# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AAPL", "BA", "DIS", "NKE")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.30,
0.25,
0.20,
0.15)
w_tbl <- tibble(symbols, w)
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "quarters")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 20 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.0277
## 2 2013-06-28 0.0475
## 3 2013-09-30 0.117
## 4 2013-12-31 0.138
## 5 2014-03-31 -0.0306
## 6 2014-06-30 0.0857
## 7 2014-09-30 0.0565
## 8 2014-12-31 0.0607
## 9 2015-03-31 0.103
## 10 2015-06-30 0.0140
## 11 2015-09-30 -0.0511
## 12 2015-12-31 0.0232
## 13 2016-03-31 -0.0316
## 14 2016-06-30 -0.0485
## 15 2016-09-30 0.0419
## 16 2016-12-30 0.0723
## 17 2017-03-31 0.131
## 18 2017-06-30 0.0279
## 19 2017-09-29 0.0534
## 20 2017-12-29 0.115
# write_rds(portfolio_returns_rebalanced_monthly_tbl,
# "00_data/Ch03_portfolio_returns_rebalanced_monthly_tbl.rds")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(x = date, y = returns)) +
geom_point(color = "cornflower blue") +
# Formatting
scale_x_date(breaks = scales::breaks_pretty(n = 6)) +
labs(title = "Portfolio Returns Scatter",
y = "quarterly return")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.005) +
labs(title = "Portfolio Returns Distribution",
y = "count",
x = "returns")
portfolio_returns_rebalanced_monthly_tbl %>%
ggplot(aes(returns)) +
geom_histogram(fill = "cornflower blue",
binwidth = 0.01) +
geom_density(aes(returns)) +
labs(title = "Portfolio Histogram and Density",
y = "distribution",
x = "quarterly returns")
What return should you expect from the portfolio in a typical quarter?
The data shows that the longer the stocks are held the better the benefit. the stocks are very volatile but if held and sold proprerly they have potential.