Durante un experimento de laboratorio el número promedio de partículas radiactivas que pasan a través de un contador en un milisegundo es 4. ¿Cuál es la probabilidad de que entren 10 partículas al contador en tres milisegundo dado?
k = 10
l = 4 * 3
probabilidad = dpois (k, l)
probabilidad * 100
## [1] 10.48373
Respuesta: La robabilidad de que entren 10 partículas al contador en tres milisegundo dado es del \(10.48373\%\)
Una máquina expendedora de bebidas gaseosas se regula para que sirva un promedio de 200 mililitros por vaso. Si la cantidad de bebida se distribuye normalmente con una desviación estándar igual a 15 mililitros,¿qué fracción de los vasos contendrá más de 224 mililitros?
mu=200
sigma=15
x=224
a= (x - mu) / sigma
probabilidad = 1 - pnorm(a)
probabilidad * 100
## [1] 5.479929
Respuesta: La fracción de los vasos que contendrá más de 224 mililitros es del 5.48%
Un destacado médico afirma que el 70% de las personas con cáncer de pulmón son fumadores empedernidos. Si su aseveración es correcta, calcule la probabilidad de que de 10 de estos pacientes, que ingresaron recientemente a un hospital, menos de la mitad sean fumadores empedernidos.
p=0.7
n=10
x=4
pbinom(x,n,p)*100
## [1] 4.734899
Respuesta: La probabilidad de que menos de la mitad de los pacientes sean fumadores empedernidos es del \(4.734899\%\)
En una muestra aleatoria de 1000 viviendas en cierta ciudad se encuentra que 228 utilizan petróleo como combustible para la calefacción. Calcule intervalos de confianza del 99% para la proporción de viviendas en esta ciudad que utilizan petróleo con el fin mencionado.
alpha=0.01
n=1000
x=228
p=x/n
c=qnorm(1-alpha/2)
SE=sqrt(p*(1-p)/n)
l_inf=p - c*SE
l_sup=p + c*SE
l_inf;l_sup
## [1] 0.1938262
## [1] 0.2621738
Respuesta: Los intervalos de confianza del 99% es 0.19 y 0.26
Una cadena grande de tiendas al detalle le compra cierto tipo de dispositivo electrónico a un fabricante, el cual le indica que la tasa de dispositivos defectuosos es de 5%. El inspector de la cadena elige 15 artículos al azar de un cargamento.
p=0.05
n=15
x=2
pbinom(x,n,p)*100
## [1] 96.37998
Respuesta: la probabilidad de encontrarse máximo 2 artículos defectuosos es del \(96.37998\%\)
p=0.05
n=15
x=3
dbinom(x,n,p)*100
## [1] 3.073298
Respuesta: la probabilidad de encontrarse exactamente 3 es del \(3.073298\%\)
Un estudio de un inventario determina que, en promedio, el número de veces al día que se solicita un artículo específico en un almacén es 5. ¿Cuál es la probabilidad de que en un día determinado este artículo se pida más de 5 veces?
media = 5
x = 5
prob = ppois(x,media)
(1-prob)*100
## [1] 38.40393
Respuesta: La probabilidad es del \(38.40393\%\)
Una máquina produce piezas metálicas de forma cilíndrica. Se toma una muestra de las piezas y los diámetros son 1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01 y 1.03 centímetros. Calcule un intervalo de confianza del 99% para la media del diámetro de las piezas que se manufacturan con esta máquina. Suponga una distribución aproximadamente normal.
alpha=0.01
n = 9
a=c(1.01,0.97,1.03,1.04,0.99,0.98,0.99,1.01,1.03)
desviacion=sd(a)
med_muestral=median(a)
critico=qt((1 -alpha/2),n-1)
lim_inf=med_muestral - critico * desviacion / sqrt(n)
lim_sup= med_muestral + critico * desviacion / sqrt(n)
lim_inf; lim_sup
## [1] 0.98254
## [1] 1.03746
Respuesta: El intervalo de confianza del 99% es 0.98254 y 1.03746