county             state                area        
##  Min.   : 561   Length:437         Length:437         Min.   :0.00500  
##  1st Qu.: 670   Class :character   Class :character   1st Qu.:0.02400  
##  Median :1221   Mode  :character   Mode  :character   Median :0.03000  
##  Mean   :1437                                         Mean   :0.03317  
##  3rd Qu.:2059                                         3rd Qu.:0.03800  
##  Max.   :3052                                         Max.   :0.11000  
##     poptotal         popdensity          popwhite          popblack      
##  Min.   :   1701   Min.   :   85.05   Min.   :    416   Min.   :      0  
##  1st Qu.:  18840   1st Qu.:  622.41   1st Qu.:  18630   1st Qu.:     29  
##  Median :  35324   Median : 1156.21   Median :  34471   Median :    201  
##  Mean   :  96130   Mean   : 3097.74   Mean   :  81840   Mean   :  11024  
##  3rd Qu.:  75651   3rd Qu.: 2330.00   3rd Qu.:  72968   3rd Qu.:   1291  
##  Max.   :5105067   Max.   :88018.40   Max.   :3204947   Max.   :1317147  
##  popamerindian        popasian         popother        percwhite    
##  Min.   :    4.0   Min.   :     0   Min.   :     0   Min.   :10.69  
##  1st Qu.:   44.0   1st Qu.:    35   1st Qu.:    20   1st Qu.:94.89  
##  Median :   94.0   Median :   102   Median :    66   Median :98.03  
##  Mean   :  343.1   Mean   :  1310   Mean   :  1613   Mean   :95.56  
##  3rd Qu.:  288.0   3rd Qu.:   401   3rd Qu.:   345   3rd Qu.:99.07  
##  Max.   :10289.0   Max.   :188565   Max.   :384119   Max.   :99.82  
##    percblack       percamerindan        percasian        percother      
##  Min.   : 0.0000   Min.   : 0.05623   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.: 0.1157   1st Qu.: 0.15793   1st Qu.:0.1737   1st Qu.:0.09102  
##  Median : 0.5390   Median : 0.21502   Median :0.2972   Median :0.17844  
##  Mean   : 2.6763   Mean   : 0.79894   Mean   :0.4872   Mean   :0.47906  
##  3rd Qu.: 2.6014   3rd Qu.: 0.38362   3rd Qu.:0.5212   3rd Qu.:0.48050  
##  Max.   :40.2100   Max.   :89.17738   Max.   :5.0705   Max.   :7.52427  
##    popadults          perchsd        percollege        percprof      
##  Min.   :   1287   Min.   :46.91   Min.   : 7.336   Min.   : 0.5203  
##  1st Qu.:  12271   1st Qu.:71.33   1st Qu.:14.114   1st Qu.: 2.9980  
##  Median :  22188   Median :74.25   Median :16.798   Median : 3.8142  
##  Mean   :  60973   Mean   :73.97   Mean   :18.273   Mean   : 4.4473  
##  3rd Qu.:  47541   3rd Qu.:77.20   3rd Qu.:20.550   3rd Qu.: 4.9493  
##  Max.   :3291995   Max.   :88.90   Max.   :48.079   Max.   :20.7913  
##  poppovertyknown   percpovertyknown percbelowpoverty percchildbelowpovert
##  Min.   :   1696   Min.   :80.90    Min.   : 2.180   Min.   : 1.919      
##  1st Qu.:  18364   1st Qu.:96.89    1st Qu.: 9.199   1st Qu.:11.624      
##  Median :  33788   Median :98.17    Median :11.822   Median :15.270      
##  Mean   :  93642   Mean   :97.11    Mean   :12.511   Mean   :16.447      
##  3rd Qu.:  72840   3rd Qu.:98.60    3rd Qu.:15.133   3rd Qu.:20.352      
##  Max.   :5023523   Max.   :99.86    Max.   :48.691   Max.   :64.308      
##  percadultpoverty percelderlypoverty    inmetro         category        
##  Min.   : 1.938   Min.   : 3.547     Min.   :0.0000   Length:437        
##  1st Qu.: 7.668   1st Qu.: 8.912     1st Qu.:0.0000   Class :character  
##  Median :10.008   Median :10.869     Median :0.0000   Mode  :character  
##  Mean   :10.919   Mean   :11.389     Mean   :0.3432                     
##  3rd Qu.:13.182   3rd Qu.:13.412     3rd Qu.:1.0000                     
##  Max.   :43.312   Max.   :31.162     Max.   :1.0000

Q2.

midwest_new <- midwest
library(dplyr)
midwest_new <- rename(midwest_new, total=poptotal)
midwest_new <- rename(midwest_new, asian=popasian)
head(midwest_new)
##   PID    county state  area total popdensity popwhite popblack popamerindian
## 1 561     ADAMS    IL 0.052 66090  1270.9615    63917     1702            98
## 2 562 ALEXANDER    IL 0.014 10626   759.0000     7054     3496            19
## 3 563      BOND    IL 0.022 14991   681.4091    14477      429            35
## 4 564     BOONE    IL 0.017 30806  1812.1176    29344      127            46
## 5 565     BROWN    IL 0.018  5836   324.2222     5264      547            14
## 6 566    BUREAU    IL 0.050 35688   713.7600    35157       50            65
##   asian popother percwhite  percblack percamerindan  percasian  percother
## 1   249      124  96.71206  2.5752761     0.1482826 0.37675897 0.18762294
## 2    48        9  66.38434 32.9004329     0.1788067 0.45172219 0.08469791
## 3    16       34  96.57128  2.8617170     0.2334734 0.10673071 0.22680275
## 4   150     1139  95.25417  0.4122574     0.1493216 0.48691813 3.69733169
## 5     5        6  90.19877  9.3728581     0.2398903 0.08567512 0.10281014
## 6   195      221  98.51210  0.1401031     0.1821340 0.54640215 0.61925577
##   popadults  perchsd percollege percprof poppovertyknown percpovertyknown
## 1     43298 75.10740   19.63139 4.355859           63628         96.27478
## 2      6724 59.72635   11.24331 2.870315           10529         99.08714
## 3      9669 69.33499   17.03382 4.488572           14235         94.95697
## 4     19272 75.47219   17.27895 4.197800           30337         98.47757
## 5      3979 68.86152   14.47600 3.367680            4815         82.50514
## 6     23444 76.62941   18.90462 3.275891           35107         98.37200
##   percbelowpoverty percchildbelowpovert percadultpoverty percelderlypoverty
## 1        13.151443             18.01172        11.009776          12.443812
## 2        32.244278             45.82651        27.385647          25.228976
## 3        12.068844             14.03606        10.852090          12.697410
## 4         7.209019             11.17954         5.536013           6.217047
## 5        13.520249             13.02289        11.143211          19.200000
## 6        10.399635             14.15882         8.179287          11.008586
##   inmetro category
## 1       0      AAR
## 2       0      LHR
## 3       0      AAR
## 4       1      ALU
## 5       0      AAR
## 6       0      AAR

Q3.

midwest_new$ratio <- (midwest_new$asian/midwest_new$total)*100
head(midwest_new)
##   PID    county state  area total popdensity popwhite popblack popamerindian
## 1 561     ADAMS    IL 0.052 66090  1270.9615    63917     1702            98
## 2 562 ALEXANDER    IL 0.014 10626   759.0000     7054     3496            19
## 3 563      BOND    IL 0.022 14991   681.4091    14477      429            35
## 4 564     BOONE    IL 0.017 30806  1812.1176    29344      127            46
## 5 565     BROWN    IL 0.018  5836   324.2222     5264      547            14
## 6 566    BUREAU    IL 0.050 35688   713.7600    35157       50            65
##   asian popother percwhite  percblack percamerindan  percasian  percother
## 1   249      124  96.71206  2.5752761     0.1482826 0.37675897 0.18762294
## 2    48        9  66.38434 32.9004329     0.1788067 0.45172219 0.08469791
## 3    16       34  96.57128  2.8617170     0.2334734 0.10673071 0.22680275
## 4   150     1139  95.25417  0.4122574     0.1493216 0.48691813 3.69733169
## 5     5        6  90.19877  9.3728581     0.2398903 0.08567512 0.10281014
## 6   195      221  98.51210  0.1401031     0.1821340 0.54640215 0.61925577
##   popadults  perchsd percollege percprof poppovertyknown percpovertyknown
## 1     43298 75.10740   19.63139 4.355859           63628         96.27478
## 2      6724 59.72635   11.24331 2.870315           10529         99.08714
## 3      9669 69.33499   17.03382 4.488572           14235         94.95697
## 4     19272 75.47219   17.27895 4.197800           30337         98.47757
## 5      3979 68.86152   14.47600 3.367680            4815         82.50514
## 6     23444 76.62941   18.90462 3.275891           35107         98.37200
##   percbelowpoverty percchildbelowpovert percadultpoverty percelderlypoverty
## 1        13.151443             18.01172        11.009776          12.443812
## 2        32.244278             45.82651        27.385647          25.228976
## 3        12.068844             14.03606        10.852090          12.697410
## 4         7.209019             11.17954         5.536013           6.217047
## 5        13.520249             13.02289        11.143211          19.200000
## 6        10.399635             14.15882         8.179287          11.008586
##   inmetro category      ratio
## 1       0      AAR 0.37675897
## 2       0      LHR 0.45172219
## 3       0      AAR 0.10673071
## 4       1      ALU 0.48691813
## 5       0      AAR 0.08567512
## 6       0      AAR 0.54640215
hist(midwest_new$ratio)

Q4.

mean(midwest_new$ratio)
## [1] 0.4872462
midwest_new$group <- ifelse(midwest_new$ratio > 0.4872462,"large","small")
head(midwest_new)
##   PID    county state  area total popdensity popwhite popblack popamerindian
## 1 561     ADAMS    IL 0.052 66090  1270.9615    63917     1702            98
## 2 562 ALEXANDER    IL 0.014 10626   759.0000     7054     3496            19
## 3 563      BOND    IL 0.022 14991   681.4091    14477      429            35
## 4 564     BOONE    IL 0.017 30806  1812.1176    29344      127            46
## 5 565     BROWN    IL 0.018  5836   324.2222     5264      547            14
## 6 566    BUREAU    IL 0.050 35688   713.7600    35157       50            65
##   asian popother percwhite  percblack percamerindan  percasian  percother
## 1   249      124  96.71206  2.5752761     0.1482826 0.37675897 0.18762294
## 2    48        9  66.38434 32.9004329     0.1788067 0.45172219 0.08469791
## 3    16       34  96.57128  2.8617170     0.2334734 0.10673071 0.22680275
## 4   150     1139  95.25417  0.4122574     0.1493216 0.48691813 3.69733169
## 5     5        6  90.19877  9.3728581     0.2398903 0.08567512 0.10281014
## 6   195      221  98.51210  0.1401031     0.1821340 0.54640215 0.61925577
##   popadults  perchsd percollege percprof poppovertyknown percpovertyknown
## 1     43298 75.10740   19.63139 4.355859           63628         96.27478
## 2      6724 59.72635   11.24331 2.870315           10529         99.08714
## 3      9669 69.33499   17.03382 4.488572           14235         94.95697
## 4     19272 75.47219   17.27895 4.197800           30337         98.47757
## 5      3979 68.86152   14.47600 3.367680            4815         82.50514
## 6     23444 76.62941   18.90462 3.275891           35107         98.37200
##   percbelowpoverty percchildbelowpovert percadultpoverty percelderlypoverty
## 1        13.151443             18.01172        11.009776          12.443812
## 2        32.244278             45.82651        27.385647          25.228976
## 3        12.068844             14.03606        10.852090          12.697410
## 4         7.209019             11.17954         5.536013           6.217047
## 5        13.520249             13.02289        11.143211          19.200000
## 6        10.399635             14.15882         8.179287          11.008586
##   inmetro category      ratio group
## 1       0      AAR 0.37675897 small
## 2       0      LHR 0.45172219 small
## 3       0      AAR 0.10673071 small
## 4       1      ALU 0.48691813 small
## 5       0      AAR 0.08567512 small
## 6       0      AAR 0.54640215 large

Q5.

table(midwest_new$group)
## 
## large small 
##   119   318
library(ggplot2)
## 
## 다음의 패키지를 부착합니다: 'ggplot2'
## The following objects are masked _by_ '.GlobalEnv':
## 
##     midwest, mpg
qplot(midwest_new$group)
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

3.엑셀파일 불러들여 데이터 살펴보고 과제 수행하기

Q1.

library(readxl)
mlu_data <- read_excel("C:\\Users\\user\\Documents\\20220124\\mlu.xls", sheet=2)
mlu_data_new <- mlu_data

Q2.

dim(mlu_data_new)
## [1] 35  8

35개

Q3.

library(dplyr)
mlu_data_new <- rename(mlu_data_new, utterances=utterances_mlu)
mlu_data_new <- rename(mlu_data_new, words=words_mlu)
head(mlu_data_new)
## # A tibble: 6 × 8
##   File     age   utterances words DurationTime DurationSec Types_freq Token_freq
##   <chr>    <chr>      <dbl> <dbl> <chr>              <dbl>      <dbl>      <dbl>
## 1 13_A0P0… A0           566  1290 "00:17:35"          1055        580       1346
## 2 21_A0P0… A0           565  1602 "00:20:44"          1244        737       1606
## 3 27_A0P0… A0           470   813 "00:12:07"           727        378        832
## 4 28_A0P0… A0           371   976 "00:11:53"           713        419        979
## 5 29_A0P0… A0           802  2239 "00:24:45"          1485        814       2253
## 6 2_A0P01… A0           563  1243 "00:12:06\""          NA        425       1263

Q4.

mlu_data_new$mlu <- mlu_data_new$words/mlu_data_new$utterances
head(mlu_data_new)
## # A tibble: 6 × 9
##   File     age   utterances words DurationTime DurationSec Types_freq Token_freq
##   <chr>    <chr>      <dbl> <dbl> <chr>              <dbl>      <dbl>      <dbl>
## 1 13_A0P0… A0           566  1290 "00:17:35"          1055        580       1346
## 2 21_A0P0… A0           565  1602 "00:20:44"          1244        737       1606
## 3 27_A0P0… A0           470   813 "00:12:07"           727        378        832
## 4 28_A0P0… A0           371   976 "00:11:53"           713        419        979
## 5 29_A0P0… A0           802  2239 "00:24:45"          1485        814       2253
## 6 2_A0P01… A0           563  1243 "00:12:06\""          NA        425       1263
## # ℹ 1 more variable: mlu <dbl>

Q5.

summary(mlu_data_new)
##      File               age              utterances        words     
##  Length:35          Length:35          Min.   :323.0   Min.   : 813  
##  Class :character   Class :character   1st Qu.:561.0   1st Qu.:1368  
##  Mode  :character   Mode  :character   Median :621.0   Median :1716  
##                                        Mean   :631.8   Mean   :1710  
##                                        3rd Qu.:716.0   3rd Qu.:2060  
##                                        Max.   :890.0   Max.   :2766  
##                                                                      
##  DurationTime        DurationSec     Types_freq       Token_freq  
##  Length:35          Min.   : 527   Min.   : 378.0   Min.   : 832  
##  Class :character   1st Qu.: 924   1st Qu.: 567.5   1st Qu.:1446  
##  Mode  :character   Median :1060   Median : 694.0   Median :1798  
##                     Mean   :1086   Mean   : 669.1   Mean   :1778  
##                     3rd Qu.:1246   3rd Qu.: 775.5   3rd Qu.:2134  
##                     Max.   :1762   Max.   :1014.0   Max.   :2827  
##                     NA's   :1                                     
##       mlu       
##  Min.   :1.730  
##  1st Qu.:2.447  
##  Median :2.745  
##  Mean   :2.696  
##  3rd Qu.:2.916  
##  Max.   :3.476  
## 

평균:2.696, 1st Qu:2.447, 2nd Qu:2.916

Q6.

mlu_data_new$grade <- ifelse(mlu_data_new$mlu >=3.4,"A",
                             ifelse(mlu_data_new$mlu >= 2.9,"B",
                                    ifelse(mlu_data_new$mlu >= 2.7,"C","D")))
head(mlu_data_new)
## # A tibble: 6 × 10
##   File     age   utterances words DurationTime DurationSec Types_freq Token_freq
##   <chr>    <chr>      <dbl> <dbl> <chr>              <dbl>      <dbl>      <dbl>
## 1 13_A0P0… A0           566  1290 "00:17:35"          1055        580       1346
## 2 21_A0P0… A0           565  1602 "00:20:44"          1244        737       1606
## 3 27_A0P0… A0           470   813 "00:12:07"           727        378        832
## 4 28_A0P0… A0           371   976 "00:11:53"           713        419        979
## 5 29_A0P0… A0           802  2239 "00:24:45"          1485        814       2253
## 6 2_A0P01… A0           563  1243 "00:12:06\""          NA        425       1263
## # ℹ 2 more variables: mlu <dbl>, grade <chr>

Q8.

qplot(mlu_data_new$age,mlu_data_new$mlu)