Series de Tiempo
1. Instalar libreria
## Warning: package 'forecast' was built under R version 4.1.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
2. Ejemplo Serie de Tiempo
produccion <- c(50,53,55,57,53,60)
serie_de_tiempo <- ts(data=produccion, start = c(2020,1), frequency = 4)
serie_de_tiempo
## Qtr1 Qtr2 Qtr3 Qtr4
## 2020 50 53 55 57
## 2021 53 60
3. Crear el modelo ARIMA
ARIMA: Modelo Autoregresivo Integrado de Promedio Movil
modelo <- auto.arima(serie_de_tiempo, D = 1)
modelo
## Series: serie_de_tiempo
## ARIMA(0,0,0)(0,1,0)[4] with drift
##
## Coefficients:
## drift
## 1.2500
## s.e. 0.3536
##
## sigma^2 = 8.01: log likelihood = -4.22
## AIC=12.45 AICc=0.45 BIC=9.83
## Series: serie_de_tiempo
## ARIMA(0,0,0)(0,1,0)[4] with drift
##
## Coefficients:
## drift
## 1.2500
## s.e. 0.3536
##
## sigma^2 = 8.01: log likelihood = -4.22
## AIC=12.45 AICc=0.45 BIC=9.83
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.03374998 1.155441 0.7004166 -0.01050981 1.247352 0.1400833
## ACF1
## Training set -0.5041734
4. Realizar el Pronostico
pronostico <- forecast(modelo, level = c(95), h = 5)
pronostico
## Point Forecast Lo 95 Hi 95
## 2021 Q3 60 54.45283 65.54717
## 2021 Q4 62 56.45283 67.54717
## 2022 Q1 58 52.45283 63.54717
## 2022 Q2 65 59.45283 70.54717
## 2022 Q3 65 57.15512 72.84488

LS0tDQp0aXRsZTogIlNlcmllcyBkZSB0aWVtcG8iDQphdXRob3I6ICJKZXN1cyBNZXN0YSBBMDE1NjcwMTkiDQpkYXRlOiAiMjAyMy0xMC0wMyINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiAieWV0aSINCiAgICBoaWdobGlnaHQ6ICJtb25vY2hyb21lIg0KLS0tDQoNCiMgU2VyaWVzIGRlIFRpZW1wbw0KIyMjIDEuIEluc3RhbGFyIGxpYnJlcmlhDQpgYGB7cn0NCmxpYnJhcnkoZm9yZWNhc3QpDQpgYGANCg0KIyMjIDIuIEVqZW1wbG8gU2VyaWUgZGUgVGllbXBvDQpgYGB7cn0NCnByb2R1Y2Npb24gPC0gYyg1MCw1Myw1NSw1Nyw1Myw2MCkNCnNlcmllX2RlX3RpZW1wbyA8LSB0cyhkYXRhPXByb2R1Y2Npb24sIHN0YXJ0ID0gYygyMDIwLDEpLCBmcmVxdWVuY3kgPSA0KQ0Kc2VyaWVfZGVfdGllbXBvDQpgYGANCiMjIyAzLiBDcmVhciBlbCBtb2RlbG8gQVJJTUENCkFSSU1BOiBNb2RlbG8gQXV0b3JlZ3Jlc2l2byBJbnRlZ3JhZG8gZGUgUHJvbWVkaW8gTW92aWwNCmBgYHtyfQ0KbW9kZWxvIDwtIGF1dG8uYXJpbWEoc2VyaWVfZGVfdGllbXBvLCBEID0gMSkNCm1vZGVsbw0Kc3VtbWFyeShtb2RlbG8pDQpgYGANCiMjIyA0LiBSZWFsaXphciBlbCBQcm9ub3N0aWNvDQpgYGB7cn0NCnByb25vc3RpY28gPC0gZm9yZWNhc3QobW9kZWxvLCBsZXZlbCA9IGMoOTUpLCBoID0gNSkNCnByb25vc3RpY28NCnBsb3QocHJvbm9zdGljbykNCmBgYA0KDQo=