#tinytex::install_tinytex()

library(tinytex)

¿Para qué sirve la generación de números (pseudo) aleatorios?

producen sucesiones que poseen una distribución uniforme según varios tipos de pruebas. Las clases más comunes de estos algoritmos son generadores lineales congruentes, generadores Fibonacci demorados, desplazamiento de registros con retroalimentación lineal y desplazamientos de registros con retroalimentación generalizada.

¿Cuáles son las principales características que acompañan a los números aleatorios puros?

se almacenaban en tablas de dígitos aleatorios. su procedimiento son: números aleatorios en un rango de \(1\) a \(m\) era el siguiente:

Se selecciona al azar un punto de inicio en la tabla y la dirección que se seguirá.

Se agrupan los dígitos de forma que \(“cubran”\) el valor de \(m\).

Se va avanzado en la dirección elegida, seleccionando los valores menores o iguales que m y descartando el resto.

Mencione tres funciones que existan en el software R para generar números pseudoaleatorios, y de un ejemplo de cada una de ellas.

\(Números\)_\(pseudoaleatorios\). Los números pseudoaleatorios se generan de manera secuencial con un algoritmo determinístico, formalmente se definen por:

\(Función\) de \(inicialización.\)Recibe un número (la semilla) y pone al generador en su estado inicial.

\(ejemplo\)

Se inicia con una semilla de$ 4 $ dígitos. \(seed = 9731\)

\(Función de transición\). Transforma el estado del generador.

\(ejemplo\) La semilla se eleva al cuadrado, produciendo un número de 8 dígitos (si el resultado tiene menos de 8 dígitos se añaden ceros al inicio). \(value = 94692361\)

\(Funció\)n de \(salidas\). Transforma el estado para producir un número fijo de bits (0 ó 1).

Una sucesión de \(bits\) pseudoaleatorios se obtiene definiendo la semilla y llamando repetidamente la función de transición y la función de salidas.

\(Ejemplo\) Los \(4\) números del centro serán el siguiente número en la secuencia, y se devuelven como resultado. \(seed = 6923\)

CODIGO.

library(tidyverse)

mid_square <- function(seed, n) {
   seeds <- numeric(n)
   values <- numeric(n)
   for(i in 1:n) {
       x <- seed ^ 2
       seed = case_when(
           nchar(x) > 2 ~ (x %/% 1e2) %% 1e4,
           TRUE ~ 0)
       values[i] <- x
       seeds[i] <- seed
   }
   cbind(seeds, values)
}
x <- mid_square(1931, 10) 
print(x, digits = 4)
##       seeds   values
##  [1,]  7287  3728761
##  [2,]  1003 53100369
##  [3,]    60  1006009
##  [4,]    36     3600
##  [5,]    12     1296
##  [6,]     1      144
##  [7,]     0        1
##  [8,]     0        0
##  [9,]     0        0
## [10,]     0        0

Por otra parte esta funcion permite \(runif\) para generar las variables aleatorios provienen de la distribucion uniforme.asi se define\[ks.test(datos,runif,0,1)\]

tambien la funcion \(rnorm\) para generar las variables aleatorios provienen de la distribucion normal .asi se define\[ks.test(datos,rnorm,0,1)\]

¿Cualés son las principales características de los generadores congruenciales?

En los generadores congruenciales lineales se considera una combinación lineal de los últimos \(K\) enteros generados y se calcula su resto al dividir por un entero fijo \(m\) En el método congruencial simple (de orden \(k=1\), partiendo de una semilla inicial,el algoritmo secuencial es el siguiente:

\[\begin{aligned} x_{i} & = (ax_{i-1}+c) \bmod m \\ u_{i} & = \dfrac{x_{i}}{m} \\ i & =1,2,\ldots \end{aligned}\]

\(a\)(multiplicador),\(c\) (incremento) y \(m\) (módulo) son enteros positivos6 fijados de antemano (los parámetros de este generador). Si el generador se denomina congruencial multiplicativo (Lehmer, 1951) y en caso contrario se dice que es mixto (Rotenburg, 1960).

Obviamente los parámetros y la semilla determinan los valores generados, que también se pueden obtener de forma no recursiva:\[x_{i}=\left( a^{i}x_0+c\frac{a^{i}-1}{a-1}\right) \bmod m\]

Este método está implementado7 en la función \(rlcg()\) del paquete simres, imitando el funcionamiento del generador uniforme de R (ver también simres::rng(); fichero rng.R

Méncione almenos 3 tipos diferentes de generadores congruenciales.

Ejemplos de parámetros:

1-\[c=0,a=2^{16} +3=65539 y m=2^{31}\] generador RANDU de IBM (no recomendable como veremos más adelante).

2-\[c=0,a=7^5=16807 y m=2^{31}-1\] (primo de Mersenne), Park y Miller (1988) minimal standar, empleado por las librerías IMSL y NAG.

3-\[ c=0,a=4871 y m=2^31-1\] actualización del minimal standar propuesta por Park, Miller y Stockmeyer (1993).

una adecuada elección de los parámetros permite obtener de manera eficiente secuencias de números “aparentemente” i.i.d.\(\mathcal{U}(0,1)\).Durante los primeros años, el procedimiento habitual consistía en escoger de forma que se pudiera realizar eficientemente la operación del módulo, aprovechando la arquitectura del ordenador (por ejemplo \(m=2^{31}\)si se emplean enteros con signo de 32 bits). Posteriormente se seleccionaban y de forma que el período \(p\) fuese lo más largo posible (o suficientemente largo)

Simulación

#SIMULACION
######################################################################3
#1.PASO 1 GENERAR LOS DATOS
rm(list=ls())
n <- 100       # numero de numeros aleatorios a generar (100)
a  <- 2^16+3  #valor de operacion 
m  <- 2^31     #valor del modulo
c <- 0
muestr <-45183     # Fijar un valor a la semilla  asignamos el valor de muestr

# Enseguida se utiliza el ciclo for para generar los valores aleatorios en n muestra 
#iniciando en la posicion 2,tomara el valor de 2-1, pues en este caso la semilla inicial 45183, sera el primer posicion.
for(i in 2:n)
{
  muestr[i]<-(a*muestr[i-1]+c)%%m
}
muestr
##   [1]      45183  813764989  587215991  494378341 1976293423  965904525
##   [7]  893688231  963955957 2035508959 1389966493  757636567  626055557
##  [13] 1232571535 1760929197 1619915015  313578261  187136319  448097213
##  [19] 1004356407 1993263525  772889839 1730352845 1278624871  688508213
##  [25] 1213360031 1083586269 2023728279  242609605  421972303  348347373
##  [31]  439817159 1651260245 1654239743 1506547197  593576439  739952101
##  [37] 1245008303  810480909  100261671 1897176437 1890768991  712476957
##  [43]  142842711  887214597 1890219535 1208902189  978855559 1435464597
##  [49] 1950571199  931729469  920137911 1430229541  300136047 1813652301
##  [55] 1738238439  549010869  534821151  415312733 1973453335 1660454469
##  [61]  791581391  542816365  427632967 1975417813 1561359231  179329661
##  [67] 2056130423 2132880997  734563119  243835277 1294394535 1276882421
##  [73]  306711007 1085742493 1606572247 2015234693 1927225231 2016173741
##  [79] 1194466311 1906136085  686619711 1996879037 1506729527 1805884069
##  [85] 1569705967 1755213773  698896231 1281355317 1398065823 1151164381
##  [91]  766844823  683040453 1491606607  654791917 1241710279 1557134421
##  [97]  314897663  760078077 1726389495 1370150629
#A aprtir de la Asignacion de la mestr
#podemos calcular
#los siguientes
########################################################
#2.Calcular la media y varianza de la muestra.
##############################################
# 1 generar la media de la muestr a partir de la muestra generada
mean(muestr)
## [1] 1135632983
# 1 Genrar la varianza de la muestr a partir de la muestra generada
var(muestr)
## [1] 3.564065e+17
#las funciones de ggplot unicamente trabaja con data frame
## guardar en los resultados de muestr/m como dataframe 
## en datos
v <- muestr/m
dat <- data.frame(v)
###################################################
#3.Generar el histograma de la muestra con ggplot.
##############################################
library(ggplot2)
## generando graficos ...
ggplot(dat, aes(v))+geom_histogram(binwidth = 0.1,col="black",fill="orange",alpha=0.4,) + labs(y="Conteo",x="Valor de datos muestr/m",title = "Valores generados con operador congrencial multiplicativo")+  theme_bw()

###################################################
#4.Verificar que la muestra provengan de una distribución uniforme
###########################################################

ks.test(v,punif,0,1)
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  v
## D = 0.073395, p-value = 0.6542
## alternative hypothesis: two-sided
####################################################3
#5.probar independencia en la muestra. Discutir los resultados.
###############################################3########
prueIND<- acf(v, type= "correlation");prueIND  # Ver si hay independencia en la muestra generada

## 
## Autocorrelations of series 'v', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000  0.104 -0.243 -0.069  0.099  0.086 -0.077  0.061  0.048 -0.043  0.010 
##     11     12     13     14     15     16     17     18     19     20 
## -0.038 -0.019  0.117  0.046  0.020 -0.136 -0.019  0.132  0.020 -0.051
Box.test(v, lag = 10, type = "Ljung")
## 
##  Box-Ljung test
## 
## data:  v
## X-squared = 11.133, df = 10, p-value = 0.3473

Para cada uno de los sigueintes generadores: Generar$ 1000$ valores; generar el histograma de la muestra con$ ggplot$; calcular la media y varianza de la muestra; y verificar que la muestra provengan de una distribución uniforme, además de probar independencia en la muestra. Discutir los resultados.

\(c=0\), \(a=2^{16}+3\) y \(m=2^{31}\)

rm(list=ls())
n <- 1000        # numero de numeros aleatorios a generar (1000)
a  <- 2^16+3  #valor de operacion 
m  <- 2^31     #valor del modulo
c <- 0
muestr <-45183     # Fijar un valor a la semilla  asignamos el valor de muestr

# Enseguida se utiliza el ciclo for para generar los valores aleatorios en n muestra 
#iniciando en la posicion 2,tomara el valor de 2-1, pues en este caso la semilla inicial 45183, sera el primer posicion.
for(i in 2:n)
{
  muestr[i]<-(a*muestr[i-1]+c)%%m
}
muestr
##    [1]      45183  813764989  587215991  494378341 1976293423  965904525
##    [7]  893688231  963955957 2035508959 1389966493  757636567  626055557
##   [13] 1232571535 1760929197 1619915015  313578261  187136319  448097213
##   [19] 1004356407 1993263525  772889839 1730352845 1278624871  688508213
##   [25] 1213360031 1083586269 2023728279  242609605  421972303  348347373
##   [31]  439817159 1651260245 1654239743 1506547197  593576439  739952101
##   [37] 1245008303  810480909  100261671 1897176437 1890768991  712476957
##   [43]  142842711  887214597 1890219535 1208902189  978855559 1435464597
##   [49] 1950571199  931729469  920137911 1430229541  300136047 1813652301
##   [55] 1738238439  549010869  534821151  415312733 1973453335 1660454469
##   [61]  791581391  542816365  427632967 1975417813 1561359231  179329661
##   [67] 2056130423 2132880997  734563119  243835277 1294394535 1276882421
##   [73]  306711007 1085742493 1606572247 2015234693 1927225231 2016173741
##   [79] 1194466311 1906136085  686619711 1996879037 1506729527 1805884069
##   [85] 1569705967 1755213773  698896231 1281355317 1398065823 1151164381
##   [91]  766844823  683040453 1491606607  654791917 1241710279 1557134421
##   [97]  314897663  760078077 1726389495 1370150629 1273332911 1751092749
##  [103] 1194043943 2141847157 2104687455 1941434909 1296356951 1042645765
##  [109] 1031112975 1097833261 1601950087 1878684821 1149525439  726407485
##  [115]  455166903  488301349  980789615 1490025549  113046759  152952501
##  [121] 2047777823  172676189 1933409559 1456437061 2075354575 1491677549
##  [127] 1009292359 1220590805  387397247 2076484477  382397047  785891173
##  [133] 1273773615  569621133  543698855  283086581 1100197087 1905919645
##  [139] 1533744087  639122309  768455311 1006114733 1268074247  700896533
##  [145] 1382645567 1987804605 1630501175  482700197 1106592495  147769549
##  [151] 1664703079   68357941  460205471 2146011357  144284311  878956485
##  [157] 1827696463  908086765 1884154311  984661333 1835481087    3450877
##  [163]  681244663 1908926437 1027389359 1868900109 1966896423 1423728501
##  [169] 1577721439  947739421   76878167  521548805  289905679 1340462125
##  [175] 1138654343 1210217877 1308385471 1253319229   39413431 1841509413
##  [181] 2104401007  347788621  326991847  979337141  785612575  194608477
##  [187]  539588631 1486055493 1912551631  248293997 1456668487   62914005
##  [193]  152369535  347991165  716621175 1167806565  557248815 1423168397
##  [199] 1376287399 1891659765 1110855647  377614237  857919191 1748987013
##  [205]  625165711  895013037 1891070471 1143821845  580715071 1779828413
##  [211] 1157567543 1664367781 1715582447 1756635597 1542022503 2032349237
##  [217]  463376543 1668985309 1548555671  712917189 1077920335   51267309
##  [223] 1343739079 1158577749 1300265727 1669361917  461263607  628226277
##  [229] 1765468847  643809293  858538023 1504428149 1299726687  700957725
##  [235] 1098140759  280225029  388017935 1953565997 1786783623 1728542357
##  [241]  732652479 1723935549 1602257335  540575013 1708035951 1088073293
##  [247] 1893534439 1568546997  959406623  229451357 1331983127 1631869253
##  [253] 2098334671   50668397  746351175 1874607829  235519103 1721513341
##  [259] 1766957175 1550573925 1990763567  136899725   84395431 1421758709
##  [265] 1328542431 1617877149 2045348311 2006162821   71293071 1699645869
##  [271]  966302983 1238423317  881296703  584421309 2017308471  401608101
##  [277] 1433741551  693009101 1991798887 1418744117 1323692959 1615911645
##  [283] 2077200535   67482053 1037440335 1322336237  744538055 1156136789
##  [289]  235978239 1748056573 1922084343   94964197  450895279 1850693901
##  [295]  603654951 1998070133  113075295 2023173405  383944535 1274975749
##  [301] 2046870031  806438445 1449185927 1437169557 2022794943 1349727293
##  [307]  630627511  226154021 2123727471 2117044045   31167975  460964277
##  [313]  337790239   25546589 1408134679 1776437829  132898511 1989319789
##  [319]    2413895 1437958101   16088959   39812733   94075767  206140005
##  [325]  390158127  485688717 1550192807  634991093  595629535    6341021
##  [331] 1119831255  219467397 1975741327 1289306797  691587079 1135695893
##  [337]  589891647 1908021437 1844136503  335077029  445619183 1805505485
##  [343]  380009319 1062892085  809784991 1735132125  975244183  972694213
##  [349] 1353934927 1516845293 1210624711   54591573  169345279  524747517
##  [355] 1624377591  728570597  489443503  674492941 1789449767  371294837
##  [361] 1155106655 1441502749  400540247  167134981 1692914959   63340333
##  [367]  176192903  487094421 1336830399 1489648957 1201387447  243935013
##  [373] 1388541295 1840865357  695804135  491938485  984360991 1478719581
##  [379]   13068567 1802320709 2106372559  712316269  348930119 2125185237
##  [385] 1020805759 2030552957  848582263 1848902501 1308690991 1949441677
##  [391] 2065914791 1292964597 2049456351  660056733  547618775 1640169349
##  [397]  617479823 1828256685 1117254407  986634517  159484735  667132349
##  [403]  419947831  810463141 1083248367 1352805581  515081831 1652658997
##  [409]  985250207 1774988509 1782679191 1163629509 1675082575 1725313517
##  [415] 1718588871 1226162517  479609855  432131069  423781367  800992229
##  [421]  991921071  890080013  708157735  533193589 1120709215 1925512989
##  [427] 1466694999   60487685   47573007 1888532525  165619847 1176795541
##  [433] 1275227327 1355171389  948949687 2087090213 1834510447  813185357
##  [439] 1253420007  201851829  667749151   42344797  686777367 1592077381
##  [445] 1223984335 1605144173  762489671  866058709  481428863 1536495741
##  [451]  591147383  455840869 1709686063 1860581261   71280295  862319605
##  [457]  237427679  106140573  647477975  782119045 1012896143 1185789101
##  [463]  146152967  942234133   43060799  368192189 1821605943 1173455013
##  [469] 1383694831 2036041165 1910477159 1728427061 1766202527 1483822557
##  [475] 1597047191  522847429 1648561743  890776301 1245020359 1600619093
##  [481]  546014975 1755419901 1323417335  731659493 1069135535 1977361421
##  [487]   94465063 2097890421  999738719    2320413 1753692247 1911335173
##  [493] 2127231759 2003824941 1467798407 1509784213  143486911  157765437
##  [499] 1802694071  806340901 1498700655 1735135821 1217476327  278570165
##  [505] 1451552287 1907214941  526802711 1028267333 1428379599 1463355245
##  [511]  219682375 1032798933 2072168575  990337405  177409143  741352805
##  [517]  703950895 1846497421  448459175 1104663797  444366559 1314159773
##  [523] 1738175959  749101445 1735926927 1526164909 2123581703 1153489685
##  [529]  693604671  222671805 1536039735  769741221 1531507951  113893069
##  [535] 1932172391 1978062133  921272223  609976029 1810857111 1080391109
##  [541]  922050895  103752685  913992647  255214421 1895287295  484859389
##  [547]  883956215  940002789 1979378095 1268759821  535574311  384542069
##  [553] 1782050911  788975901 1580299095  233527813   63376911  425994797
##  [559] 1985576583 1637055381  542077631 1403869245 1397033143   42342949
##  [565]  565661295  865397581  101433831 1409959349 1104400671  379220829
##  [571]  925653527 2140933701  219753167 1377468525 1992065351 1702659029
##  [577]  877300607  677290621  463005559  977385061 1697260335 1387096461
##  [583] 1637170343 1634121205 1512645087  811230621 1990996183  349934213
##  [589] 1360508815  718677677  657421319 1771396117  416617535 1589525693
##  [595] 1492629047 1092493989 1711237103  434976717   93628263  941946421
##  [601]  514056863 1049274333 1669134231  571336389 1290712143  454761709
##  [607] 1849579207  562168917 1759186175 1200629501 2108519671 1845452517
##  [613]  685972655  391665165  471204391 1449723509  162534239  812595741
##  [619] 1265282647  278334213 1019879695 1466786605 1769286023 1709603989
##  [625]  776500671    9986365 1661346743 1288268581 1367425391  905102413
##  [631] 1713720551 2136401589 1689891871 1649155165 1128355095  517668677
##  [637] 1540750799  290519405  761261127 1952892117  571035263  882568061
##  [643]  156090999 1583368037 1652938287 2109768333 2077132711 2064815861
##  [649]  137151711 1566920349 1724705751  540918661  608062095  927588269
##  [655]   92970759  799464725 1812567871 1532741053 1473270071 1487401893
##  [661] 2107431663 1405456589  203272807 1455429429  460670367  402575581
##  [667]  416903831 1025726405  254740303  886838765  880886215 1598735701
##  [673] 1664438271 2040459261 1557778423 1719955429  594694063  973467405
##  [679]  488557863  612591477 1426011743  895263517 1127410007  854572037
##  [685] 1423193103  848010285  869258375 1878424981 1299740863 1630038589
##  [691]  230047415 1742322725 1941058671  260414797 1272829927  998279093
##  [697]  976656159 1170392413  379932695  335999045  744083663 1440510573
##  [703] 1946310471  860751317  532615551 1891382397  112303479  831248485
##  [709] 1829275951 1346935693  208065191 2010871797 1602709471  108345245
##  [715] 1258071767  130872453  200007055   22190253  480561671  536174101
##  [721] 1039473215 1411272381 1259858999 1300153509  757157359 1431497165
##  [727] 1774566759 2058893365  677226655  565705181 1594158487  178636997
##  [733] 1756781135  343019245 1279470791  294684245  990286591 1142077693
##  [739]   87370487  982941925  816349871  346589197 1174837287 1782237301
##  [745]  119888223 1859062813 1485448279  771058949 1994737423  733926701
##  [751] 1483308935  147029653  417299391 1180529469 1179998647  750193957
##  [757]  323626863 1632466509  439706343  830941365 1028291103  838757981
##  [763]   72895255 1478484293 1772397519 1622993773  228835911 1798457045
##  [769]  141284479 1841462653 1187281015 1287940453 1337080879  725988493
##  [775]  912137639 1086413045  456723167 1552556189  909861335   76096901
##  [781]  857763983  166744493 1870525703 1132519189  697802047  436590525
##  [787]  634292023 2023921061 2139930863 1066746573   26003559 1292720437
##  [793] 1079839647 1287004893  150956183   60111301 1149545807 2061305837
##  [799] 2021922759   22234965 1263457791  938181117  700417527   53842405
##  [805]  461747631  138420493  969761575  277817717 1528986719  231109917
##  [811]  510680919  984096261 1308449295 1141313069 1514285703  961380245
##  [817]  729644735   20413501 2145612983 1952538149  994646639 1279938381
##  [823]  875294183  174770613 1760910623  402593629 1599751703 1680200261
##  [829] 2125887183 1928488045 1027878215 1695778773  923768703 1018021501
##  [835] 2089177975 1225390693 1434644271 1874316685  481585319 1053047285
##  [841] 1984015839  279185821  998841559 1332893317 1155269519 1378028205
##  [847]   18227207  592011285 1240539199 2115133629 1525948983  856909477
##  [853] 2145334255  864852941  913494887 1992260149 1584623263  167332829
##  [859] 1774773143  552708805  228196431  689766637 2084831943 2006124629
##  [865] 1863194879 1713982205 2105073911 1499570917  789178543 1976351245
##  [871]  460533287    8424053  200712031 1128455709  669358679  302501637
##  [877]   85749007 2086946605 1012520327  177504405  542278079 1656128829
##  [883]  761302967  400076581 1991183727 1903962189 2093054183 1865116341
##  [889]  943144991 1757724765 2058043671  823706437 1452231119 1300028781
##  [895] 1172543559 1777453269  111827583 1853755261 1526148727 1063029605
##  [901] 1232773679 2124342925 1651094439 1524898549  731992287 1405285021
##  [907] 1843779543  562595717 1813943951 1525334957 1416448775 1213128981
##  [913]  973185855 1363405245 1569242423 1439774629  957916911 1379464397
##  [919] 1803017831  550411061 2107691423 1249998045 1415667351 1538988997
##  [925]  787895119 1613887981  444788167 1028639061   21257215 1607209981
##  [931]  862010359 1444590565  909450159 1045320461  234354983  588180341
##  [937] 1419887199 1078216477  132765015 1830060037 1195540495 1440120877
##  [943]   28344455   93880725  308184255 1004179005 1103932087 1880948773
##  [949] 1350303855 1910702413 1458963431  147393461  638591775  357525853
##  [955]  692796439  939045957 1546591439  828135021 1786905415 1120733653
##  [961] 1379671423  338909309  353831287 1220287589 1989760303  955973517
##  [967]  712900263 2116090869 1985475551 1457970077 1615958743  868989061
##  [973] 1407723919  625441965 1820554759  999383573  348726847 1687843517
##  [979]  546068535  970721445  909711855 1016745421   60549479 1950006325
##  [985]  417674399 2135858653  466147735  754027717  328836687 1629221613
##  [991]  373348551  461998677 1559338751  903077117 2121832183  308331749
##  [997] 2080853679 1120201741  878429223 1631210613
#A aprtir de la Asignacion de la mestr
#podemos calcular
#los siguientes
# 1 generar la media de la muestr a partir de la muestra generada
mean(muestr)
## [1] 1094861823
# 1 Genrar la varianza de la muestr a partir de la muestra generada
var(muestr)
## [1] 3.862126e+17
#las funciones de ggplot unicamente trabaja con data frame
## guardar en los resultados de muestr/m como dataframe 
## en datos
v <- muestr/m
dat <- data.frame(v)

library(ggplot2)
## generando graficos ...
ggplot(dat, aes(v))+geom_histogram(binwidth = 0.1,col="black",fill="orange",alpha=0.4,) + labs(y="Conteo",x="Valor de datos muestr/m",title = "Valores generados con operador congrencial multiplicativo")+  theme_bw()

Probar que provenga de una distribucion uniforme [0,1] DECISION DE HIPOTESIS A PROVAR \[H_0: U\sim Uniforme(0,1)\] \[H_1: U\nsim Uniforme(0,1)\]

ks.test(v,punif,0,1)
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  v
## D = 0.02403, p-value = 0.6106
## alternative hypothesis: two-sided

De acuerdo a los resultados, p-valor = 0.61, si alpha es mayor que p-valor se rechaza Ho. Note que p-valor es mayor que alpha Por lo tanto NO RECHAZA. es decir, la muestra simulada proviene de una distribución uniforme ########################################################################################### ##########################################################################################

Prueba de independencia de la muestra generada (autocorrelacion)

prueIND<- acf(v, type= "correlation");prueIND  # Ver si hay independencia en la muestra generada

## 
## Autocorrelations of series 'v', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000  0.018  0.006  0.044  0.021 -0.014 -0.034 -0.011  0.016 -0.005  0.010 
##     11     12     13     14     15     16     17     18     19     20     21 
##  0.025 -0.048  0.067 -0.004  0.028 -0.008 -0.034  0.003  0.029 -0.011  0.014 
##     22     23     24     25     26     27     28     29     30 
##  0.062  0.013  0.042 -0.054 -0.013  0.048  0.016 -0.030 -0.027

No hay correlación en los datos de la muestra generada de una uniforme Como en el gráfico se ve que las barras salen del rango, Por lo tanto se concluye , que la muesta es independiente.

Con el estadístico Ljung-Box, se puede probar \(H_{0}\): Muestra aleatoria \(H_{1}\): Muestra no aleatoria

Se rechaza \(H_{0}\) si \(p-valor <\alpha\)

Box.test(v, lag = 10, type = "Ljung")
## 
##  Box-Ljung test
## 
## data:  v
## X-squared = 4.6693, df = 10, p-value = 0.9121

De acuerdo a los resultados, p-valor = 0.9121, Note que \(p-valor > \alpha\), llegamos a conclusion ,que No se rechaza \(H0\) Por lo tanto La muestra generada es aleatoria

  • \(c=0\), \(a=7^5\) y \(m=2^{31}-1\)
rm(list=ls())
n <- 1000        # numero de numeros aleatorios a generar (1000)
a  <- 7^5  #valor de operacion 
m  <-  2^{31}-1    #valor del modulo
c <- 0
muestr1 <-45183     # Fijar un valor a la semilla  asignamos el valor de muestr

# Enseguida se utiliza el ciclo for para generar los valores aleatorios en n muestra 
#iniciando en la posicion 2,tomara el valor de 2-1, pues en este caso la semilla inicial 45183, sera el primer posicion.
for(i in 2:n)
{
  muestr1[i]<-(a*muestr1[i-1]+c)%%m
}
muestr1
##    [1]      45183  759390681  583861446 1106539779  405682633   47433606
##    [7]  500183005 1324770677  310316243 1394801185  492025643 1662940951
##   [13] 1696381399 1089275421  153910072 1196269116  953129398 1165269213
##   [19] 1776285898 1866910739  285224056  577209088  969508517 1571215430
##   [25] 1958808498  770117376  478797963  536138832   43966612  212473316
##   [31] 1921200698   56014994  846166772  888226570 1265131693  832775304
##   [37] 1303606829 1091808309 1921969395   90603591  208648214 2057220794
##   [43] 1223168058 2072081722 1882681902 1210672016  357017587  325274991
##   [49] 1550892122 1834870815  808616785 1145787279  760935504  777897843
##   [55]  248604365 1437869140  633156289  676278338 1726566842 1609875230
##   [61] 1026522057 2020075648 1842440513 1330995898 1858390534  967542970
##   [67]  748521706  445108616 1254966611 1786933890  439085935  963498453
##   [73] 1491801191  831038412   28950396 1238001350  119633667  638347677
##   [79] 2028590574 1071397446  326494827  577839304  824130594 2040853855
##   [85] 1021931101   21805801 1417877417 1787200407  623469860 1085223307
##   [91]  769506778  953895612 1158126029 1979876642  527611829  612031540
##   [97] 2114907297   97615535 2094274084 1207555458 1664118456   11871464
##  [103] 1955199924  250356274  817432645 1137574656  170334151  210374406
##  [109] 1004558680  101302046 1776438698  140053045  229450203 1636415456
##  [115]  411501863 1214468101 1880792419 1666385940 1614253053 1590149220
##  [121]  203953625  464674763 1538201249 1140249357   26877271  754727827
##  [127] 1672169207   29373760 1911029157  901617167  835112537 1930776214
##  [133] 2077922528 1264860582  571180021  570710857 1275406097 1715991572
##  [139] 2112455041 1832221883 1385173248 1884045656  508965377  753725238
##  [145] 2001525060 1447836812  656095127 1809755791 1754686876 1776884328
##  [151] 1187305514  625725874  347344959  966173367 1351924202 1413077754
##  [157]  576159305  505674812 1283774105  623181326  530799663  502866403
##  [163] 1327484276  820618049  987568509  162823100  673675422  929030570
##  [169] 2010676300  633904908  373415989 1055310589  537628750 1462698321
##  [175] 1325373838 1857708582  243393941 1913102499 1388537809  450163914
##  [181]  320014217 1179893031  598175619 1166676926 1813398172  695158580
##  [187] 1219214380   47124986 1755657606  912074262  493849148   98334781
##  [193] 1297739724 1267622336 1890822912  597673678 1320489127 1364749391
##  [199]   70180930  562368307  648605302  482318542 1724451616  419010200
##  [205]  705552887 1970156722  373673561 1089355899 1506503818  977470996
##  [211]  105130222 1692083320 1865905666  572831321  406822546 2026082221
##  [217] 1863181515 2032665698  842529810 2038831999 1400335661 1168166954
##  [223] 1086495004  668081787 1406087593 1204123963 1973040460 1596017893
##  [229]   54492974 1035380396  578323931  379321995 1533305669  464614883
##  [235]  531798089  103543009  785598193  819367995 1452747401 1583985864
##  [241] 1843128036    1293077  257908669 1049000237 1853725036 2011413023
##  [247]  131106487  188505187  668298584  754827478 1199519917 1902250630
##  [253] 1537285521  781994390  379793090  861064746   22888889  293984610
##  [259] 1786952170  746317895 2060362785  343519620 1098210204 2144436310
##  [265]  323014569   67201567 2027821894 1037094568 1471125324 1224092557
##  [271]  430267239  924046424 1993996711 1620410342 1996490387  581949934
##  [277] 1192012300  275783237  819154033    4171714 1394520494   69419300
##  [283]  646554779  378916833 1166198876  221262763 1469064784  952335129
##  [289]  700892012  944241889 2116760740 1183660978 1649035085 2056209060
##  [295] 1398823896 1529736363  604831057 1355473748  940755260 1499045606
##  [301]  181353438  727937373  229091052 2042615540  565799838  340288350
##  [307]  477346489 1911019078  732219414 1330393788  328662352  500209980
##  [313] 1778139502  808178462  221343559  679519509  366353017  459540770
##  [319] 1150526778  960800258 1240394413 1685137862 1097709998  179925009
##  [325]  342651287 1536523002  851239439  245194959 2118040967 1225599697
##  [331] 2138449102  627741122 2005363390 1534139712 1597473702  899954720
##  [337]  811653219  639525989  357643888  114097663 2084008917  479585449
##  [343]  886514152  401809778 1528352678  971557379 1646700712 1477107695
##  [349]  838070545  106409142 1712055290  379872877   54561208   34705587
##  [355] 1328732372  322531051  530649129  120325112 1522045557  194473435
##  [361]   44911311 1057643880 1098544941 1327910128 1535461672  193335305
##  [367]  243713224  836840939  915257570  308615529  728188398  153100933
##  [373]  481971825  192146291 1734791396  253517253  256915523 1537064591
##  [379] 1363791174 1145296987 1110532448  938477459 1870749845  384569188
##  [385] 1676048893  810746952  440282049 1739233628 1899666479 1055132604
##  [391] 1841202149 1992648620  437881375   45811356 1152314666  945062816
##  [397]  881695300 1015742800 1241729597  503255233 1420099145  473077257
##  [403] 1024997205   14208201  426549390  715184044  632255249  564884587
##  [409] 2137533969  279486320  779844251  749628916 1874117910 1157062821
##  [415] 1290408962  466073281 1420773158 1063795513 1409825716 1753731461
##  [421]  751609952  809651610 1358221878 2031419583 1373911475 1585987781
##  [427] 1129608703 1578031841  558111237 2114473810 1401934114  116079114
##  [433] 1026517522 1943855903  717439910 2039373112 1904887264  754036572
##  [439]  791664657 1846697034 2003383994  478685845  799255253  572825186
##  [445]  303711601 2059732735  491687505  274822879 1858286303 1363216200
##  [451]   71643557 1522420179   48294448 2083452617 1867269584 2021364677
##  [457] 2032314446 1381488387   82128945 1656677241 1648906132 2036379636
##  [463]  985660013  298985533 2085602798 1498139652 2134853736  329966876
##  [469]  950508378   63459013 1403742579  446179311 2070268300 1469269406
##  [475]   96449789 1828933885 1958365684 1917677066  963874086 1362614081
##  [481]  689247759  660293595 1506447116   24480482 1274084397  977016142
##  [487] 1050333632  641774684 1644238754  901168882 1890721130 1034507251
##  [493]  935761445 1319859134 1513875275  315497269  425475640 1996020617
##  [499] 1276460132  103804994  893812794  663517993 2011813127  413203474
##  [505] 1896156767   49461489  223074234 1849686823  713160189  977062616
##  [511] 1831422150  828962599 1647983304 1558794969 1514034230  839570307
##  [517] 1690588959  372500456  700332987  138643302  158219719  614062247
##  [523] 1885261494 1616201820 2130821484 1279384216 2004244548 2057115041
##  [529] 1593261034  964603995  745292762 2010821630  928982571 1203957107
##  [535] 1316175315 1876955105 1597158952 2052402411 1844983563 1122364308
##  [541]   80569308 1213661946 1216647216 1997956225 1595969083 1381626951
##  [547]  263490446  372645808  995780404  741188957 1757647699 2147312608
##  [553] 1420314821 1950460142   45735139 2018819194   52570958  944312189
##  [559] 1150809193 1412381869 1765321992  132652592  404088158 1166379692
##  [565] 1112753628 1762627720 2094663322 1307027583  602362318  665566668
##  [571] 2084155500  795722283 1323740512  176202264   51501835  155431104
##  [577]  990450176 1350360135  895607449  761513520 1902678167  132965292
##  [583] 1364669764  879373588  649434862 1539831580  623935063  313955540
##  [589]  283440101  659048461 2054316448 1801948717 1537696625 1248968377
##  [595] 1906346461 1656440434 1963858177 1888210096 1781231753 1240033491
##  [601] 2061572749 1352031745 1073069308  508192050  641320231  448698124
##  [607] 1454285451 1664188450 1188260622 1645840501 2051926947  296311056
##  [613]   85340799 1951216244 2016123218 1985942560 1545764246 1550004763
##  [619] 1953413631  292900881  752588043   68557871 1200903105 1527171229
##  [625]  442296859 1242406946 1150041641 1397037287 1566969958 1472120945
##  [631]  777625528 2114257101 2054673245 1356184955    9109427  630800652
##  [637] 1887276572 1123879414 1922635733  552328122 1554424120 1067619085
##  [643] 1248090910   43660474 1509662891  384919732 1125190960  343469238
##  [649]  251439930 1850569861  521994326  687939087  140279761 1892382368
##  [655] 1037646906   16851855 1908769228 1573696110  701924318 1114339655
##  [661]  501696098  985520964  109472637 1660608227 1144994777  326256272
##  [667]  863412713  830464612 1122512031  415866122 1550125116 1828702855
##  [673]  222928121 1541449279 2042798392 1491509755  227840854  357890577
##  [679] 2112716039 1923847975 1599126593  762806346    8884632 1147638381
##  [685] 1807635760  483064211 1372008617 1816908080 1704123867  220432630
##  [691]  401921335 1255807530  887873994 1781837802  688480799  654898757
##  [697] 1029718024 2047601842  618715319  632547659 1184452163 2061579498
##  [703] 1465462188  533046273 1754418674 1564180608 1836155729  929329913
##  [709]  599283160  453765690  725521333  424896065  845038180 1247333649
##  [715]  201276729  571240278 1583450256 1431098968  663508776 1856903008
##  [721] 1736497252 1006551634 1384625219 1263256841 1534392445 1550189939
##  [727]  770699369 1670419726  690617651   61748322  569446353 1497723839
##  [733] 1588735586   67327104 1990238606  734965370  237036046  282659937
##  [739]  431733995 1953494399 1650368657  847233547 1637644819 1746052981
##  [745]  548415412  218016560  597222138  173907288  134545849   11803852
##  [751]  818845040 1253377304  845254905  594863430 1333291225 1781245777
##  [757] 1475734859 1387136010  512448238 1308111596 1641499633 2109402469
##  [763] 2067251807  163195436  489075633 1474246762 2146493495  538384512
##  [769] 1279888373 1887676659 1405690682  975691727  265727197 1458497866
##  [775] 1595287004  655343433 2060936615 1397945842 1804668314    1323170
##  [781]  763681720 1836393568  631722692  204133676 1343308273  486563400
##  [787]   53336024  917874569 1342844782 1286604751  953208414  345807478
##  [793]  895533964 1673934772 1785937304  869334209 1568800122   19432588
##  [799]  185992172 1381728419 1968863122  106974831  482172078 1410314815
##  [805] 1384083766  752990858  396218635 2047292745 1866172981  770627232
##  [811]  458013167 1245906921 1992062997 1332733849 1003361933 1462411687
##  [817]  802883494 1423129557 2013087860  362804535  949745912  133594833
##  [823] 1207947116 1804263521 1787901807 1674481425  236116040 1999988271
##  [829] 1388827853 1029966128 1922518476  729073370 2141923455 1039133524
##  [835] 1380120464  713767201  441695065 1865473423 1898057808 1935486518
##  [841] 1787106917 1199667077   80601456 1753973382  522608905  279750105
##  [847]  918311452   95602775  478071469 1210856056 1302694220  785974375
##  [853]  699407928 1771045865 1844505635 1679763000  956717538 1341596077
##  [859] 1774456286 1181392913   36888629 1511897267 1430855165  860879049
##  [865] 1196846704 2070716326  409307800  846073259 1464037226  206030056
##  [871] 1003512228 1840936105 1816214406  782963184 1629928319  903856301
##  [877] 1961015676 1358936023 1149152716 1489260341 1076645402  482061792
##  [883] 1704221660 1864039581 1421795431 1065268648  399001897 1580936945
##  [889] 2139553931 2016732949 1496273242  830871924 1525753874  243131491
##  [895] 1797072643 1189899493 1273057987  906012448 1692156306  945097721
##  [901] 1468343635 1716885768 2108821684  895932900 1936401183 2127496043
##  [907] 1223272151 1674089126   85197688 1693433314  932934707 1055513802
##  [913] 1805545994 1867589048  948145184 1147446748  734343576  523962523
##  [919] 1555171361  741596690   20481642  637573574 1903143335 1508592927
##  [925] 1729387607 1773832351 1432335603 2120280398  209010868 1709895631
##  [931]  589706063  552769936  390057430 1575135366 1269179793  149715300
##  [937] 1561696463  887320007 1060912881  206069926 1673607318  577385220
##  [943] 1782275394 1600638602  405337845  695032631 1249873184 2081052181
##  [949]  177847378 1931129069 1565905572  762854619  820208943  554174908
##  [955]  381101717 1380322265 1957952961 1423492546 1671393042 2016754134
##  [961] 1852329537   32097800  449329203 1323411969 1096831004  439058380
##  [967]  500381568  367051724 1465291084 1952268639  376373160 1364359705
##  [973] 2110662916 1776748066 1044633727 1480235464 1866876600 1858933530
##  [979] 1503742154 1806824382 1878619694 1656618864  667763893  358210429
##  [985] 1046017662 1117710892 1327501535 1110690062 1440012310  146192480
##  [991]  335719192  992919275 2046317735  511565440 1503311139 1005206218
##  [997]  247054977 1167108788  481768218 1065090736
#A aprtir de la Asignacion de la mestr
#podemos calcular
#los siguientes
# 1 generar la media de la muestr a partir de la muestra generada
mean(muestr1)
## [1] 1087077637
# 1 Genrar la varianza de la muestr a partir de la muestra generada
var(muestr1)
## [1] 3.92332e+17
#las funciones de ggplot unicamente trabaja con data frame
## guardar en los resultados de muestr/m como dataframe 
## en datos
v1 <- muestr1/m
v1
##    [1] 2.103997e-05 3.536188e-01 2.718817e-01 5.152727e-01 1.889107e-01
##    [6] 2.208799e-02 2.329159e-01 6.168944e-01 1.445023e-01 6.495049e-01
##   [11] 2.291173e-01 7.743672e-01 7.899391e-01 5.072334e-01 7.166996e-02
##   [16] 5.570562e-01 4.438355e-01 5.426208e-01 8.271476e-01 8.693481e-01
##   [21] 1.328178e-01 2.687839e-01 4.514626e-01 7.316542e-01 9.121413e-01
##   [26] 3.586138e-01 2.229577e-01 2.496591e-01 2.047355e-02 9.894060e-02
##   [31] 8.946288e-01 2.608401e-02 3.940271e-01 4.136127e-01 5.891229e-01
##   [36] 3.877912e-01 6.070392e-01 5.084129e-01 8.949867e-01 4.219058e-02
##   [41] 9.715940e-02 9.579681e-01 5.695820e-01 9.648882e-01 8.766921e-01
##   [46] 5.637631e-01 1.662493e-01 1.514680e-01 7.221904e-01 8.544283e-01
##   [51] 3.765415e-01 5.335488e-01 3.543382e-01 3.622369e-01 1.157654e-01
##   [56] 6.695600e-01 2.948364e-01 3.149166e-01 8.039953e-01 7.496566e-01
##   [61] 4.780116e-01 9.406710e-01 8.579532e-01 6.197933e-01 8.653805e-01
##   [66] 4.505473e-01 3.485576e-01 2.072699e-01 5.843894e-01 8.321059e-01
##   [71] 2.044653e-01 4.486639e-01 6.946741e-01 3.869824e-01 1.348108e-02
##   [76] 5.764893e-01 5.570877e-02 2.972538e-01 9.446361e-01 4.989083e-01
##   [81] 1.520360e-01 2.690774e-01 3.837657e-01 9.503466e-01 4.758738e-01
##   [86] 1.015412e-02 6.602506e-01 8.322300e-01 2.903258e-01 5.053465e-01
##   [91] 3.583295e-01 4.441923e-01 5.392945e-01 9.219519e-01 2.456884e-01
##   [96] 2.849994e-01 9.848305e-01 4.545578e-02 9.752224e-01 5.623118e-01
##  [101] 7.749155e-01 5.528081e-03 9.104609e-01 1.165812e-01 3.806467e-01
##  [106] 5.297245e-01 7.931802e-02 9.796322e-02 4.677841e-01 4.717244e-02
##  [111] 8.272187e-01 6.521728e-02 1.068461e-01 7.620153e-01 1.916205e-01
##  [116] 5.655308e-01 8.758122e-01 7.759714e-01 7.516952e-01 7.404709e-01
##  [121] 9.497331e-02 2.163810e-01 7.162808e-01 5.309700e-01 1.251570e-02
##  [126] 3.514475e-01 7.786645e-01 1.367822e-02 8.898923e-01 4.198482e-01
##  [131] 3.888796e-01 8.990877e-01 9.676081e-01 5.889966e-01 2.659764e-01
##  [136] 2.657580e-01 5.939072e-01 7.990708e-01 9.836885e-01 8.531948e-01
##  [141] 6.450216e-01 8.773271e-01 2.370055e-01 3.509807e-01 9.320327e-01
##  [146] 6.742016e-01 3.055181e-01 8.427332e-01 8.170897e-01 8.274262e-01
##  [151] 5.528822e-01 2.913763e-01 1.617451e-01 4.499095e-01 6.295388e-01
##  [156] 6.580156e-01 2.682951e-01 2.354732e-01 5.978039e-01 2.901914e-01
##  [161] 2.471729e-01 2.341654e-01 6.181580e-01 3.821301e-01 4.598724e-01
##  [166] 7.582041e-02 3.137046e-01 4.326136e-01 9.362941e-01 2.951850e-01
##  [171] 1.738854e-01 4.914173e-01 2.503529e-01 6.811220e-01 6.171753e-01
##  [176] 8.650630e-01 1.133391e-01 8.908578e-01 6.465883e-01 2.096239e-01
##  [181] 1.490182e-01 5.494305e-01 2.785472e-01 5.432763e-01 8.444293e-01
##  [186] 3.237084e-01 5.677409e-01 2.194428e-02 8.175418e-01 4.247177e-01
##  [191] 2.299664e-01 4.579070e-02 6.043072e-01 5.902826e-01 8.804830e-01
##  [196] 2.783135e-01 6.149007e-01 6.355110e-01 3.268054e-02 2.618731e-01
##  [201] 3.020304e-01 2.245971e-01 8.030104e-01 1.951168e-01 3.285487e-01
##  [206] 9.174257e-01 1.740053e-01 5.072709e-01 7.015205e-01 4.551704e-01
##  [211] 4.895507e-02 7.879377e-01 8.688800e-01 2.667454e-01 1.894415e-01
##  [216] 9.434681e-01 8.676115e-01 9.465337e-01 3.923335e-01 9.494051e-01
##  [221] 6.520821e-01 5.439701e-01 5.059387e-01 3.110998e-01 6.547606e-01
##  [226] 5.607139e-01 9.187686e-01 7.432037e-01 2.537527e-02 4.821366e-01
##  [231] 2.693031e-01 1.766356e-01 7.140011e-01 2.163532e-01 2.476378e-01
##  [236] 4.821597e-02 3.658227e-01 3.815480e-01 6.764882e-01 7.376009e-01
##  [241] 8.582734e-01 6.021359e-04 1.200981e-01 4.884788e-01 8.632080e-01
##  [246] 9.366372e-01 6.105122e-02 8.777957e-02 3.112008e-01 3.514939e-01
##  [251] 5.585700e-01 8.858045e-01 7.158544e-01 3.641445e-01 1.768549e-01
##  [256] 4.009645e-01 1.065847e-02 1.368973e-01 8.321144e-01 3.475314e-01
##  [261] 9.594312e-01 1.599638e-01 5.113940e-01 9.985810e-01 1.504154e-01
##  [266] 3.129317e-02 9.442782e-01 4.829348e-01 6.850461e-01 5.700125e-01
##  [271] 2.003588e-01 4.302926e-01 9.285271e-01 7.545624e-01 9.296883e-01
##  [276] 2.709916e-01 5.550740e-01 1.284216e-01 3.814483e-01 1.942606e-03
##  [281] 6.493742e-01 3.232588e-02 3.010755e-01 1.764469e-01 5.430537e-01
##  [286] 1.030335e-01 6.840866e-01 4.434656e-01 3.263783e-01 4.396969e-01
##  [291] 9.856935e-01 5.511851e-01 7.678918e-01 9.574970e-01 6.513781e-01
##  [296] 7.123390e-01 2.816464e-01 6.311917e-01 4.380733e-01 6.980475e-01
##  [301] 8.444928e-02 3.389723e-01 1.066788e-01 9.511670e-01 2.634711e-01
##  [306] 1.584591e-01 2.222818e-01 8.898876e-01 3.409662e-01 6.195129e-01
##  [311] 1.530453e-01 2.329284e-01 8.280107e-01 3.763374e-01 1.030711e-01
##  [316] 3.164259e-01 1.705964e-01 2.139903e-01 5.357558e-01 4.474075e-01
##  [321] 5.776037e-01 7.847035e-01 5.111611e-01 8.378411e-02 1.595594e-01
##  [326] 7.154993e-01 3.963893e-01 1.141778e-01 9.862897e-01 5.707143e-01
##  [331] 9.957930e-01 2.923147e-01 9.338201e-01 7.143895e-01 7.438817e-01
##  [336] 4.190741e-01 3.779555e-01 2.978025e-01 1.665409e-01 5.313086e-02
##  [341] 9.704423e-01 2.233244e-01 4.128153e-01 1.871073e-01 7.116947e-01
##  [346] 4.524167e-01 7.668048e-01 6.878319e-01 3.902570e-01 4.955062e-02
##  [351] 7.972379e-01 1.768921e-01 2.540704e-02 1.616105e-02 6.187392e-01
##  [356] 1.501902e-01 2.471028e-01 5.603075e-02 7.087577e-01 9.055875e-02
##  [361] 2.091346e-02 4.925038e-01 5.115499e-01 6.183563e-01 7.150051e-01
##  [366] 9.002877e-02 1.134878e-01 3.896844e-01 4.262000e-01 1.437103e-01
##  [371] 3.390891e-01 7.129318e-02 2.244356e-01 8.947509e-02 8.078252e-01
##  [376] 1.180532e-01 1.196356e-01 7.157515e-01 6.350648e-01 5.333205e-01
##  [381] 5.171320e-01 4.370126e-01 8.711358e-01 1.790790e-01 7.804711e-01
##  [386] 3.775335e-01 2.050223e-01 8.098938e-01 8.846011e-01 4.913344e-01
##  [391] 8.573766e-01 9.278993e-01 2.039044e-01 2.133258e-02 5.365883e-01
##  [396] 4.400792e-01 4.105714e-01 4.729921e-01 5.782254e-01 2.343465e-01
##  [401] 6.612852e-01 2.202938e-01 4.773015e-01 6.616209e-03 1.986275e-01
##  [406] 3.330335e-01 2.944168e-01 2.630449e-01 9.953668e-01 1.301460e-01
##  [411] 3.631433e-01 3.490732e-01 8.727042e-01 5.387994e-01 6.008935e-01
##  [416] 2.170323e-01 6.615991e-01 4.953684e-01 6.565013e-01 8.166449e-01
##  [421] 3.499957e-01 3.770234e-01 6.324713e-01 9.459535e-01 6.397774e-01
##  [426] 7.385331e-01 5.260150e-01 7.348283e-01 2.598908e-01 9.846286e-01
##  [431] 6.528264e-01 5.405355e-02 4.780095e-01 9.051784e-01 3.340840e-01
##  [436] 9.496571e-01 8.870323e-01 3.511256e-01 3.686476e-01 8.599353e-01
##  [441] 9.328984e-01 2.229055e-01 3.721822e-01 2.667425e-01 1.414267e-01
##  [446] 9.591378e-01 2.289598e-01 1.279744e-01 8.653320e-01 6.347970e-01
##  [451] 3.336163e-02 7.089321e-01 2.248885e-02 9.701832e-01 8.695152e-01
##  [456] 9.412713e-01 9.463702e-01 6.433057e-01 3.824427e-02 7.714505e-01
##  [461] 7.678318e-01 9.482632e-01 4.589837e-01 1.392260e-01 9.711845e-01
##  [466] 6.976256e-01 9.941187e-01 1.536528e-01 4.426150e-01 2.955041e-02
##  [471] 6.536686e-01 2.077684e-01 9.640438e-01 6.841819e-01 4.491293e-02
##  [476] 8.516637e-01 9.119351e-01 8.929880e-01 4.488388e-01 6.345166e-01
##  [481] 3.209560e-01 3.074732e-01 7.014941e-01 1.139961e-02 5.932918e-01
##  [486] 4.549586e-01 4.890997e-01 2.988496e-01 7.656583e-01 4.196395e-01
##  [491] 8.804356e-01 4.817300e-01 4.357479e-01 6.146073e-01 7.049531e-01
##  [496] 1.469149e-01 1.981275e-01 9.294695e-01 5.943981e-01 4.833797e-02
##  [501] 4.162140e-01 3.089746e-01 9.368235e-01 1.924129e-01 8.829668e-01
##  [506] 2.303230e-02 1.038770e-01 8.613275e-01 3.320911e-01 4.549802e-01
##  [511] 8.528224e-01 3.860158e-01 7.674020e-01 7.258705e-01 7.050271e-01
##  [516] 3.909554e-01 7.872418e-01 1.734590e-01 3.261180e-01 6.456082e-02
##  [521] 7.367680e-02 2.859450e-01 8.778933e-01 7.526026e-01 9.922411e-01
##  [526] 5.957597e-01 9.332991e-01 9.579188e-01 7.419200e-01 4.491787e-01
##  [531] 3.470540e-01 9.363618e-01 4.325912e-01 5.606362e-01 6.128919e-01
##  [536] 8.740253e-01 7.437351e-01 9.557243e-01 8.591374e-01 5.226416e-01
##  [541] 3.751801e-02 5.651554e-01 5.665455e-01 9.303709e-01 7.431810e-01
##  [546] 6.433702e-01 1.226973e-01 1.735267e-01 4.636964e-01 3.451430e-01
##  [551] 8.184685e-01 9.999204e-01 6.613856e-01 9.082538e-01 2.129708e-02
##  [556] 9.400859e-01 2.448026e-02 4.397296e-01 5.358873e-01 6.576916e-01
##  [561] 8.220421e-01 6.177118e-02 1.881682e-01 5.431379e-01 5.181663e-01
##  [566] 8.207875e-01 9.754036e-01 6.086321e-01 2.804968e-01 3.099286e-01
##  [571] 9.705105e-01 3.705371e-01 6.164147e-01 8.205057e-02 2.398241e-02
##  [576] 7.237825e-02 4.612143e-01 6.288104e-01 4.170497e-01 3.546074e-01
##  [581] 8.860036e-01 6.191679e-02 6.354739e-01 4.094902e-01 3.024167e-01
##  [586] 7.170400e-01 2.905424e-01 1.461969e-01 1.319871e-01 3.068934e-01
##  [591] 9.566156e-01 8.390978e-01 7.160458e-01 5.815962e-01 8.877117e-01
##  [596] 7.713402e-01 9.144927e-01 8.792663e-01 8.294507e-01 5.774356e-01
##  [601] 9.599946e-01 6.295888e-01 4.996868e-01 2.366454e-01 2.986380e-01
##  [606] 2.089413e-01 6.772044e-01 7.749481e-01 5.533270e-01 7.664042e-01
##  [611] 9.555029e-01 1.379806e-01 3.973991e-02 9.086059e-01 9.388305e-01
##  [616] 9.247766e-01 7.198026e-01 7.217772e-01 9.096291e-01 1.363926e-01
##  [621] 3.504511e-01 3.192475e-02 5.592141e-01 7.111445e-01 2.059605e-01
##  [626] 5.785408e-01 5.355299e-01 6.505462e-01 7.296772e-01 6.855097e-01
##  [631] 3.621101e-01 9.845277e-01 9.567818e-01 6.315228e-01 4.241908e-03
##  [636] 2.937394e-01 8.788316e-01 5.233471e-01 8.952970e-01 2.571978e-01
##  [641] 7.238351e-01 4.971489e-01 5.811876e-01 2.033099e-02 7.029916e-01
##  [646] 1.792422e-01 5.239579e-01 1.599403e-01 1.170858e-01 8.617387e-01
##  [651] 2.430725e-01 3.203466e-01 6.532285e-02 8.812092e-01 4.831920e-01
##  [656] 7.847256e-03 8.888399e-01 7.328094e-01 3.268590e-01 5.189048e-01
##  [661] 2.336205e-01 4.589190e-01 5.097717e-02 7.732810e-01 5.331797e-01
##  [666] 1.519249e-01 4.020579e-01 3.867152e-01 5.227104e-01 1.936528e-01
##  [671] 7.218333e-01 8.515561e-01 1.038090e-01 7.177933e-01 9.512521e-01
##  [676] 6.945384e-01 1.060967e-01 1.666558e-01 9.838101e-01 8.958615e-01
##  [681] 7.446513e-01 3.552094e-01 4.137229e-03 5.344108e-01 8.417460e-01
##  [686] 2.249443e-01 6.388913e-01 8.460638e-01 7.935445e-01 1.026469e-01
##  [691] 1.871592e-01 5.847810e-01 4.134485e-01 8.297329e-01 3.205989e-01
##  [696] 3.049610e-01 4.794998e-01 9.534889e-01 2.881118e-01 2.945530e-01
##  [701] 5.515535e-01 9.599978e-01 6.824090e-01 2.482190e-01 8.169649e-01
##  [706] 7.283784e-01 8.550266e-01 4.327530e-01 2.790630e-01 2.113011e-01
##  [711] 3.378472e-01 1.978576e-01 3.935016e-01 5.808350e-01 9.372678e-02
##  [716] 2.660045e-01 7.373515e-01 6.664074e-01 3.089704e-01 8.646878e-01
##  [721] 8.086195e-01 4.687121e-01 6.447664e-01 5.882498e-01 7.145072e-01
##  [726] 7.218634e-01 3.588849e-01 7.778498e-01 3.215939e-01 2.875380e-02
##  [731] 2.651691e-01 6.974320e-01 7.398127e-01 3.135163e-02 9.267771e-01
##  [736] 3.422449e-01 1.103785e-01 1.316238e-01 2.010418e-01 9.096667e-01
##  [741] 7.685128e-01 3.945239e-01 7.625878e-01 8.130693e-01 2.553758e-01
##  [746] 1.015219e-01 2.781032e-01 8.098189e-02 6.265279e-02 5.496597e-03
##  [751] 3.813044e-01 5.836493e-01 3.936025e-01 2.770049e-01 6.208621e-01
##  [756] 8.294572e-01 6.871926e-01 6.459355e-01 2.386273e-01 6.091369e-01
##  [761] 7.643828e-01 9.822671e-01 9.626391e-01 7.599380e-02 2.277436e-01
##  [766] 6.864996e-01 9.995389e-01 2.507048e-01 5.959945e-01 8.790179e-01
##  [771] 6.545757e-01 4.543419e-01 1.237389e-01 6.791660e-01 7.428634e-01
##  [776] 3.051681e-01 9.596984e-01 6.509693e-01 8.403642e-01 6.161490e-04
##  [781] 3.556170e-01 8.551374e-01 2.941688e-01 9.505715e-02 6.255267e-01
##  [786] 2.265737e-01 2.483652e-02 4.274187e-01 6.253108e-01 5.991220e-01
##  [791] 4.438723e-01 1.610292e-01 4.170155e-01 7.794866e-01 8.316419e-01
##  [796] 4.048153e-01 7.305295e-01 9.049004e-03 8.660935e-02 6.434174e-01
##  [801] 9.168233e-01 4.981404e-02 2.245289e-01 6.567290e-01 6.445142e-01
##  [806] 3.506387e-01 1.845037e-01 9.533450e-01 8.690045e-01 3.588513e-01
##  [811] 2.132790e-01 5.801706e-01 9.276266e-01 6.206026e-01 4.672268e-01
##  [816] 6.809885e-01 3.738718e-01 6.626963e-01 9.374171e-01 1.689440e-01
##  [821] 4.422599e-01 6.220994e-02 5.624942e-01 8.401757e-01 8.325567e-01
##  [826] 7.797412e-01 1.099501e-01 9.313171e-01 6.467234e-01 4.796154e-01
##  [831] 8.952424e-01 3.395012e-01 9.974108e-01 4.838843e-01 6.426687e-01
##  [836] 3.323738e-01 2.056803e-01 8.686788e-01 8.838520e-01 9.012811e-01
##  [841] 8.321865e-01 5.586385e-01 3.753298e-02 8.167575e-01 2.433587e-01
##  [846] 1.302688e-01 4.276221e-01 4.451851e-02 2.226194e-01 5.638488e-01
##  [851] 6.066143e-01 3.659978e-01 3.256872e-01 8.247075e-01 8.589149e-01
##  [856] 7.822006e-01 4.455063e-01 6.247294e-01 8.262956e-01 5.501289e-01
##  [861] 1.717761e-02 7.040320e-01 6.662939e-01 4.008780e-01 5.573252e-01
##  [866] 9.642524e-01 1.905988e-01 3.939836e-01 6.817455e-01 9.594022e-02
##  [871] 4.672968e-01 8.572527e-01 8.457407e-01 3.645956e-01 7.589945e-01
##  [876] 4.208909e-01 9.131691e-01 6.328039e-01 5.351159e-01 6.934909e-01
##  [881] 5.013521e-01 2.244775e-01 7.935901e-01 8.680111e-01 6.620751e-01
##  [886] 4.960544e-01 1.857997e-01 7.361811e-01 9.963074e-01 9.391145e-01
##  [891] 6.967565e-01 3.869049e-01 7.104845e-01 1.132169e-01 8.368272e-01
##  [896] 5.540901e-01 5.928138e-01 4.218949e-01 7.879717e-01 4.400954e-01
##  [901] 6.837508e-01 7.994872e-01 9.819966e-01 4.172013e-01 9.017071e-01
##  [906] 9.906925e-01 5.696305e-01 7.795585e-01 3.967327e-02 7.885663e-01
##  [911] 4.344316e-01 4.915119e-01 8.407729e-01 8.696639e-01 4.415145e-01
##  [916] 5.343215e-01 3.419554e-01 2.439891e-01 7.241831e-01 3.453329e-01
##  [921] 9.537508e-03 2.968933e-01 8.862202e-01 7.024933e-01 8.053089e-01
##  [926] 8.260051e-01 6.669832e-01 9.873325e-01 9.732827e-02 7.962322e-01
##  [931] 2.746033e-01 2.574036e-01 1.816346e-01 7.334796e-01 5.910079e-01
##  [936] 6.971662e-02 7.272216e-01 4.131906e-01 4.940261e-01 9.595879e-02
##  [941] 7.793341e-01 2.688659e-01 8.299367e-01 7.453554e-01 1.887501e-01
##  [946] 3.236498e-01 5.820176e-01 9.690654e-01 8.281664e-02 8.992520e-01
##  [951] 7.291816e-01 3.552319e-01 3.819396e-01 2.580578e-01 1.774643e-01
##  [956] 6.427626e-01 9.117429e-01 6.628654e-01 7.783030e-01 9.391243e-01
##  [961] 8.625582e-01 1.494670e-02 2.092352e-01 6.162617e-01 5.107517e-01
##  [966] 2.044525e-01 2.330083e-01 1.709218e-01 6.823293e-01 9.090959e-01
##  [971] 1.752624e-01 6.353295e-01 9.828540e-01 8.273628e-01 4.864455e-01
##  [976] 6.892884e-01 8.693322e-01 8.656334e-01 7.002345e-01 8.413682e-01
##  [981] 8.748005e-01 7.714233e-01 3.109518e-01 1.668047e-01 4.870899e-01
##  [986] 5.204747e-01 6.181661e-01 5.172054e-01 6.705580e-01 6.807618e-02
##  [991] 1.563314e-01 4.623641e-01 9.528910e-01 2.382162e-01 7.000338e-01
##  [996] 4.680856e-01 1.150439e-01 5.434774e-01 2.243408e-01 4.959715e-01
dat1<- data.frame(v1)

## generando graficos ...
ggplot(dat1, aes(v1))+geom_histogram(binwidth = 0.1,col="black",fill="pink",alpha=0.4,) + labs(y="Conteo",x="Valor de datos muestr/m",title = "Valores generados con operador congrencial multiplicativo")+  theme_bw()

Probar que provenga de una distribucion uniforme [0,1] DECISION DE HIPOTESIS A PROVAR \[H_0: U\sim Uniforme(0,1)\] \[H_1: U\nsim Uniforme(0,1)\]

ks.test(v1,punif,0,1)
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  v1
## D = 0.022005, p-value = 0.7181
## alternative hypothesis: two-sided

De acuerdo a los resultados, p-valor = 0.71, si alpha es mayor que p-valor se rechaza Ho. Note que p-valor es mayor que alpha Por lo tanto NO RECHAZA. es decir, la muestra simulada proviene de una distribución uniforme ########################################################################################### ##########################################################################################

Prueba de independencia de la muestra generada (autocorrelacion) autocorrelacion (ACF) mide la autocorrelacion de una seriel temporal en diferentes intervalos de tiempo.

prueIND1<- acf(v1, type= "correlation");prueIND1  # Ver si hay independencia en la muestra generada

## 
## Autocorrelations of series 'v1', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000  0.053 -0.032  0.013  0.077 -0.007  0.047  0.002 -0.006 -0.026 -0.003 
##     11     12     13     14     15     16     17     18     19     20     21 
## -0.028 -0.006  0.030  0.008  0.042 -0.009 -0.006  0.036 -0.013  0.014  0.005 
##     22     23     24     25     26     27     28     29     30 
##  0.035  0.003 -0.001 -0.029  0.000  0.032 -0.026 -0.043  0.002

No hay correlación en los datos de la muestra generada de una uniforme Como en el gráfico se ve que las barras salen del rango, Por lo tanto se concluye , que la muesta es independiente. ################################################ Con el estadístico Ljung-Box, se puede probar \(H_{0}\): Muestra aleatoria \(H_{1}\): Muestra no aleatoria

Se rechaza \(H_{0}\) si \(p-valor <\alpha\)

Box.test(v1, lag = 10, type = "Ljung")
## 
##  Box-Ljung test
## 
## data:  v1
## X-squared = 12.948, df = 10, p-value = 0.2266

De acuerdo a los resultados, p-valor = 0.2266, Note que \(p-valor > \alpha\), llegamos a conclusion ,que No se rechaza \(H0\) Por lo tanto La muestra generada es aleatoria

#######################################################################################3

  • \(c=0\), \(a=48271\) y \(m=2^{31}-1\)
rm(list=ls())
n <- 1000        # numero de numeros aleatorios a generar (1000)
a  <- 48271 #valor de operacion 
m  <-  2^{31}-1    #valor del modulo
c <- 0
muestr2 <-45183     # Fijar un valor a la semilla  asignamos el valor de muestr

# Enseguida se utiliza el ciclo for para generar los valores aleatorios en n muestra 
#iniciando en la posicion 2,tomara el valor de 2-1, pues en este caso la semilla inicial 45183, sera el primer posicion.
for(i in 2:n)
{
  muestr2[i]<-(a*muestr2[i-1]+c)%%m
}
muestr2
##    [1]      45183   33544946   45418528 1964445148 1443822176  305977958
##    [7] 1616970199  327842067  457421414 1909700387  264349755   79193131
##   [13]  210734841 1898957719 1396065301 1431301711 1521000397 2039239951
##   [19] 1943747182  912201245  861599307 2091840395  546625105    8872766
##   [25]  948041833   50803173 2041122656  482003416  949062138 2057305594
##   [31] 2112039753  632259385 1902665818    1085782  872175394 1509027986
##   [37] 1792089613 1021440669 1885481826 1588779339 1031471205  738180860
##   [43] 1679622036  937690918  765474959  638115607 1120516576 1932506754
##   [49] 1638863948  599045722  668739807 1912525640 1350667557  470121027
##   [55]  752396468  686468764  861033834  565696976 1504156891  735180391
##   [61]  725387286  448818171 1086901405  644740898  954875034 1331250653
##   [67] 1647101782  963056041 1099648502 1779537143  691549753 1312318095
##   [73]  434144539 1445614643  930806635 1314215551 1831929941    8565845
##   [79] 1165043771 1673605952  445592499 2146794524 1095082019  394168244
##   [85]  190193704  347694859  993837484  891999831  676719851  570173104
##   [91]  675483232 1006879471 1229045737  883538705  271599635 2145799797
##   [97]  323255236  237317854  892357336  753974530 1699171921 1884868720
##  [103] 2058310671 1235987739  973468315 1199353358 2121788192  900239661
##  [109] 1137079086  410026633 1186310791 1756745106    8758990 1898411478
##  [115]  798269754  980217213  557894372  674297432 1749186140  202131194
##  [121] 1056657253 1018159666  274492244   41008134 1671197427  147799162
##  [127]  472673568 1559535200  284393615 1248718041 1297553115  678365763
##  [133]  563096317  521797828 2014743372  585388123  680258107 1714120367
##  [139] 1906800194 2003054154 1123345206 1034352076  214267846  641950314
##  [145] 1542064531  918803587 1735670233  610813085 1755436372 1259369486
##  [151]   57379430 1656044547  995052309 1550758937 1847164448  954045968
##  [157] 2113595060  546555937  965031532 1969294095 1431625290 2108096777
##  [163] 1426909472 2104112681  236656039 1158140176 1290136992 1324461479
##  [169]  344397972  763594985   84203827 1563872993 1368085759 1598043792
##  [175] 1559283392 1014271529 1568792053  445346202  995210272  585856322
##  [181] 1805855566 1945311009 1237766717  947169473  890786553   92635982
##  [187]  570534068  919707300  261643869  459872492 2114085940  619504300
##  [193]  382280825 1898208551 1740198772  164587160 1244790107  670811937
##  [199] 1004581461 1970954671 2132394447 1773666780  791098784  575191510
##  [205]  253307147 1764890466  203924149 1705042178 1780202963  619092268
##  [211] 1967920623 1704751435  630649492 1500932107 1837938158  120916307
##  [217] 2037986298 1558205335  514989610 1940250285 1764694271 1470813539
##  [223] 1830971249  976184547 1318085763 1819856104 1307932002 1313930389
##  [229]  951776921 2106093320 1354800740  267018449   50702385 1470952402
##  [235] 2091576181  677652993  516713999 1426369471 1807528174 1079393191
##  [241] 1140479247 1330441092 1223488397 1060635440 1923179760  239618797
##  [247]  292027245  364484487 1844635753 1297977502 1836597817 1993308953
##  [253] 1011666428  372013208  191307154  407948634 1810952471 1017392859
##  [259] 1914657193 1163647364  839636712  644855121   26082526  604195404
##  [265]  140936577 2068798318  679055384 1639536903  871001822  694108796
##  [271]  285831222 1923968834 1821787852   66059242 1879938434  291676335
##  [277]  605577053  262522399 2065204829 1163923272 1273089898  930423806
##  [283]   14546068 2073579506 1691031103 1908950443  571024930  991786785
##  [289]  686956164  765999117  169942661 2062141238 1457693754 2033505379
##  [295]    8128986 1552259452 1264080015 1953541854 1264411017  751470220
##  [301] 1072708143  569074289 1321675542 1155902806  664232072 1215497802
##  [307] 1893680655   69979303 2126642029 1124087965  380849766 1539036266
##  [313]  770311768   40005323  509147880 1274459212  456586843  278829292
##  [319] 1088738383 1270676409  393013225  270846377  145021231 1670636028
##  [325]  965795444  189384601 2093673239  973008302  468902305 2053008922
##  [331]  865815753 1612958796 2114419731 1699544132  524513078 2086073655
##  [337] 1353192675 2101007773  683497261 1305016870  184030672 1352204120
##  [343] 1627109602  140692764 1037119230  643572466  388068784 2115903330
##  [349]  299907463  645882046  204655320  492175520  192939159 1877050697
##  [355]  484160663 2002317019 2048323620  187385846  101051102  902382305
##  [361] 1485432554  983324451  223524580  797158652 1033303746 1149937944
##  [367]  497187168 1592031303 1240719218 1733424542 1730728821  454599250
##  [373]  972491704 1302004011  779201879 1825307651  319068658   10474034
##  [379]  933438169 1639458092 1361683335 1784280056 2003436594  256753623
##  [385]  626008996  837848979  248541358 1496239876  825038492  348813717
##  [391] 1315140827 1398771150 1048836323 1451169508  634239175  832344793
##  [397]  843951180  602626190 1702818875 1833326200  835390977 1857411048
##  [403] 1646435758 1025666242 1847169644 1204862084 1745528710 1895470365
##  [409]  561724833  890886721  632878216 1709485961 1537687456   86413668
##  [415]  860925554 1781364037  830720500 1894598716 1436028894 2073584408
##  [421] 1927655545 1541871832  206964746  301328322  512690131  463765473
##  [427] 1053610855 2141853451  955232053 1385045626 2076514242 1619751857
##  [433] 1457269271  870639309  375112949 1642533322 1629739022  363890411
##  [439] 1085280568 1862213010 1513709584  144240089  471352545   69459730
##  [445]  668653863 2058890110 1288800297 1225366544 1526356103  719002990
##  [451] 1510111123  389104565  574480453  289613052 1940574769  247992259
##  [457]  760485811  325120963  103512697 1614433965  307858532   52360932
##  [463] 2073779700  617177442 1879151598  965021425 1481419098  523318105
##  [469]  238106794  320574430 1828633895 1966402904 1457381584 1997132838
##  [475]  910825621 1030846260  636231823  382692286  285006012  744962570
##  [481]  474547455 1819621403  716098266  882615974  827608121 1980807297
##  [487]  987134459 1600310753 1466091826 1542429608 1361566278  428788903
##  [493]  621746927 1261946392 2040641077  858023624 1288738062  368704506
##  [499] 1538226437  333761755  591355811  983716857 1985485430 1319509567
##  [505] 1828822284  322710088 1839766157  313426509  388722824 1474813465
##  [511] 1637870965 2058887210 1148814397 2097024753 1692667071 1421866832
##  [517] 1356489352  173629715 1798782171 1955360837 1021709883 1995808938
##  [523] 1429358131   44247038 1250026180   18221374 1243132731  124509980
##  [529] 1562000274 1164380084 1849025480  593608466  199960365 1495269297
##  [535] 1218859817  972749548  863489853 1008589540   23924203 1646484574
##  [541] 1234579731 1726990851  407675728 1522408827 1306087777  338174941
##  [547] 1019376164 1014008733 1768268219   42682040  867935367  849631134
##  [553] 2049262555  413560644 2125347659  920579458 1559393394 2029210777
##  [559] 1009309603  422346924 1046107433  721422785  204434983  593706428
##  [565]  633716773 1385281615  583037379 1024127774  598224814 1844879032
##  [571]  156396229  997350854  834674988 1655644381 1005992146 1346653602
##  [577] 2133511099 1988484297   48930528 1840989035 1360911978 1057328308
##  [583] 1198400866 1241203447 1485322484 2112586422 1250714920 1052135209
##  [589] 1777905736 1398797395  168225071  756732934 1706105291 1558123058
##  [595]  838363837 1478931759  716061468 1253823363  775931972  749933085
##  [601] 2035592203 1956962528 1027524852 1369819780 1549109250 1672018210
##  [607] 1113109709  877915199 1549764678 1097928493  357361290 1598176886
##  [613] 1541412925 1677385066  331094398  684384884 1201793763 1810977362
##  [619]   71422673  932594948 1738526494 1046434408 1472447481 1246090592
##  [625] 1169497609 1916455350 2063138031  181764776 1496804301  153110256
##  [631] 1293938049  121690284  743924419 1901568062  698397081 1127206345
##  [637]  584315456  441156878  635814286 1702600229 2016483369  824921077
##  [643] 1123525193 1132569965 1793578836 2040763751  337169337 1869989361
##  [649] 1076310480  511308209  329001668  597946463 1293499793  441471378
##  [655]  784658257 1069641508  715907847  280835013 1270132659 2062944386
##  [661] 1571745216 1263556673  313620289 1152742616  590039519 1869495135
##  [667]  841847351 2127911587  129896420 1725324227 1562447210 1263591270
##  [673] 1983652076  868508160  581634626 2031314415 1622288092 1477301077
##  [679] 1458305585 1502428522 1056942625 1908449596   16959510  461237703
##  [685] 1442193064 1124007545  793863240  874260972 1250232215 1373802271
##  [691]  514404081 1593467337 1840039728  634070368 1273796684  687952460
##  [697] 1613563099 1219958786  333990972  918471383  732236478  353683565
##  [703]  164372465 1618665997  581328739  150744920  933437284 1596738257
##  [709]  816829170 1361106150 1840270332 1028137817  893482237 1366979526
##  [715] 1886161824   53224445  806742783 1959907142 1433066544  811908260
##  [721]   47060710 1777317531  922841251 1216737300 1595946497 1252487856
##  [727]  734182985 1971726141  717317171 1738320760 1852866729 1330945303
##  [733] 1939937461 1696752496 1060921483  698375884  104005958 1802315579
##  [739]  717806645 1743400097   76923651  182331758  948305012 2017298447
##  [745] 1514845569 1292280849 1731367670 1227708271  747226829  250927647
##  [751]  720679257  820816894  579003124 1707616546 1493469165  224033925
##  [757] 1761431030  717213459 1027006102 2099042294  297140920  246071007
##  [763]  361527340  834113618  327556875 1723303911  676537689  366965790
##  [769] 1360528634 1880282907 1887346989 1427749338 1843095074 2089789138
##  [775]  314646220 1283334036 1503970394  322718292   88297794 1615258526
##  [781] 1455536917 1000041608 1871042502  372872163  851734666  509640671
##  [787] 1439653456  941157656  604660491 1116314684  966440840 1278523859
##  [793] 1240150303   41132341 1224342583 1490858553  908717246  189208044
##  [799]   13541233  813829455  443267734 1597212853  103732569 1490457042
##  [805]  854732588 1340929184  688036637 1381903772  739935098  459098654
##  [811] 1267373841 2036026822 1461619807  421965159 1945281941 1982108936
##  [817] 1541524865  638389865 1474322612 1566225919 1129543414 1727823511
##  [823] 1946300942 1778182326 1865171403  436893738 1008213458 1197422804
##  [829] 1273812879 1469701305 1829415010 1016899423 1718328154 1009940006
##  [835]  787759079  425564980 1766066025 1114757816  976793257  636355115
##  [841] 2039153124 2047488359  670691408 1628977043   89624101 1212914313
##  [847] 1740134662 1364900644  320696564 1281713268  577289558  596450746
##  [853] 2108188484 1558730775  108700086  759301685 1148233286 1963503083
##  [859] 1066559148  103679930 1097003520  805146194   52887168 1705913892
##  [865]  909036517  568352956  861948651 1775155443 1783390106 1994333084
##  [871] 1055370048 1160512874 2006008859 2015989559  610538684 1394727583
##  [877] 1282825543  580824908 1600122483  968045244 1415298051 2102441457
##  [883] 1169380921  578776196 1490993293  970300845  773747925  550499051
##  [889]  177042843 1197643040 1167406600 1913091320  739319426  804766600
##  [895] 1056858017 2119304122 1250780923 2090682375  482416507 1562024976
##  [901]  209286679  714206521 1907989900 1449294011  296436662  610571441
##  [907]  828457083   11379059 1670227004  549150763 1665825852  702023624
##  [913]   90404444  226145620  615845319 2000751675 1649531041  114216645
##  [919]  761148946  123055843   88829851 1528378209 1691317601  706109872
##  [925] 1916669775 1676228971  359807475 1566372436 1759614580 1082185036
##  [931]  614159481   80560516 1791266766 2103982425  391519604 1186711084
##  [937] 1751935686 1928963693  262974530  267700213  747877724 1605509134
##  [943] 1141554378 1688482065 1270905024  691069655 1759827654  630061855
##  [949] 1052393891 1379842676   33017844  371481650  302274700 1098145982
##  [955]  118354574  787140534  632550343  915113907 1872269654 1626667886
##  [961]  293456198  621998046  498809759  459226525  997383941  284333918
##  [967]  514567801  906460869  793299874 1597308197  411115499   59870302
##  [973] 1633842627  880511842  190783758  912904082  428505782 1987598665
##  [979]  248261196  857441856 1123502345   29674157   29639998  528234556
##  [985] 1336911845   40593998 1007791394  151324283  982581246  855498024
##  [991] 1782068341  468440532 1237600909 1533386093  761234054 2083820464
##  [997] 2111075911 1351282437   86222449  220527793
#A aprtir de la Asignacion de la mestr
#podemos calcular
#los siguientes
# 1 generar la media de la muestr a partir de la muestra generada
mean(muestr2)
## [1] 1081210502
# 1 Genrar la varianza de la muestr a partir de la muestra generada
var(muestr2)
## [1] 3.790225e+17
#las funciones de ggplot unicamente trabaja con data frame
## guardar en los resultados de muestr/m como dataframe 
## en datos
v2 <- muestr2/m
v2
##    [1] 2.103997e-05 1.562058e-02 2.114965e-02 9.147661e-01 6.723321e-01
##    [6] 1.424821e-01 7.529604e-01 1.526634e-01 2.130034e-01 8.892735e-01
##   [11] 1.230974e-01 3.687718e-02 9.813106e-02 8.842711e-01 6.500936e-01
##   [16] 6.665018e-01 7.082710e-01 9.495951e-01 9.051278e-01 4.247768e-01
##   [21] 4.012134e-01 9.740891e-01 2.545422e-01 4.131704e-03 4.414664e-01
##   [26] 2.365707e-02 9.504718e-01 2.244503e-01 4.419415e-01 9.580076e-01
##   [31] 9.834952e-01 2.944187e-01 8.859978e-01 5.056066e-04 4.061383e-01
##   [36] 7.026959e-01 8.345068e-01 4.756454e-01 8.779959e-01 7.398330e-01
##   [41] 4.803162e-01 3.437422e-01 7.821350e-01 4.366464e-01 3.564521e-01
##   [46] 2.971457e-01 5.217812e-01 8.998936e-01 7.631555e-01 2.789524e-01
##   [51] 3.114062e-01 8.905892e-01 6.289536e-01 2.189172e-01 3.503619e-01
##   [56] 3.196619e-01 4.009501e-01 2.634232e-01 7.004276e-01 3.423450e-01
##   [61] 3.377848e-01 2.089972e-01 5.061279e-01 3.002309e-01 4.446483e-01
##   [66] 6.199119e-01 7.669915e-01 4.484579e-01 5.120637e-01 8.286616e-01
##   [71] 3.220279e-01 6.110957e-01 2.021643e-01 6.731668e-01 4.334406e-01
##   [76] 6.119793e-01 8.530589e-01 3.988782e-03 5.425158e-01 7.793335e-01
##   [81] 2.074952e-01 9.996791e-01 5.099373e-01 1.835489e-01 8.856585e-02
##   [86] 1.619080e-01 4.627916e-01 4.153698e-01 3.151222e-01 2.655075e-01
##   [91] 3.145464e-01 4.688648e-01 5.723190e-01 4.114298e-01 1.264734e-01
##   [96] 9.992159e-01 1.505274e-01 1.105097e-01 4.155363e-01 3.510968e-01
##  [101] 7.912386e-01 8.777104e-01 9.584756e-01 5.755516e-01 4.533065e-01
##  [106] 5.584924e-01 9.880346e-01 4.192068e-01 5.294937e-01 1.909335e-01
##  [111] 5.524190e-01 8.180482e-01 4.078723e-03 8.840167e-01 3.717233e-01
##  [116] 4.564492e-01 2.597898e-01 3.139942e-01 8.145283e-01 9.412467e-02
##  [121] 4.920444e-01 4.741175e-01 1.278204e-01 1.909590e-02 7.782119e-01
##  [126] 6.882435e-02 2.201058e-01 7.262152e-01 1.324311e-01 5.814797e-01
##  [131] 6.042203e-01 3.158887e-01 2.622122e-01 2.429810e-01 9.381880e-01
##  [136] 2.725926e-01 3.167699e-01 7.981995e-01 8.879230e-01 9.327448e-01
##  [141] 5.230984e-01 4.816577e-01 9.977624e-02 2.989314e-01 7.180798e-01
##  [146] 4.278513e-01 8.082344e-01 2.844320e-01 8.174388e-01 5.864396e-01
##  [151] 2.671938e-02 7.711558e-01 4.633573e-01 7.221284e-01 8.601530e-01
##  [156] 4.442623e-01 9.842194e-01 2.545099e-01 4.493778e-01 9.170240e-01
##  [161] 6.666525e-01 9.816591e-01 6.644565e-01 9.798038e-01 1.102016e-01
##  [166] 5.393010e-01 6.007669e-01 6.167504e-01 1.603728e-01 3.555766e-01
##  [171] 3.921046e-02 7.282351e-01 6.370646e-01 7.441471e-01 7.260979e-01
##  [176] 4.723070e-01 7.305257e-01 2.073805e-01 4.634309e-01 2.728106e-01
##  [181] 8.409170e-01 9.058560e-01 5.763800e-01 4.410602e-01 4.148048e-01
##  [186] 4.313699e-02 2.656756e-01 4.282721e-01 1.218374e-01 2.141448e-01
##  [191] 9.844480e-01 2.884792e-01 1.780134e-01 8.839222e-01 8.103432e-01
##  [196] 7.664187e-02 5.796506e-01 3.123712e-01 4.677947e-01 9.177973e-01
##  [201] 9.929735e-01 8.259280e-01 3.683841e-01 2.678444e-01 1.179553e-01
##  [206] 8.218412e-01 9.495958e-02 7.939721e-01 8.289716e-01 2.882873e-01
##  [211] 9.163845e-01 7.938367e-01 2.936691e-01 6.989260e-01 8.558566e-01
##  [216] 5.630604e-02 9.490113e-01 7.255959e-01 2.398107e-01 9.034994e-01
##  [221] 8.217498e-01 6.849009e-01 8.526124e-01 4.545714e-01 6.137815e-01
##  [226] 8.474365e-01 6.090533e-01 6.118465e-01 4.432057e-01 9.807261e-01
##  [231] 6.308783e-01 1.243402e-01 2.361014e-02 6.849656e-01 9.739661e-01
##  [236] 3.155568e-01 2.406137e-01 6.642050e-01 8.416959e-01 5.026316e-01
##  [241] 5.310770e-01 6.195349e-01 5.697312e-01 4.938969e-01 8.955504e-01
##  [246] 1.115812e-01 1.359858e-01 1.697263e-01 8.589755e-01 6.044179e-01
##  [251] 8.552325e-01 9.282068e-01 4.710939e-01 1.732321e-01 8.908434e-02
##  [256] 1.899659e-01 8.432905e-01 4.737605e-01 8.915817e-01 5.418655e-01
##  [261] 3.909863e-01 3.002841e-01 1.214562e-02 2.813504e-01 6.562871e-02
##  [266] 9.633593e-01 3.162098e-01 7.634689e-01 4.055918e-01 3.232196e-01
##  [271] 1.331005e-01 8.959178e-01 8.483361e-01 3.076123e-02 8.754146e-01
##  [276] 1.358224e-01 2.819938e-01 1.222465e-01 9.616859e-01 5.419940e-01
##  [281] 5.928287e-01 4.332623e-01 6.773541e-03 9.655857e-01 7.874477e-01
##  [286] 8.889243e-01 2.659042e-01 4.618367e-01 3.198889e-01 3.566961e-01
##  [291] 7.913572e-02 9.602593e-01 6.787916e-01 9.469247e-01 3.785354e-03
##  [296] 7.228271e-01 5.886331e-01 9.096888e-01 5.887873e-01 3.499306e-01
##  [301] 4.995187e-01 2.649959e-01 6.154531e-01 5.382592e-01 3.093072e-01
##  [306] 5.660103e-01 8.818138e-01 3.258665e-02 9.902949e-01 5.234442e-01
##  [311] 1.773470e-01 7.166696e-01 3.587044e-01 1.862893e-02 2.370905e-01
##  [316] 5.934663e-01 2.126148e-01 1.298400e-01 5.069833e-01 5.917048e-01
##  [321] 1.830110e-01 1.261227e-01 6.753077e-02 7.779505e-01 4.497335e-01
##  [326] 8.818908e-02 9.749426e-01 4.530923e-01 2.183497e-01 9.560068e-01
##  [331] 4.031769e-01 7.510925e-01 9.846034e-01 7.914119e-01 2.442454e-01
##  [336] 9.714037e-01 6.301294e-01 9.783580e-01 3.182782e-01 6.076958e-01
##  [341] 8.569596e-02 6.296691e-01 7.576820e-01 6.551517e-02 4.829463e-01
##  [346] 2.996868e-01 1.807086e-01 9.852943e-01 1.396553e-01 3.007623e-01
##  [351] 9.530006e-02 2.291871e-01 8.984430e-02 8.740698e-01 2.254549e-01
##  [356] 9.324015e-01 9.538250e-01 8.725833e-02 4.705559e-02 4.202045e-01
##  [361] 6.917084e-01 4.578961e-01 1.040867e-01 3.712059e-01 4.811696e-01
##  [366] 5.354816e-01 2.315208e-01 7.413473e-01 5.777549e-01 8.071887e-01
##  [371] 8.059334e-01 2.116893e-01 4.528517e-01 6.062929e-01 3.628442e-01
##  [376] 8.499751e-01 1.485779e-01 4.877352e-03 4.346660e-01 7.634322e-01
##  [381] 6.340832e-01 8.308701e-01 9.329229e-01 1.195602e-01 2.915082e-01
##  [386] 3.901538e-01 1.157361e-01 6.967410e-01 3.841885e-01 1.624290e-01
##  [391] 6.124102e-01 6.513536e-01 4.884025e-01 6.757535e-01 2.953406e-01
##  [396] 3.875907e-01 3.929954e-01 2.806197e-01 7.929368e-01 8.537090e-01
##  [401] 3.890092e-01 8.649244e-01 7.666814e-01 4.776131e-01 8.601554e-01
##  [406] 5.610576e-01 8.128251e-01 8.826472e-01 2.615735e-01 4.148515e-01
##  [411] 2.947069e-01 7.960414e-01 7.160415e-01 4.023950e-02 4.008997e-01
##  [416] 8.295123e-01 3.868344e-01 8.822413e-01 6.687031e-01 9.655880e-01
##  [421] 8.976346e-01 7.179900e-01 9.637547e-02 1.403169e-01 2.387399e-01
##  [426] 2.159576e-01 4.906258e-01 9.973782e-01 4.448146e-01 6.449621e-01
##  [431] 9.669523e-01 7.542557e-01 6.785939e-01 4.054230e-01 1.746756e-01
##  [436] 7.648642e-01 7.589064e-01 1.694497e-01 5.053731e-01 8.671605e-01
##  [441] 7.048760e-01 6.716703e-02 2.194906e-01 3.234471e-02 3.113662e-01
##  [446] 9.587454e-01 6.001444e-01 5.706058e-01 7.107649e-01 3.348119e-01
##  [451] 7.032003e-01 1.811909e-01 2.675133e-01 1.348616e-01 9.036505e-01
##  [456] 1.154804e-01 3.541288e-01 1.513962e-01 4.820186e-02 7.517794e-01
##  [461] 1.433578e-01 2.438246e-02 9.656789e-01 2.873956e-01 8.750482e-01
##  [466] 4.493731e-01 6.898395e-01 2.436890e-01 1.108771e-01 1.492791e-01
##  [471] 8.515240e-01 9.156777e-01 6.786462e-01 9.299874e-01 4.241362e-01
##  [476] 4.800252e-01 2.962685e-01 1.782050e-01 1.327163e-01 3.469002e-01
##  [481] 2.209784e-01 8.473272e-01 3.334592e-01 4.110001e-01 3.853851e-01
##  [486] 9.223853e-01 4.596703e-01 7.452028e-01 6.827022e-01 7.182498e-01
##  [491] 6.340287e-01 1.996704e-01 2.895235e-01 5.876396e-01 9.502476e-01
##  [496] 3.995484e-01 6.001154e-01 1.716914e-01 7.162925e-01 1.554199e-01
##  [501] 2.753715e-01 4.580789e-01 9.245637e-01 6.144445e-01 8.516117e-01
##  [506] 1.502736e-01 8.567079e-01 1.459506e-01 1.810132e-01 6.867635e-01
##  [511] 7.626931e-01 9.587441e-01 5.349584e-01 9.765032e-01 7.882095e-01
##  [516] 6.621083e-01 6.316646e-01 8.085264e-02 8.376232e-01 9.105358e-01
##  [521] 4.757707e-01 9.293710e-01 6.655967e-01 2.060413e-02 5.820888e-01
##  [526] 8.484988e-03 5.788788e-01 5.797948e-02 7.273631e-01 5.422067e-01
##  [531] 8.610196e-01 2.764205e-01 9.311380e-02 6.962890e-01 5.675758e-01
##  [536] 4.529718e-01 4.020938e-01 4.696611e-01 1.114058e-02 7.667041e-01
##  [541] 5.748960e-01 8.041928e-01 1.898388e-01 7.089269e-01 6.081945e-01
##  [546] 1.574750e-01 4.746840e-01 4.721846e-01 8.234141e-01 1.987537e-02
##  [551] 4.041639e-01 3.956403e-01 9.542622e-01 1.925792e-01 9.896921e-01
##  [556] 4.286782e-01 7.261491e-01 9.449249e-01 4.699964e-01 1.966706e-01
##  [561] 4.871317e-01 3.359387e-01 9.519746e-02 2.764661e-01 2.950974e-01
##  [566] 6.450720e-01 2.714979e-01 4.768967e-01 2.785701e-01 8.590887e-01
##  [571] 7.282767e-02 4.644277e-01 3.886758e-01 7.709695e-01 4.684516e-01
##  [576] 6.270845e-01 9.934935e-01 9.259602e-01 2.278505e-02 8.572773e-01
##  [581] 6.337240e-01 4.923569e-01 5.580489e-01 5.779804e-01 6.916572e-01
##  [586] 9.837497e-01 5.824095e-01 4.899386e-01 8.279019e-01 6.513658e-01
##  [591] 7.833590e-02 3.523812e-01 7.944672e-01 7.255576e-01 3.903936e-01
##  [596] 6.886813e-01 3.334421e-01 5.838570e-01 3.613215e-01 3.492148e-01
##  [601] 9.478965e-01 9.112817e-01 4.784785e-01 6.378720e-01 7.213602e-01
##  [606] 7.785942e-01 5.183321e-01 4.088111e-01 7.216654e-01 5.112628e-01
##  [611] 1.664093e-01 7.442091e-01 7.177763e-01 7.810933e-01 1.541778e-01
##  [616] 3.186915e-01 5.596288e-01 8.433021e-01 3.325877e-02 4.342734e-01
##  [621] 8.095645e-01 4.872840e-01 6.856618e-01 5.802561e-01 5.445898e-01
##  [626] 8.924191e-01 9.607235e-01 8.464082e-02 6.970038e-01 7.129752e-02
##  [631] 6.025369e-01 5.666645e-02 3.464168e-01 8.854866e-01 3.252165e-01
##  [636] 5.248964e-01 2.720931e-01 2.054297e-01 2.960741e-01 7.928350e-01
##  [641] 9.389982e-01 3.841338e-01 5.231822e-01 5.273940e-01 8.352002e-01
##  [646] 9.503047e-01 1.570067e-01 8.707817e-01 5.011961e-01 2.380964e-01
##  [651] 1.532033e-01 2.784405e-01 6.023328e-01 2.055761e-01 3.653850e-01
##  [656] 4.980906e-01 3.333706e-01 1.307740e-01 5.914516e-01 9.606333e-01
##  [661] 7.319009e-01 5.883894e-01 1.460408e-01 5.367876e-01 2.747586e-01
##  [666] 8.705515e-01 3.920157e-01 9.908860e-01 6.048773e-02 8.034167e-01
##  [671] 7.275712e-01 5.884055e-01 9.237100e-01 4.044306e-01 2.708447e-01
##  [676] 9.459045e-01 7.554368e-01 6.879219e-01 6.790765e-01 6.996228e-01
##  [681] 4.921773e-01 8.886911e-01 7.897387e-03 2.147805e-01 6.715735e-01
##  [686] 5.234068e-01 3.696714e-01 4.071095e-01 5.821847e-01 6.397265e-01
##  [691] 2.395381e-01 7.420161e-01 8.568353e-01 2.952620e-01 5.931578e-01
##  [696] 3.203528e-01 7.513739e-01 5.680876e-01 1.555267e-01 4.276966e-01
##  [701] 3.409742e-01 1.646967e-01 7.654189e-02 7.537501e-01 2.707023e-01
##  [706] 7.019607e-02 4.346656e-01 7.435392e-01 3.803657e-01 6.338144e-01
##  [711] 8.569427e-01 4.787640e-01 4.160601e-01 6.365494e-01 8.783125e-01
##  [716] 2.478456e-02 3.756689e-01 9.126529e-01 6.673236e-01 3.780742e-01
##  [721] 2.191435e-02 8.276280e-01 4.297314e-01 5.665875e-01 7.431705e-01
##  [726] 5.832351e-01 3.418806e-01 9.181565e-01 3.340268e-01 8.094687e-01
##  [731] 8.628083e-01 6.197697e-01 9.033538e-01 7.901120e-01 4.940301e-01
##  [736] 3.252066e-01 4.843155e-02 8.392686e-01 3.342548e-01 8.118339e-01
##  [741] 3.582037e-02 8.490484e-02 4.415889e-01 9.393778e-01 7.054049e-01
##  [746] 6.017652e-01 8.062309e-01 5.716962e-01 3.479546e-01 1.168473e-01
##  [751] 3.355924e-01 3.822227e-01 2.696193e-01 7.951709e-01 6.954508e-01
##  [756] 1.043239e-01 8.202302e-01 3.339785e-01 4.782370e-01 9.774427e-01
##  [761] 1.383670e-01 1.145857e-01 1.683493e-01 3.884144e-01 1.525306e-01
##  [766] 8.024759e-01 3.150374e-01 1.708818e-01 6.335455e-01 8.755750e-01
##  [771] 8.788644e-01 6.648476e-01 8.582580e-01 9.731339e-01 1.465186e-01
##  [776] 5.975990e-01 7.003408e-01 1.502774e-01 4.111686e-02 7.521634e-01
##  [781] 6.777872e-01 4.656807e-01 8.712721e-01 1.736321e-01 3.966199e-01
##  [786] 2.373199e-01 6.703909e-01 4.382607e-01 2.815670e-01 5.198245e-01
##  [791] 4.500341e-01 5.953591e-01 5.774900e-01 1.915374e-02 5.701289e-01
##  [796] 6.942351e-01 4.231544e-01 8.810686e-02 6.305628e-03 3.789689e-01
##  [801] 2.064126e-01 7.437602e-01 4.830424e-02 6.940481e-01 3.980159e-01
##  [806] 6.244188e-01 3.203920e-01 6.434991e-01 3.445591e-01 2.137845e-01
##  [811] 5.901669e-01 9.480989e-01 6.806198e-01 1.964928e-01 9.058425e-01
##  [816] 9.229914e-01 7.178285e-01 2.972734e-01 6.865350e-01 7.293308e-01
##  [821] 5.259846e-01 8.045805e-01 9.063170e-01 8.280307e-01 8.685381e-01
##  [826] 2.034445e-01 4.694860e-01 5.575934e-01 5.931653e-01 6.843830e-01
##  [831] 8.518877e-01 4.735307e-01 8.001589e-01 4.702900e-01 3.668289e-01
##  [836] 1.981691e-01 8.223886e-01 5.190996e-01 4.548548e-01 2.963259e-01
##  [841] 9.495547e-01 9.534361e-01 3.123150e-01 7.585515e-01 4.173447e-02
##  [846] 5.648072e-01 8.103133e-01 6.355814e-01 1.493360e-01 5.968443e-01
##  [851] 2.688214e-01 2.777440e-01 9.817018e-01 7.258406e-01 5.061742e-02
##  [856] 3.535774e-01 5.346878e-01 9.143274e-01 4.966553e-01 4.827973e-02
##  [861] 5.108321e-01 3.749254e-01 2.462751e-02 7.943781e-01 4.233031e-01
##  [866] 2.646600e-01 4.013761e-01 8.266212e-01 8.304557e-01 9.286837e-01
##  [871] 4.914450e-01 5.404059e-01 9.341207e-01 9.387683e-01 2.843042e-01
##  [876] 6.494706e-01 5.973622e-01 2.704677e-01 7.451151e-01 4.507812e-01
##  [881] 6.590495e-01 9.790256e-01 5.445354e-01 2.695137e-01 6.942979e-01
##  [886] 4.518315e-01 3.603045e-01 2.563461e-01 8.244200e-02 5.576960e-01
##  [891] 5.436161e-01 8.908526e-01 3.442724e-01 3.747487e-01 4.921379e-01
##  [896] 9.868779e-01 5.824403e-01 9.735498e-01 2.246427e-01 7.273746e-01
##  [901] 9.745670e-02 3.325783e-01 8.884770e-01 6.748801e-01 1.380391e-01
##  [906] 2.843195e-01 3.857804e-01 5.298787e-03 7.777601e-01 2.557183e-01
##  [911] 7.757106e-01 3.269052e-01 4.209785e-02 1.053073e-01 2.867753e-01
##  [916] 9.316726e-01 7.681227e-01 5.318627e-02 3.544376e-01 5.730234e-02
##  [921] 4.136462e-02 7.117066e-01 7.875811e-01 3.288080e-01 8.925189e-01
##  [926] 7.805549e-01 1.675484e-01 7.293990e-01 8.193844e-01 5.039317e-01
##  [931] 2.859903e-01 3.751391e-02 8.341236e-01 9.797432e-01 1.823155e-01
##  [936] 5.526054e-01 8.158086e-01 8.982437e-01 1.224571e-01 1.246576e-01
##  [941] 3.482577e-01 7.476235e-01 5.315777e-01 7.862607e-01 5.918113e-01
##  [946] 3.218044e-01 8.194836e-01 2.933954e-01 4.900591e-01 6.425393e-01
##  [951] 1.537513e-02 1.729846e-01 1.407576e-01 5.113641e-01 5.511314e-02
##  [956] 3.665409e-01 2.945542e-01 4.261331e-01 8.718435e-01 7.574763e-01
##  [961] 1.366512e-01 2.896404e-01 2.322764e-01 2.138440e-01 4.644431e-01
##  [966] 1.324033e-01 2.396143e-01 4.221037e-01 3.694090e-01 7.438046e-01
##  [971] 1.914406e-01 2.787928e-02 7.608173e-01 4.100203e-01 8.884061e-02
##  [976] 4.251041e-01 1.995386e-01 9.255478e-01 1.156056e-01 3.992775e-01
##  [981] 5.231715e-01 1.381811e-02 1.380220e-02 2.459784e-01 6.225481e-01
##  [986] 1.890305e-02 4.692894e-01 7.046586e-02 4.575500e-01 3.983723e-01
##  [991] 8.298402e-01 2.181346e-01 5.763028e-01 7.140385e-01 3.544772e-01
##  [996] 9.703545e-01 9.830463e-01 6.292399e-01 4.015046e-02 1.026913e-01
dat2<- data.frame(v2)

## generando graficos ...
ggplot(dat2, aes(v2))+geom_histogram(binwidth = 0.1,col="black",fill="blue",alpha=0.4,) + labs(y="Conteo",x="Valor de datos muestr2/m",title = "Valores generados con operador congrencial multiplicativo")+  theme_bw()

Probar que provenga de una distribucion uniforme [0,1] DECISION DE HIPOTESIS A PROVAR \[H_0: U\sim Uniforme(0,1)\] \[H_1: U\nsim Uniforme(0,1)\]

ks.test(v2,punif,0,1)
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  v2
## D = 0.02766, p-value = 0.4286
## alternative hypothesis: two-sided

De acuerdo a los resultados, p-valor = 0.4286, si alpha es mayor que p-valor se rechaza Ho. Note que p-valor es mayor que alpha Por lo tanto NO RECHAZA. es decir, la muestra simulada proviene de una distribución uniforme ########################################################################################### ##########################################################################################

Prueba de independencia de la muestra generada (autocorrelacion) autocorrelacion (ACF) mide la autocorrelacion de una seriel temporal en diferentes intervalos de tiempo.

prueIND2<- acf(v2, type= "correlation");prueIND2 # Ver si hay independencia en la muestra generada

## 
## Autocorrelations of series 'v2', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000  0.003 -0.021  0.027  0.001 -0.017  0.025 -0.016  0.041  0.045 -0.036 
##     11     12     13     14     15     16     17     18     19     20     21 
##  0.028  0.019  0.011 -0.020  0.008 -0.045  0.022 -0.029  0.010  0.036 -0.004 
##     22     23     24     25     26     27     28     29     30 
## -0.027 -0.031 -0.016 -0.025  0.044  0.023  0.009 -0.049 -0.051

No hay correlación en los datos de la muestra generada de una uniforme Como en el gráfico se ve que las barras salen del rango, Por lo tanto se concluye , que la muesta es independiente. ################################################ Con el estadístico Ljung-Box, se puede probar \(H_{0}\): Muestra aleatoria \(H_{1}\): Muestra no aleatoria

Se rechaza \(H_{0}\) si \(p-valor <\alpha\)

Box.test(v2, lag = 10, type = "Ljung")
## 
##  Box-Ljung test
## 
## data:  v2
## X-squared = 7.4561, df = 10, p-value = 0.6818

De acuerdo a los resultados, p-valor = 0.6818, Note que \(p-valor > \alpha\), llegamos a conclusion ,que No se rechaza \(H0\) Por lo tanto La muestra generada es aleatoria

#######################################################################################3

  • \(c=1\), \(a=5\) y \(m=512\)
rm(list=ls())
n <- 1000        # numero de numeros aleatorios a generar (1000)
a  <- 5 #valor de operacion 
m  <-  512    #valor del modulo
c <- 0
muestr3 <-45183     # Fijar un valor a la semilla  asignamos el valor de muestr

# Enseguida se utiliza el ciclo for para generar los valores aleatorios en n muestra 
#iniciando en la posicion 2,tomara el valor de 2-1, pues en este caso la semilla inicial 45183, sera el primer posicion.
for(i in 2:n)
{
  muestr3[i]<-(a*muestr3[i-1]+c)%%m
}
muestr3
##    [1] 45183   123   103     3    15    75   375   339   159   283   391   419
##   [13]    47   235   151   243   191   443   167   323    79   395   439   147
##   [25]   223    91   455   227   111    43   215    51   255   251   231   131
##   [37]   143   203   503   467   287   411     7    35   175   363   279   371
##   [49]   319    59   295   451   207    11    55   275   351   219    71   355
##   [61]   239   171   343   179   383   379   359   259   271   331   119    83
##   [73]   415    27   135   163   303   491   407   499   447   187   423    67
##   [85]   335   139   183   403   479   347   199   483   367   299   471   307
##   [97]   511   507   487   387   399   459   247   211    31   155   263   291
##  [109]   431   107    23   115    63   315    39   195   463   267   311    19
##  [121]    95   475   327    99   495   427    87   435   127   123   103     3
##  [133]    15    75   375   339   159   283   391   419    47   235   151   243
##  [145]   191   443   167   323    79   395   439   147   223    91   455   227
##  [157]   111    43   215    51   255   251   231   131   143   203   503   467
##  [169]   287   411     7    35   175   363   279   371   319    59   295   451
##  [181]   207    11    55   275   351   219    71   355   239   171   343   179
##  [193]   383   379   359   259   271   331   119    83   415    27   135   163
##  [205]   303   491   407   499   447   187   423    67   335   139   183   403
##  [217]   479   347   199   483   367   299   471   307   511   507   487   387
##  [229]   399   459   247   211    31   155   263   291   431   107    23   115
##  [241]    63   315    39   195   463   267   311    19    95   475   327    99
##  [253]   495   427    87   435   127   123   103     3    15    75   375   339
##  [265]   159   283   391   419    47   235   151   243   191   443   167   323
##  [277]    79   395   439   147   223    91   455   227   111    43   215    51
##  [289]   255   251   231   131   143   203   503   467   287   411     7    35
##  [301]   175   363   279   371   319    59   295   451   207    11    55   275
##  [313]   351   219    71   355   239   171   343   179   383   379   359   259
##  [325]   271   331   119    83   415    27   135   163   303   491   407   499
##  [337]   447   187   423    67   335   139   183   403   479   347   199   483
##  [349]   367   299   471   307   511   507   487   387   399   459   247   211
##  [361]    31   155   263   291   431   107    23   115    63   315    39   195
##  [373]   463   267   311    19    95   475   327    99   495   427    87   435
##  [385]   127   123   103     3    15    75   375   339   159   283   391   419
##  [397]    47   235   151   243   191   443   167   323    79   395   439   147
##  [409]   223    91   455   227   111    43   215    51   255   251   231   131
##  [421]   143   203   503   467   287   411     7    35   175   363   279   371
##  [433]   319    59   295   451   207    11    55   275   351   219    71   355
##  [445]   239   171   343   179   383   379   359   259   271   331   119    83
##  [457]   415    27   135   163   303   491   407   499   447   187   423    67
##  [469]   335   139   183   403   479   347   199   483   367   299   471   307
##  [481]   511   507   487   387   399   459   247   211    31   155   263   291
##  [493]   431   107    23   115    63   315    39   195   463   267   311    19
##  [505]    95   475   327    99   495   427    87   435   127   123   103     3
##  [517]    15    75   375   339   159   283   391   419    47   235   151   243
##  [529]   191   443   167   323    79   395   439   147   223    91   455   227
##  [541]   111    43   215    51   255   251   231   131   143   203   503   467
##  [553]   287   411     7    35   175   363   279   371   319    59   295   451
##  [565]   207    11    55   275   351   219    71   355   239   171   343   179
##  [577]   383   379   359   259   271   331   119    83   415    27   135   163
##  [589]   303   491   407   499   447   187   423    67   335   139   183   403
##  [601]   479   347   199   483   367   299   471   307   511   507   487   387
##  [613]   399   459   247   211    31   155   263   291   431   107    23   115
##  [625]    63   315    39   195   463   267   311    19    95   475   327    99
##  [637]   495   427    87   435   127   123   103     3    15    75   375   339
##  [649]   159   283   391   419    47   235   151   243   191   443   167   323
##  [661]    79   395   439   147   223    91   455   227   111    43   215    51
##  [673]   255   251   231   131   143   203   503   467   287   411     7    35
##  [685]   175   363   279   371   319    59   295   451   207    11    55   275
##  [697]   351   219    71   355   239   171   343   179   383   379   359   259
##  [709]   271   331   119    83   415    27   135   163   303   491   407   499
##  [721]   447   187   423    67   335   139   183   403   479   347   199   483
##  [733]   367   299   471   307   511   507   487   387   399   459   247   211
##  [745]    31   155   263   291   431   107    23   115    63   315    39   195
##  [757]   463   267   311    19    95   475   327    99   495   427    87   435
##  [769]   127   123   103     3    15    75   375   339   159   283   391   419
##  [781]    47   235   151   243   191   443   167   323    79   395   439   147
##  [793]   223    91   455   227   111    43   215    51   255   251   231   131
##  [805]   143   203   503   467   287   411     7    35   175   363   279   371
##  [817]   319    59   295   451   207    11    55   275   351   219    71   355
##  [829]   239   171   343   179   383   379   359   259   271   331   119    83
##  [841]   415    27   135   163   303   491   407   499   447   187   423    67
##  [853]   335   139   183   403   479   347   199   483   367   299   471   307
##  [865]   511   507   487   387   399   459   247   211    31   155   263   291
##  [877]   431   107    23   115    63   315    39   195   463   267   311    19
##  [889]    95   475   327    99   495   427    87   435   127   123   103     3
##  [901]    15    75   375   339   159   283   391   419    47   235   151   243
##  [913]   191   443   167   323    79   395   439   147   223    91   455   227
##  [925]   111    43   215    51   255   251   231   131   143   203   503   467
##  [937]   287   411     7    35   175   363   279   371   319    59   295   451
##  [949]   207    11    55   275   351   219    71   355   239   171   343   179
##  [961]   383   379   359   259   271   331   119    83   415    27   135   163
##  [973]   303   491   407   499   447   187   423    67   335   139   183   403
##  [985]   479   347   199   483   367   299   471   307   511   507   487   387
##  [997]   399   459   247   211
#A aprtir de la Asignacion de la mestr
#podemos calcular
#los siguientes
# 1 generar la media de la muestr a partir de la muestra generada
mean(muestr3)
## [1] 302.696
# 1 Genrar la varianza de la muestr a partir de la muestra generada
var(muestr3)
## [1] 2040014
#las funciones de ggplot unicamente trabaja con data frame
## guardar en los resultados de muestr/m como dataframe 
## en datos
v3 <- muestr3/m
v3
##    [1] 88.248046875  0.240234375  0.201171875  0.005859375  0.029296875
##    [6]  0.146484375  0.732421875  0.662109375  0.310546875  0.552734375
##   [11]  0.763671875  0.818359375  0.091796875  0.458984375  0.294921875
##   [16]  0.474609375  0.373046875  0.865234375  0.326171875  0.630859375
##   [21]  0.154296875  0.771484375  0.857421875  0.287109375  0.435546875
##   [26]  0.177734375  0.888671875  0.443359375  0.216796875  0.083984375
##   [31]  0.419921875  0.099609375  0.498046875  0.490234375  0.451171875
##   [36]  0.255859375  0.279296875  0.396484375  0.982421875  0.912109375
##   [41]  0.560546875  0.802734375  0.013671875  0.068359375  0.341796875
##   [46]  0.708984375  0.544921875  0.724609375  0.623046875  0.115234375
##   [51]  0.576171875  0.880859375  0.404296875  0.021484375  0.107421875
##   [56]  0.537109375  0.685546875  0.427734375  0.138671875  0.693359375
##   [61]  0.466796875  0.333984375  0.669921875  0.349609375  0.748046875
##   [66]  0.740234375  0.701171875  0.505859375  0.529296875  0.646484375
##   [71]  0.232421875  0.162109375  0.810546875  0.052734375  0.263671875
##   [76]  0.318359375  0.591796875  0.958984375  0.794921875  0.974609375
##   [81]  0.873046875  0.365234375  0.826171875  0.130859375  0.654296875
##   [86]  0.271484375  0.357421875  0.787109375  0.935546875  0.677734375
##   [91]  0.388671875  0.943359375  0.716796875  0.583984375  0.919921875
##   [96]  0.599609375  0.998046875  0.990234375  0.951171875  0.755859375
##  [101]  0.779296875  0.896484375  0.482421875  0.412109375  0.060546875
##  [106]  0.302734375  0.513671875  0.568359375  0.841796875  0.208984375
##  [111]  0.044921875  0.224609375  0.123046875  0.615234375  0.076171875
##  [116]  0.380859375  0.904296875  0.521484375  0.607421875  0.037109375
##  [121]  0.185546875  0.927734375  0.638671875  0.193359375  0.966796875
##  [126]  0.833984375  0.169921875  0.849609375  0.248046875  0.240234375
##  [131]  0.201171875  0.005859375  0.029296875  0.146484375  0.732421875
##  [136]  0.662109375  0.310546875  0.552734375  0.763671875  0.818359375
##  [141]  0.091796875  0.458984375  0.294921875  0.474609375  0.373046875
##  [146]  0.865234375  0.326171875  0.630859375  0.154296875  0.771484375
##  [151]  0.857421875  0.287109375  0.435546875  0.177734375  0.888671875
##  [156]  0.443359375  0.216796875  0.083984375  0.419921875  0.099609375
##  [161]  0.498046875  0.490234375  0.451171875  0.255859375  0.279296875
##  [166]  0.396484375  0.982421875  0.912109375  0.560546875  0.802734375
##  [171]  0.013671875  0.068359375  0.341796875  0.708984375  0.544921875
##  [176]  0.724609375  0.623046875  0.115234375  0.576171875  0.880859375
##  [181]  0.404296875  0.021484375  0.107421875  0.537109375  0.685546875
##  [186]  0.427734375  0.138671875  0.693359375  0.466796875  0.333984375
##  [191]  0.669921875  0.349609375  0.748046875  0.740234375  0.701171875
##  [196]  0.505859375  0.529296875  0.646484375  0.232421875  0.162109375
##  [201]  0.810546875  0.052734375  0.263671875  0.318359375  0.591796875
##  [206]  0.958984375  0.794921875  0.974609375  0.873046875  0.365234375
##  [211]  0.826171875  0.130859375  0.654296875  0.271484375  0.357421875
##  [216]  0.787109375  0.935546875  0.677734375  0.388671875  0.943359375
##  [221]  0.716796875  0.583984375  0.919921875  0.599609375  0.998046875
##  [226]  0.990234375  0.951171875  0.755859375  0.779296875  0.896484375
##  [231]  0.482421875  0.412109375  0.060546875  0.302734375  0.513671875
##  [236]  0.568359375  0.841796875  0.208984375  0.044921875  0.224609375
##  [241]  0.123046875  0.615234375  0.076171875  0.380859375  0.904296875
##  [246]  0.521484375  0.607421875  0.037109375  0.185546875  0.927734375
##  [251]  0.638671875  0.193359375  0.966796875  0.833984375  0.169921875
##  [256]  0.849609375  0.248046875  0.240234375  0.201171875  0.005859375
##  [261]  0.029296875  0.146484375  0.732421875  0.662109375  0.310546875
##  [266]  0.552734375  0.763671875  0.818359375  0.091796875  0.458984375
##  [271]  0.294921875  0.474609375  0.373046875  0.865234375  0.326171875
##  [276]  0.630859375  0.154296875  0.771484375  0.857421875  0.287109375
##  [281]  0.435546875  0.177734375  0.888671875  0.443359375  0.216796875
##  [286]  0.083984375  0.419921875  0.099609375  0.498046875  0.490234375
##  [291]  0.451171875  0.255859375  0.279296875  0.396484375  0.982421875
##  [296]  0.912109375  0.560546875  0.802734375  0.013671875  0.068359375
##  [301]  0.341796875  0.708984375  0.544921875  0.724609375  0.623046875
##  [306]  0.115234375  0.576171875  0.880859375  0.404296875  0.021484375
##  [311]  0.107421875  0.537109375  0.685546875  0.427734375  0.138671875
##  [316]  0.693359375  0.466796875  0.333984375  0.669921875  0.349609375
##  [321]  0.748046875  0.740234375  0.701171875  0.505859375  0.529296875
##  [326]  0.646484375  0.232421875  0.162109375  0.810546875  0.052734375
##  [331]  0.263671875  0.318359375  0.591796875  0.958984375  0.794921875
##  [336]  0.974609375  0.873046875  0.365234375  0.826171875  0.130859375
##  [341]  0.654296875  0.271484375  0.357421875  0.787109375  0.935546875
##  [346]  0.677734375  0.388671875  0.943359375  0.716796875  0.583984375
##  [351]  0.919921875  0.599609375  0.998046875  0.990234375  0.951171875
##  [356]  0.755859375  0.779296875  0.896484375  0.482421875  0.412109375
##  [361]  0.060546875  0.302734375  0.513671875  0.568359375  0.841796875
##  [366]  0.208984375  0.044921875  0.224609375  0.123046875  0.615234375
##  [371]  0.076171875  0.380859375  0.904296875  0.521484375  0.607421875
##  [376]  0.037109375  0.185546875  0.927734375  0.638671875  0.193359375
##  [381]  0.966796875  0.833984375  0.169921875  0.849609375  0.248046875
##  [386]  0.240234375  0.201171875  0.005859375  0.029296875  0.146484375
##  [391]  0.732421875  0.662109375  0.310546875  0.552734375  0.763671875
##  [396]  0.818359375  0.091796875  0.458984375  0.294921875  0.474609375
##  [401]  0.373046875  0.865234375  0.326171875  0.630859375  0.154296875
##  [406]  0.771484375  0.857421875  0.287109375  0.435546875  0.177734375
##  [411]  0.888671875  0.443359375  0.216796875  0.083984375  0.419921875
##  [416]  0.099609375  0.498046875  0.490234375  0.451171875  0.255859375
##  [421]  0.279296875  0.396484375  0.982421875  0.912109375  0.560546875
##  [426]  0.802734375  0.013671875  0.068359375  0.341796875  0.708984375
##  [431]  0.544921875  0.724609375  0.623046875  0.115234375  0.576171875
##  [436]  0.880859375  0.404296875  0.021484375  0.107421875  0.537109375
##  [441]  0.685546875  0.427734375  0.138671875  0.693359375  0.466796875
##  [446]  0.333984375  0.669921875  0.349609375  0.748046875  0.740234375
##  [451]  0.701171875  0.505859375  0.529296875  0.646484375  0.232421875
##  [456]  0.162109375  0.810546875  0.052734375  0.263671875  0.318359375
##  [461]  0.591796875  0.958984375  0.794921875  0.974609375  0.873046875
##  [466]  0.365234375  0.826171875  0.130859375  0.654296875  0.271484375
##  [471]  0.357421875  0.787109375  0.935546875  0.677734375  0.388671875
##  [476]  0.943359375  0.716796875  0.583984375  0.919921875  0.599609375
##  [481]  0.998046875  0.990234375  0.951171875  0.755859375  0.779296875
##  [486]  0.896484375  0.482421875  0.412109375  0.060546875  0.302734375
##  [491]  0.513671875  0.568359375  0.841796875  0.208984375  0.044921875
##  [496]  0.224609375  0.123046875  0.615234375  0.076171875  0.380859375
##  [501]  0.904296875  0.521484375  0.607421875  0.037109375  0.185546875
##  [506]  0.927734375  0.638671875  0.193359375  0.966796875  0.833984375
##  [511]  0.169921875  0.849609375  0.248046875  0.240234375  0.201171875
##  [516]  0.005859375  0.029296875  0.146484375  0.732421875  0.662109375
##  [521]  0.310546875  0.552734375  0.763671875  0.818359375  0.091796875
##  [526]  0.458984375  0.294921875  0.474609375  0.373046875  0.865234375
##  [531]  0.326171875  0.630859375  0.154296875  0.771484375  0.857421875
##  [536]  0.287109375  0.435546875  0.177734375  0.888671875  0.443359375
##  [541]  0.216796875  0.083984375  0.419921875  0.099609375  0.498046875
##  [546]  0.490234375  0.451171875  0.255859375  0.279296875  0.396484375
##  [551]  0.982421875  0.912109375  0.560546875  0.802734375  0.013671875
##  [556]  0.068359375  0.341796875  0.708984375  0.544921875  0.724609375
##  [561]  0.623046875  0.115234375  0.576171875  0.880859375  0.404296875
##  [566]  0.021484375  0.107421875  0.537109375  0.685546875  0.427734375
##  [571]  0.138671875  0.693359375  0.466796875  0.333984375  0.669921875
##  [576]  0.349609375  0.748046875  0.740234375  0.701171875  0.505859375
##  [581]  0.529296875  0.646484375  0.232421875  0.162109375  0.810546875
##  [586]  0.052734375  0.263671875  0.318359375  0.591796875  0.958984375
##  [591]  0.794921875  0.974609375  0.873046875  0.365234375  0.826171875
##  [596]  0.130859375  0.654296875  0.271484375  0.357421875  0.787109375
##  [601]  0.935546875  0.677734375  0.388671875  0.943359375  0.716796875
##  [606]  0.583984375  0.919921875  0.599609375  0.998046875  0.990234375
##  [611]  0.951171875  0.755859375  0.779296875  0.896484375  0.482421875
##  [616]  0.412109375  0.060546875  0.302734375  0.513671875  0.568359375
##  [621]  0.841796875  0.208984375  0.044921875  0.224609375  0.123046875
##  [626]  0.615234375  0.076171875  0.380859375  0.904296875  0.521484375
##  [631]  0.607421875  0.037109375  0.185546875  0.927734375  0.638671875
##  [636]  0.193359375  0.966796875  0.833984375  0.169921875  0.849609375
##  [641]  0.248046875  0.240234375  0.201171875  0.005859375  0.029296875
##  [646]  0.146484375  0.732421875  0.662109375  0.310546875  0.552734375
##  [651]  0.763671875  0.818359375  0.091796875  0.458984375  0.294921875
##  [656]  0.474609375  0.373046875  0.865234375  0.326171875  0.630859375
##  [661]  0.154296875  0.771484375  0.857421875  0.287109375  0.435546875
##  [666]  0.177734375  0.888671875  0.443359375  0.216796875  0.083984375
##  [671]  0.419921875  0.099609375  0.498046875  0.490234375  0.451171875
##  [676]  0.255859375  0.279296875  0.396484375  0.982421875  0.912109375
##  [681]  0.560546875  0.802734375  0.013671875  0.068359375  0.341796875
##  [686]  0.708984375  0.544921875  0.724609375  0.623046875  0.115234375
##  [691]  0.576171875  0.880859375  0.404296875  0.021484375  0.107421875
##  [696]  0.537109375  0.685546875  0.427734375  0.138671875  0.693359375
##  [701]  0.466796875  0.333984375  0.669921875  0.349609375  0.748046875
##  [706]  0.740234375  0.701171875  0.505859375  0.529296875  0.646484375
##  [711]  0.232421875  0.162109375  0.810546875  0.052734375  0.263671875
##  [716]  0.318359375  0.591796875  0.958984375  0.794921875  0.974609375
##  [721]  0.873046875  0.365234375  0.826171875  0.130859375  0.654296875
##  [726]  0.271484375  0.357421875  0.787109375  0.935546875  0.677734375
##  [731]  0.388671875  0.943359375  0.716796875  0.583984375  0.919921875
##  [736]  0.599609375  0.998046875  0.990234375  0.951171875  0.755859375
##  [741]  0.779296875  0.896484375  0.482421875  0.412109375  0.060546875
##  [746]  0.302734375  0.513671875  0.568359375  0.841796875  0.208984375
##  [751]  0.044921875  0.224609375  0.123046875  0.615234375  0.076171875
##  [756]  0.380859375  0.904296875  0.521484375  0.607421875  0.037109375
##  [761]  0.185546875  0.927734375  0.638671875  0.193359375  0.966796875
##  [766]  0.833984375  0.169921875  0.849609375  0.248046875  0.240234375
##  [771]  0.201171875  0.005859375  0.029296875  0.146484375  0.732421875
##  [776]  0.662109375  0.310546875  0.552734375  0.763671875  0.818359375
##  [781]  0.091796875  0.458984375  0.294921875  0.474609375  0.373046875
##  [786]  0.865234375  0.326171875  0.630859375  0.154296875  0.771484375
##  [791]  0.857421875  0.287109375  0.435546875  0.177734375  0.888671875
##  [796]  0.443359375  0.216796875  0.083984375  0.419921875  0.099609375
##  [801]  0.498046875  0.490234375  0.451171875  0.255859375  0.279296875
##  [806]  0.396484375  0.982421875  0.912109375  0.560546875  0.802734375
##  [811]  0.013671875  0.068359375  0.341796875  0.708984375  0.544921875
##  [816]  0.724609375  0.623046875  0.115234375  0.576171875  0.880859375
##  [821]  0.404296875  0.021484375  0.107421875  0.537109375  0.685546875
##  [826]  0.427734375  0.138671875  0.693359375  0.466796875  0.333984375
##  [831]  0.669921875  0.349609375  0.748046875  0.740234375  0.701171875
##  [836]  0.505859375  0.529296875  0.646484375  0.232421875  0.162109375
##  [841]  0.810546875  0.052734375  0.263671875  0.318359375  0.591796875
##  [846]  0.958984375  0.794921875  0.974609375  0.873046875  0.365234375
##  [851]  0.826171875  0.130859375  0.654296875  0.271484375  0.357421875
##  [856]  0.787109375  0.935546875  0.677734375  0.388671875  0.943359375
##  [861]  0.716796875  0.583984375  0.919921875  0.599609375  0.998046875
##  [866]  0.990234375  0.951171875  0.755859375  0.779296875  0.896484375
##  [871]  0.482421875  0.412109375  0.060546875  0.302734375  0.513671875
##  [876]  0.568359375  0.841796875  0.208984375  0.044921875  0.224609375
##  [881]  0.123046875  0.615234375  0.076171875  0.380859375  0.904296875
##  [886]  0.521484375  0.607421875  0.037109375  0.185546875  0.927734375
##  [891]  0.638671875  0.193359375  0.966796875  0.833984375  0.169921875
##  [896]  0.849609375  0.248046875  0.240234375  0.201171875  0.005859375
##  [901]  0.029296875  0.146484375  0.732421875  0.662109375  0.310546875
##  [906]  0.552734375  0.763671875  0.818359375  0.091796875  0.458984375
##  [911]  0.294921875  0.474609375  0.373046875  0.865234375  0.326171875
##  [916]  0.630859375  0.154296875  0.771484375  0.857421875  0.287109375
##  [921]  0.435546875  0.177734375  0.888671875  0.443359375  0.216796875
##  [926]  0.083984375  0.419921875  0.099609375  0.498046875  0.490234375
##  [931]  0.451171875  0.255859375  0.279296875  0.396484375  0.982421875
##  [936]  0.912109375  0.560546875  0.802734375  0.013671875  0.068359375
##  [941]  0.341796875  0.708984375  0.544921875  0.724609375  0.623046875
##  [946]  0.115234375  0.576171875  0.880859375  0.404296875  0.021484375
##  [951]  0.107421875  0.537109375  0.685546875  0.427734375  0.138671875
##  [956]  0.693359375  0.466796875  0.333984375  0.669921875  0.349609375
##  [961]  0.748046875  0.740234375  0.701171875  0.505859375  0.529296875
##  [966]  0.646484375  0.232421875  0.162109375  0.810546875  0.052734375
##  [971]  0.263671875  0.318359375  0.591796875  0.958984375  0.794921875
##  [976]  0.974609375  0.873046875  0.365234375  0.826171875  0.130859375
##  [981]  0.654296875  0.271484375  0.357421875  0.787109375  0.935546875
##  [986]  0.677734375  0.388671875  0.943359375  0.716796875  0.583984375
##  [991]  0.919921875  0.599609375  0.998046875  0.990234375  0.951171875
##  [996]  0.755859375  0.779296875  0.896484375  0.482421875  0.412109375
dat3<- data.frame(v3)

## generando graficos ...
ggplot(dat3, aes(v3))+geom_histogram(binwidth = 0.1,col="pink",fill="blue",alpha=0.1,) + labs(y="Conteo",x="Valor de datos muestr3/m",title = "Valores generados con operador congrencial multiplicativo")+  theme_bw()

Probar que provenga de una distribucion uniforme [0,1] DECISION DE HIPOTESIS A PROVAR \[H_0: U\sim Uniforme(0,1)\] \[H_1: U\nsim Uniforme(0,1)\]

ks.test(v3,punif,0,1)
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  v3
## D = 0.010859, p-value = 0.9998
## alternative hypothesis: two-sided

De acuerdo a los resultados, p-valor = 0.9998, si alpha es mayor que p-valor se rechaza Ho. Note que p-valor es mayor que alpha Por lo tanto NO RECHAZA. es decir, la muestra simulada proviene de una distribución uniforme ########################################################################################### ##########################################################################################

Prueba de independencia de la muestra generada (autocorrelacion) autocorrelacion (ACF) mide la autocorrelacion de una seriel temporal en diferentes intervalos de tiempo.

prueIND3<- acf(v3, type= "correlation");prueIND3 # Ver si hay independencia en la muestra generada

## 
## Autocorrelations of series 'v3', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000 -0.001 -0.003 -0.005 -0.005 -0.004  0.002  0.002 -0.002  0.001  0.004 
##     11     12     13     14     15     16     17     18     19     20     21 
##  0.004 -0.004 -0.001 -0.003 -0.001 -0.002  0.005 -0.002  0.002 -0.003  0.004 
##     22     23     24     25     26     27     28     29     30 
##  0.004 -0.003 -0.001 -0.004  0.004  0.000 -0.002 -0.003 -0.001

No hay correlación en los datos de la muestra generada de una uniforme Como en el gráfico se ve que las barras salen del rango, Por lo tanto se concluye , que la muesta es independiente. ################################################ Con el estadístico Ljung-Box, se puede probar \(H_{0}\): Muestra aleatoria \(H_{1}\): Muestra no aleatoria

Se rechaza \(H_{0}\) si \(p-valor <\alpha\)

Box.test(v3, lag = 10, type = "Ljung")
## 
##  Box-Ljung test
## 
## data:  v3
## X-squared = 0.098741, df = 10, p-value = 1

De acuerdo a los resultados, p-valor = 1, Note que \(p-valor > \alpha\), llegamos a conclusion ,que No se rechaza \(H0\) Por lo tanto La muestra generada es aleatoria

#######################################################################################3