먼저 할 일들

소개

머신러닝을 수행하기 위해 우리는 caret 프레임워크를 사용한다. 데이터는 mlbench의 Sonar를 사용할 예정이다. 그리고 머신러닝 알고리즘으로 Random Forest를 사용한다. 분류 분석기를 만들어 볼 생각이다.

패키지 설치

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)

라이브러리 불러오기

library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(mlbench)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

데이터

데이터 불러오기

data(Sonar)
str(Sonar)
## 'data.frame':    208 obs. of  61 variables:
##  $ V1   : num  0.02 0.0453 0.0262 0.01 0.0762 0.0286 0.0317 0.0519 0.0223 0.0164 ...
##  $ V2   : num  0.0371 0.0523 0.0582 0.0171 0.0666 0.0453 0.0956 0.0548 0.0375 0.0173 ...
##  $ V3   : num  0.0428 0.0843 0.1099 0.0623 0.0481 ...
##  $ V4   : num  0.0207 0.0689 0.1083 0.0205 0.0394 ...
##  $ V5   : num  0.0954 0.1183 0.0974 0.0205 0.059 ...
##  $ V6   : num  0.0986 0.2583 0.228 0.0368 0.0649 ...
##  $ V7   : num  0.154 0.216 0.243 0.11 0.121 ...
##  $ V8   : num  0.16 0.348 0.377 0.128 0.247 ...
##  $ V9   : num  0.3109 0.3337 0.5598 0.0598 0.3564 ...
##  $ V10  : num  0.211 0.287 0.619 0.126 0.446 ...
##  $ V11  : num  0.1609 0.4918 0.6333 0.0881 0.4152 ...
##  $ V12  : num  0.158 0.655 0.706 0.199 0.395 ...
##  $ V13  : num  0.2238 0.6919 0.5544 0.0184 0.4256 ...
##  $ V14  : num  0.0645 0.7797 0.532 0.2261 0.4135 ...
##  $ V15  : num  0.066 0.746 0.648 0.173 0.453 ...
##  $ V16  : num  0.227 0.944 0.693 0.213 0.533 ...
##  $ V17  : num  0.31 1 0.6759 0.0693 0.7306 ...
##  $ V18  : num  0.3 0.887 0.755 0.228 0.619 ...
##  $ V19  : num  0.508 0.802 0.893 0.406 0.203 ...
##  $ V20  : num  0.48 0.782 0.862 0.397 0.464 ...
##  $ V21  : num  0.578 0.521 0.797 0.274 0.415 ...
##  $ V22  : num  0.507 0.405 0.674 0.369 0.429 ...
##  $ V23  : num  0.433 0.396 0.429 0.556 0.573 ...
##  $ V24  : num  0.555 0.391 0.365 0.485 0.54 ...
##  $ V25  : num  0.671 0.325 0.533 0.314 0.316 ...
##  $ V26  : num  0.641 0.32 0.241 0.533 0.229 ...
##  $ V27  : num  0.71 0.327 0.507 0.526 0.7 ...
##  $ V28  : num  0.808 0.277 0.853 0.252 1 ...
##  $ V29  : num  0.679 0.442 0.604 0.209 0.726 ...
##  $ V30  : num  0.386 0.203 0.851 0.356 0.472 ...
##  $ V31  : num  0.131 0.379 0.851 0.626 0.51 ...
##  $ V32  : num  0.26 0.295 0.504 0.734 0.546 ...
##  $ V33  : num  0.512 0.198 0.186 0.612 0.288 ...
##  $ V34  : num  0.7547 0.2341 0.2709 0.3497 0.0981 ...
##  $ V35  : num  0.854 0.131 0.423 0.395 0.195 ...
##  $ V36  : num  0.851 0.418 0.304 0.301 0.418 ...
##  $ V37  : num  0.669 0.384 0.612 0.541 0.46 ...
##  $ V38  : num  0.61 0.106 0.676 0.881 0.322 ...
##  $ V39  : num  0.494 0.184 0.537 0.986 0.283 ...
##  $ V40  : num  0.274 0.197 0.472 0.917 0.243 ...
##  $ V41  : num  0.051 0.167 0.465 0.612 0.198 ...
##  $ V42  : num  0.2834 0.0583 0.2587 0.5006 0.2444 ...
##  $ V43  : num  0.282 0.14 0.213 0.321 0.185 ...
##  $ V44  : num  0.4256 0.1628 0.2222 0.3202 0.0841 ...
##  $ V45  : num  0.2641 0.0621 0.2111 0.4295 0.0692 ...
##  $ V46  : num  0.1386 0.0203 0.0176 0.3654 0.0528 ...
##  $ V47  : num  0.1051 0.053 0.1348 0.2655 0.0357 ...
##  $ V48  : num  0.1343 0.0742 0.0744 0.1576 0.0085 ...
##  $ V49  : num  0.0383 0.0409 0.013 0.0681 0.023 0.0264 0.0507 0.0285 0.0777 0.0092 ...
##  $ V50  : num  0.0324 0.0061 0.0106 0.0294 0.0046 0.0081 0.0159 0.0178 0.0439 0.0198 ...
##  $ V51  : num  0.0232 0.0125 0.0033 0.0241 0.0156 0.0104 0.0195 0.0052 0.0061 0.0118 ...
##  $ V52  : num  0.0027 0.0084 0.0232 0.0121 0.0031 0.0045 0.0201 0.0081 0.0145 0.009 ...
##  $ V53  : num  0.0065 0.0089 0.0166 0.0036 0.0054 0.0014 0.0248 0.012 0.0128 0.0223 ...
##  $ V54  : num  0.0159 0.0048 0.0095 0.015 0.0105 0.0038 0.0131 0.0045 0.0145 0.0179 ...
##  $ V55  : num  0.0072 0.0094 0.018 0.0085 0.011 0.0013 0.007 0.0121 0.0058 0.0084 ...
##  $ V56  : num  0.0167 0.0191 0.0244 0.0073 0.0015 0.0089 0.0138 0.0097 0.0049 0.0068 ...
##  $ V57  : num  0.018 0.014 0.0316 0.005 0.0072 0.0057 0.0092 0.0085 0.0065 0.0032 ...
##  $ V58  : num  0.0084 0.0049 0.0164 0.0044 0.0048 0.0027 0.0143 0.0047 0.0093 0.0035 ...
##  $ V59  : num  0.009 0.0052 0.0095 0.004 0.0107 0.0051 0.0036 0.0048 0.0059 0.0056 ...
##  $ V60  : num  0.0032 0.0044 0.0078 0.0117 0.0094 0.0062 0.0103 0.0053 0.0022 0.004 ...
##  $ Class: Factor w/ 2 levels "M","R": 2 2 2 2 2 2 2 2 2 2 ...

학습

학습 데이터와 검증 데이터를 구분하기 위해 데이터를 쪼개보자.

inTrain <- caret::createDataPartition(
  y = Sonar$Class,                          # 반응 자료 지정
  p = 0.75,                                 # 훈련용 데이터 비율
  list = FALSE                              #결과의 형식
)

결과는 인덱스로 나온다. 따라서 포함할 것을 포저티브, 제외할 것을 네거티브로 정한다.

training <- Sonar[inTrain,]
testing <- Sonar[-inTrain,]
nrow(training)
## [1] 157
nrow(testing)
## [1] 51

Random Forest

rfFit <- train(
  Class ~ . ,
  data = training,
  method = 'rf',
  preProc = c('center','scale') #전처리 옵션, 중심화 및 척도화 수행
)

결과를 보자.

rfFit
## Random Forest 
## 
## 157 samples
##  60 predictor
##   2 classes: 'M', 'R' 
## 
## Pre-processing: centered (60), scaled (60) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 157, 157, 157, 157, 157, 157, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##    2    0.8116525  0.6205097
##   31    0.7624605  0.5227849
##   60    0.7525106  0.5037965
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.

두번째 시도(mtry=2)가 가장 좋다고 판단했다. 시각화해서 확인해보자.

plot(rfFit)

활용

인공지능에게 새로운 값을 예측하게 해보자.

rfClasses <- predict(rfFit,newdata = testing)

실제 값과 예측 값의 차이를 혼돈행렬(confusion matrix)로 살펴보자.

rfClasses %>%
  confusionMatrix(testing$Class)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  M  R
##          M 25  4
##          R  2 20
##                                           
##                Accuracy : 0.8824          
##                  95% CI : (0.7613, 0.9556)
##     No Information Rate : 0.5294          
##     P-Value [Acc > NIR] : 8.488e-08       
##                                           
##                   Kappa : 0.7628          
##                                           
##  Mcnemar's Test P-Value : 0.6831          
##                                           
##             Sensitivity : 0.9259          
##             Specificity : 0.8333          
##          Pos Pred Value : 0.8621          
##          Neg Pred Value : 0.9091          
##              Prevalence : 0.5294          
##          Detection Rate : 0.4902          
##    Detection Prevalence : 0.5686          
##       Balanced Accuracy : 0.8796          
##                                           
##        'Positive' Class : M               
## 

더 좋은 학습 결과 찾기

mtry를 1에서 10까지의 범위로 확대해서 더 자세히 살펴보자.

rfFit2 <- train(
  Class ~ .,
  data = training,
  method = 'rf',
  tuneGrid = {
    expand.grid(mtry = 1:10)
  },
  verbose = FALSE
)
plot(rfFit2)

summary(rfFit2)
##                 Length Class      Mode     
## call               5   -none-     call     
## type               1   -none-     character
## predicted        157   factor     numeric  
## err.rate        1500   -none-     numeric  
## confusion          6   -none-     numeric  
## votes            314   matrix     numeric  
## oob.times        157   -none-     numeric  
## classes            2   -none-     character
## importance        60   -none-     numeric  
## importanceSD       0   -none-     NULL     
## localImportance    0   -none-     NULL     
## proximity          0   -none-     NULL     
## ntree              1   -none-     numeric  
## mtry               1   -none-     numeric  
## forest            14   -none-     list     
## y                157   factor     numeric  
## test               0   -none-     NULL     
## inbag              0   -none-     NULL     
## xNames            60   -none-     character
## problemType        1   -none-     character
## tuneValue          1   data.frame list     
## obsLevels          2   -none-     character
## param              1   -none-     list
rfFit2
## Random Forest 
## 
## 157 samples
##  60 predictor
##   2 classes: 'M', 'R' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 157, 157, 157, 157, 157, 157, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##    1    0.7948900  0.5915493
##    2    0.7938766  0.5887885
##    3    0.7913668  0.5831011
##    4    0.7798276  0.5613612
##    5    0.7761242  0.5531880
##    6    0.7742547  0.5502895
##    7    0.7636352  0.5293168
##    8    0.7767408  0.5556543
##    9    0.7704425  0.5431659
##   10    0.7592693  0.5198157
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 1.
rfFit2 %>% 
  predict(newdata = testing) %>% 
  confusionMatrix(testing$Class)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  M  R
##          M 26  4
##          R  1 20
##                                           
##                Accuracy : 0.902           
##                  95% CI : (0.7859, 0.9674)
##     No Information Rate : 0.5294          
##     P-Value [Acc > NIR] : 1.209e-08       
##                                           
##                   Kappa : 0.8019          
##                                           
##  Mcnemar's Test P-Value : 0.3711          
##                                           
##             Sensitivity : 0.9630          
##             Specificity : 0.8333          
##          Pos Pred Value : 0.8667          
##          Neg Pred Value : 0.9524          
##              Prevalence : 0.5294          
##          Detection Rate : 0.5098          
##    Detection Prevalence : 0.5882          
##       Balanced Accuracy : 0.8981          
##                                           
##        'Positive' Class : M               
##