##1. Importar la base de datos

df <-  read.csv("C:\\Users\\DELL\\OneDrive\\Escritorio\\RStudio\\rentadebicis.csv")

##2. Entender la base de datos

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

##3. Generar regresión lineal

regresion <- lm(rentas_totales ~hora +dia + mes + año + estacion + dia_de_la_semana + sensacion_termica + humedad + velocidad_del_viento + asueto, data= df)

##4. Ajustar el modelo

regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + velocidad_del_viento, data= df)

##5. Construir el modelo predictivo

datos <- data.frame(hora= 11.54, mes=1:12, año=2013, sensacion_termica=22.66, humedad=61.89,  velocidad_del_viento=12.799)
predict(regresion,datos)
##        1        2        3        4        5        6        7        8 
## 267.4283 275.0020 282.5757 290.1494 297.7231 305.2968 312.8705 320.4443 
##        9       10       11       12 
## 328.0180 335.5917 343.1654 350.7391

#Importar la base de datos

bd <- read.csv("C:\\Users\\DELL\\OneDrive\\Escritorio\\RStudio\\HousePriceData.csv")

#Entender la base de datos

summary (bd)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
count(bd,Parking, sort=TRUE)
##        Parking   n
## 1         Open 355
## 2 Not Provided 225
## 3      Covered 184
## 4   No Parking 141
count(bd,City_Category, sort=TRUE)
##   City_Category   n
## 1         CAT B 351
## 2         CAT A 320
## 3         CAT C 234

Observaciones 1.El precio de la casa está con datos atípicos 2.Rainfall tiene valores negativos 3.Carpet tiene 7 NA

##3. Limpiar la base de datos

#¿Cuántos NA tengo?
sapply(bd, function(x)sum(is.na(x)))
##   Observation     Dist_Taxi   Dist_Market Dist_Hospital        Carpet 
##             0             0             0             0             7 
##       Builtup       Parking City_Category      Rainfall   House_Price 
##             0             0             0             0             0
bd <- na.omit(bd)
bd <- bd[bd$House_Price<12000000,]
bd <-bd[bd$Rainfall>=0,]
boxplot(bd$House_Price, horizontal=TRUE)

##4.Generar regresión lineal

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + Parking + City_Category + Rainfall, data=bd)
summary (regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572009  -800792   -65720   761534  4401585 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.599e+06  3.672e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.009e+01  2.682e+01   1.122   0.2622    
## Dist_Market          1.285e+01  2.081e+01   0.618   0.5370    
## Dist_Hospital        4.864e+01  3.008e+01   1.617   0.1062    
## Carpet              -7.997e+02  3.476e+03  -0.230   0.8181    
## Builtup              1.339e+03  2.901e+03   0.462   0.6444    
## ParkingNo Parking   -6.040e+05  1.389e+05  -4.348 1.53e-05 ***
## ParkingNot Provided -4.924e+05  1.235e+05  -3.988 7.22e-05 ***
## ParkingOpen         -2.632e+05  1.126e+05  -2.338   0.0196 *  
## City_CategoryCAT B  -1.877e+06  9.598e+04 -19.554  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.300  < 2e-16 ***
## Rainfall            -1.175e+02  1.550e+02  -0.758   0.4484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1222000 on 884 degrees of freedom
## Multiple R-squared:  0.5007, Adjusted R-squared:  0.4945 
## F-statistic: 80.58 on 11 and 884 DF,  p-value: < 2.2e-16

##5. Ajustar el modelo

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + Parking + City_Category + Rainfall, data=bd)
summary (regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572009  -800792   -65720   761534  4401585 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.599e+06  3.672e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.009e+01  2.682e+01   1.122   0.2622    
## Dist_Market          1.285e+01  2.081e+01   0.618   0.5370    
## Dist_Hospital        4.864e+01  3.008e+01   1.617   0.1062    
## Carpet              -7.997e+02  3.476e+03  -0.230   0.8181    
## Builtup              1.339e+03  2.901e+03   0.462   0.6444    
## ParkingNo Parking   -6.040e+05  1.389e+05  -4.348 1.53e-05 ***
## ParkingNot Provided -4.924e+05  1.235e+05  -3.988 7.22e-05 ***
## ParkingOpen         -2.632e+05  1.126e+05  -2.338   0.0196 *  
## City_CategoryCAT B  -1.877e+06  9.598e+04 -19.554  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.300  < 2e-16 ***
## Rainfall            -1.175e+02  1.550e+02  -0.758   0.4484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1222000 on 884 degrees of freedom
## Multiple R-squared:  0.5007, Adjusted R-squared:  0.4945 
## F-statistic: 80.58 on 11 and 884 DF,  p-value: < 2.2e-16

##6. Construir un modelo predictivo

datos <- data.frame(Dist_Taxi=8278, Dist_Market= 16251, Dist_Hospital= 13857, Carpet= 1455, Builtup= 1764, Parking="Covered", City_Category="CAT A", Rainfall=390)
predict(regresion,datos)
##       1 
## 7883860
LS0tDQp0aXRsZTogIlJlZ3Jlc2lvbiINCmF1dGhvcjogIkp1YW4gQWxjb2NlciINCmRhdGU6ICIyMDIzLTA5LTIyIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgdGhlbWU6ICJib290c3RyYXAiICANCiAgaGlnaGxpZ2h0OiAiZXNwcmVzc28iDQotLS0NCg0KIyMxLiBJbXBvcnRhciBsYSBiYXNlICBkZSBkYXRvcw0KYGBge3J9DQpkZiA8LSAgcmVhZC5jc3YoIkM6XFxVc2Vyc1xcREVMTFxcT25lRHJpdmVcXEVzY3JpdG9yaW9cXFJTdHVkaW9cXHJlbnRhZGViaWNpcy5jc3YiKQ0KYGBgDQoNCiMjMi4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcw0KYGBge3J9DQpzdW1tYXJ5KGRmKQ0KYGBgDQoNCiMjMy4gR2VuZXJhciByZWdyZXNpw7NuIGxpbmVhbA0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0ocmVudGFzX3RvdGFsZXMgfmhvcmEgK2RpYSArIG1lcyArIGHDsW8gKyBlc3RhY2lvbiArIGRpYV9kZV9sYV9zZW1hbmEgKyBzZW5zYWNpb25fdGVybWljYSArIGh1bWVkYWQgKyB2ZWxvY2lkYWRfZGVsX3ZpZW50byArIGFzdWV0bywgZGF0YT0gZGYpDQpgYGANCg0KIyM0LiBBanVzdGFyIGVsIG1vZGVsbyANCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKHJlbnRhc190b3RhbGVzIH4gaG9yYSArIG1lcyArIGHDsW8gKyBzZW5zYWNpb25fdGVybWljYSArIGh1bWVkYWQgKyB2ZWxvY2lkYWRfZGVsX3ZpZW50bywgZGF0YT0gZGYpDQpgYGANCg0KIyM1LiBDb25zdHJ1aXIgZWwgbW9kZWxvIHByZWRpY3Rpdm8NCmBgYHtyfQ0KZGF0b3MgPC0gZGF0YS5mcmFtZShob3JhPSAxMS41NCwgbWVzPTE6MTIsIGHDsW89MjAxMywgc2Vuc2FjaW9uX3Rlcm1pY2E9MjIuNjYsIGh1bWVkYWQ9NjEuODksICB2ZWxvY2lkYWRfZGVsX3ZpZW50bz0xMi43OTkpDQpwcmVkaWN0KHJlZ3Jlc2lvbixkYXRvcykNCmBgYA0KDQoNCiNJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zDQpgYGB7cn0NCmJkIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXERFTExcXE9uZURyaXZlXFxFc2NyaXRvcmlvXFxSU3R1ZGlvXFxIb3VzZVByaWNlRGF0YS5jc3YiKQ0KYGBgDQoNCiNFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zDQpgYGB7cn0NCnN1bW1hcnkgKGJkKQ0KbGlicmFyeShkcGx5cikNCmNvdW50KGJkLFBhcmtpbmcsIHNvcnQ9VFJVRSkNCmNvdW50KGJkLENpdHlfQ2F0ZWdvcnksIHNvcnQ9VFJVRSkNCmBgYA0KDQpPYnNlcnZhY2lvbmVzDQoxLkVsIHByZWNpbyBkZSBsYSBjYXNhIGVzdMOhIGNvbiBkYXRvcyBhdMOtcGljb3MNCjIuUmFpbmZhbGwgdGllbmUgdmFsb3JlcyBuZWdhdGl2b3MNCjMuQ2FycGV0IHRpZW5lIDcgTkENCg0KIyMzLiBMaW1waWFyIGxhIGJhc2UgZGUgZGF0b3MNCmBgYHtyfQ0KI8K/Q3XDoW50b3MgTkEgdGVuZ28/DQpzYXBwbHkoYmQsIGZ1bmN0aW9uKHgpc3VtKGlzLm5hKHgpKSkNCmJkIDwtIG5hLm9taXQoYmQpDQpiZCA8LSBiZFtiZCRIb3VzZV9QcmljZTwxMjAwMDAwMCxdDQpiZCA8LWJkW2JkJFJhaW5mYWxsPj0wLF0NCmJveHBsb3QoYmQkSG91c2VfUHJpY2UsIGhvcml6b250YWw9VFJVRSkNCmBgYA0KDQojIzQuR2VuZXJhciByZWdyZXNpw7NuIGxpbmVhbCANCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKEhvdXNlX1ByaWNlIH4gRGlzdF9UYXhpICsgRGlzdF9NYXJrZXQgKyBEaXN0X0hvc3BpdGFsICsgQ2FycGV0ICsgQnVpbHR1cCArIFBhcmtpbmcgKyBDaXR5X0NhdGVnb3J5ICsgUmFpbmZhbGwsIGRhdGE9YmQpDQpzdW1tYXJ5IChyZWdyZXNpb24pDQpgYGANCg0KIyM1LiBBanVzdGFyIGVsIG1vZGVsbw0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0oSG91c2VfUHJpY2UgfiBEaXN0X1RheGkgKyBEaXN0X01hcmtldCArIERpc3RfSG9zcGl0YWwgKyBDYXJwZXQgKyBCdWlsdHVwICsgUGFya2luZyArIENpdHlfQ2F0ZWdvcnkgKyBSYWluZmFsbCwgZGF0YT1iZCkNCnN1bW1hcnkgKHJlZ3Jlc2lvbikNCmBgYA0KDQojIzYuIENvbnN0cnVpciB1biBtb2RlbG8gcHJlZGljdGl2bw0KYGBge3J9DQpkYXRvcyA8LSBkYXRhLmZyYW1lKERpc3RfVGF4aT04Mjc4LCBEaXN0X01hcmtldD0gMTYyNTEsIERpc3RfSG9zcGl0YWw9IDEzODU3LCBDYXJwZXQ9IDE0NTUsIEJ1aWx0dXA9IDE3NjQsIFBhcmtpbmc9IkNvdmVyZWQiLCBDaXR5X0NhdGVnb3J5PSJDQVQgQSIsIFJhaW5mYWxsPTM5MCkNCnByZWRpY3QocmVncmVzaW9uLGRhdG9zKQ0KYGBgDQoNCg==