knitr::opts_chunk$set(eval = TRUE, message = FALSE, warning = FALSE)
library(tidyverse)
library(openintro)
library(infer)
Exercise 1
Exercise 2
Would you expect another student’s sample proportion to be identical
to yours? Would you expect it to be similar? Why or why not?
I would expect another student’s sample proportion to be similar but
not identical to mine. They likely chose a different seed, so they would
have a different sample and thus different proportion. I would expect it
to be similar because the samples were pulled from the same
population.
Exercise 3
In the interpretation above, we used the phrase “95% confident”.
What does “95% confidence” mean?
95% confidence means were are 95% confident that the population
proportion is within the interval we calculated for the sample.
Exercise 4
Exercise 5
Each student should have gotten a slightly different confidence
interval. What proportion of those intervals would you expect to capture
the true population mean? Why?
I would expect about 95% of the intervals to capture the true
population mean. Since the interval is a 95% confidence interval, the
probability that the population mean is within the interval is 95%. This
also means that 95% of the time, the true mean will fall within the
interval.
Exercise 6
Given a sample size of 60, 1000 bootstrap samples for each interval,
and 50 confidence intervals constructed (the default values for the
above app), what proportion of your confidence intervals include the
true population proportion? Is this proportion exactly equal to the
confidence level? If not, explain why. Make sure to include your plot in
your answer.
When I ran the simulation, 56 out of 60 confidence intervals included
the true population proportion. This proportion is 0.93. This is not
exactly equal to the confidence level. This could have happened because
a 95% confidence interval means that about 95% of the time, the true
proportion will be within the interval. It is not always 95% of the
time. Sometimes, 94% or 96% of the intervals contain the true mean. It
is an average percentage and not exact.
I copy and pasted the plot at this url since I’m not sure how to
recreate it in R: https://github.com/juliaDataScience-22/cuny-fall-23/blob/stats-and-probability/image-lab-5b.png
Exercise 7
Choose a different confidence level than 95%. Would you expect a
confidence interval at this level to me wider or narrower than the
confidence interval you calculated at the 95% confidence level? Explain
your reasoning.
I chose a confidence level of 90%. I would expect this to be narrower
than the confidence interval of 95%. It is less likely that the mean
will be in the range, so it is probably narrower (it will have fewer
values, so the probability of it including the mean will be less).
Exercise 8
Using code from the infer package and data from the
one sample you have (samp), find a confidence interval for the
proportion of US Adults who think climate change is affecting their
local community with a confidence level of your choosing (other than
95%) and interpret it.
This confidence interval is a 90% confidence interval. This means I
am 90% confident that the mean of 62%, which is the true population
proportion, falls within the range of 0.5167 to 0.7167. The mean falls
within this range, which makes sense because it is more likely that the
mean falls within the range than not. If I were to create a confidence
interval 100 times (without setting the seed), about 90 of them would
have a range that included 0.62, and about 10 of them would not include
0.62.
set.seed(1234)
samp |>
specify(response = climate_change_affects, success = "Yes") |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "prop") |>
get_ci(level = 0.90)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.517 0.717
Exercise 9
Using the app, calculate 50 confidence intervals at the confidence
level you chose in the previous question, and plot all intervals on one
plot, and calculate the proportion of intervals that include the true
population proportion. How does this percentage compare to the
confidence level selected for the intervals?
I chose a 90% confidence interval. 7 of the intervals did not include
the mean, and the other 53 intervals did. 53 / 60 = 0.8833. This means
88.33% of the intervals included the mean. That number is very close to
90 as expected.
Exercise 10
Lastly, try one more (different) confidence level. First, state how
you expect the width of this interval to compare to previous ones you
calculated. Then, calculate the bounds of the interval using the
infer package and data from samp and interpret it.
Finally, use the app to generate many intervals and calculate the
proportion of intervals that are capture the true population
proportion.
I will try a confidence level of 50%. I expect the width of this
interval to be much smaller than the previous ones I calculated. The
interval is seen below. The true population proportion of 0.62 did fall
within the range, which was a bit surprising considering I had a 50-50
chance of it happening. It was very close to the bounds though, so that
was expected.
When I used the app, the proportion of intervals that captured the
true population proportion was 0.45.
set.seed(1234)
samp |>
specify(response = climate_change_affects, success = "Yes") |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "prop") |>
get_ci(level = 0.50)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.579 0.667
Exercise 12
Finally, given a sample size (say, 60), how does the width of the
interval change as you increase the number of bootstrap samples.
Hint: Does changing the number of bootstrap samples
affect the standard error?
The width of the intervals seemed to decrease with more bootstrap
samples. Again, it was challenging to know for sure because the widths
of the confidence intervals were different across one graph.
LS0tDQp0aXRsZTogIkxhYiA1YjogQ29uZmlkZW5jZSBJbnRlcnZhbHMiDQphdXRob3I6ICJKdWxpYSBGZXJyaXMiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZXZhbCA9IFRSVUUsIG1lc3NhZ2UgPSBGQUxTRSwgd2FybmluZyA9IEZBTFNFKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmxpYnJhcnkoaW5mZXIpDQpgYGANCg0KIyMgRXhlcmNpc2UgMQ0KDQojIyMgV2hhdCBwZXJjZW50IG9mIHRoZSBhZHVsdHMgaW4geW91ciBzYW1wbGUgdGhpbmsgY2xpbWF0ZSBjaGFuZ2UgYWZmZWN0cyB0aGVpciBsb2NhbCBjb21tdW5pdHk/ICoqSGludDoqKiBKdXN0IGxpa2Ugd2UgZGlkIHdpdGggdGhlIHBvcHVsYXRpb24sIHdlIGNhbiBjYWxjdWxhdGUgdGhlIHByb3BvcnRpb24gb2YgdGhvc2UgKippbiB0aGlzIHNhbXBsZSoqIHdobyB0aGluayBjbGltYXRlIGNoYW5nZSBhZmZlY3RzIHRoZWlyIGxvY2FsIGNvbW11bml0eS4NCg0KQWJvdXQgNjEuNyUgb2YgdGhlIGFkdWx0cyBpbiB0aGUgc2FtcGxlIHRoaW5rIGNsaW1hdGUgY2hhbmdlIGFmZmVjdHMgdGhlaXIgbG9jYWwgY29tbXVuaXR5Lg0KDQpgYGB7ciBleGVyY2lzZS0xfQ0KDQp1c19hZHVsdHMgPC0gdGliYmxlKA0KICBjbGltYXRlX2NoYW5nZV9hZmZlY3RzID0gYyhyZXAoIlllcyIsIDYyMDAwKSwgcmVwKCJObyIsIDM4MDAwKSkNCikNCg0Kc2V0LnNlZWQoMTIzNCkNCg0KbiA8LSA2MA0Kc2FtcCA8LSB1c19hZHVsdHMgJT4lDQogIHNhbXBsZV9uKHNpemUgPSBuKQ0KbmV3IDwtIHNhbXAgfD4gZmlsdGVyKGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMgPT0gIlllcyIpDQpsZW5ndGgobmV3JGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMpIC8gNjAgKiAxMDANCmBgYA0KDQoNCiMjIEV4ZXJjaXNlIDINCg0KIyMjIFdvdWxkIHlvdSBleHBlY3QgYW5vdGhlciBzdHVkZW50J3Mgc2FtcGxlIHByb3BvcnRpb24gdG8gYmUgaWRlbnRpY2FsIHRvIHlvdXJzPyBXb3VsZCB5b3UgZXhwZWN0IGl0IHRvIGJlIHNpbWlsYXI/IFdoeSBvciB3aHkgbm90Pw0KDQpJIHdvdWxkIGV4cGVjdCBhbm90aGVyIHN0dWRlbnQncyBzYW1wbGUgcHJvcG9ydGlvbiB0byBiZSBzaW1pbGFyIGJ1dCBub3QgaWRlbnRpY2FsIHRvIG1pbmUuIFRoZXkgbGlrZWx5IGNob3NlIGEgZGlmZmVyZW50IHNlZWQsIHNvIHRoZXkgd291bGQgaGF2ZSBhIGRpZmZlcmVudCBzYW1wbGUgYW5kIHRodXMgZGlmZmVyZW50IHByb3BvcnRpb24uIEkgd291bGQgZXhwZWN0IGl0IHRvIGJlIHNpbWlsYXIgYmVjYXVzZSB0aGUgc2FtcGxlcyB3ZXJlIHB1bGxlZCBmcm9tIHRoZSBzYW1lIHBvcHVsYXRpb24uDQoNCg0KDQojIyBFeGVyY2lzZSAzDQoNCiMjIyBJbiB0aGUgaW50ZXJwcmV0YXRpb24gYWJvdmUsIHdlIHVzZWQgdGhlIHBocmFzZSAiOTUlIGNvbmZpZGVudCIuIFdoYXQgZG9lcyAiOTUlIGNvbmZpZGVuY2UiIG1lYW4/DQoNCjk1JSBjb25maWRlbmNlIG1lYW5zIHdlcmUgYXJlIDk1JSBjb25maWRlbnQgdGhhdCB0aGUgcG9wdWxhdGlvbiBwcm9wb3J0aW9uIGlzIHdpdGhpbiB0aGUgaW50ZXJ2YWwgd2UgY2FsY3VsYXRlZCBmb3IgdGhlIHNhbXBsZS4NCg0KDQojIyBFeGVyY2lzZSA0DQoNCiMjIyBEb2VzIHlvdXIgY29uZmlkZW5jZSBpbnRlcnZhbCBjYXB0dXJlIHRoZSB0cnVlIHBvcHVsYXRpb24gcHJvcG9ydGlvbiBvZiBVUyBhZHVsdHMgd2hvIHRoaW5rIGNsaW1hdGUgY2hhbmdlIGFmZmVjdHMgdGhlaXIgbG9jYWwgY29tbXVuaXR5PyBJZiB5b3UgYXJlIHdvcmtpbmcgb24gdGhpcyBsYWIgaW4gYSBjbGFzc3Jvb20sIGRvZXMgeW91ciBuZWlnaGJvcidzIGludGVydmFsIGNhcHR1cmUgdGhpcyB2YWx1ZT8gDQoNClllcywgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgKGNvcGllZCBiZWxvdykgY2FwdHVyZXMgdGhlIHRydWUgcG9wdWxhdGlvbiBwcm9wb3J0aW9uIG9mIGFkdWx0cyB3aG8gdGhpbmsgY2xpbWF0ZSBjaGFuZ2UgYWZmZWN0cyB0aGVpciBsb2NhbCBjb21tdW5pdHkuIFRoaXMgaXMgYmVjYXVzZSB0aGUgYWN0dWFsIHByb3BvcnRpb24gaXMgNjIlLCBhbmQgdGhhdCB2YWx1ZSBmYWxscyB3aXRoaW4gdGhlIHJhbmdlIG9mIDQ5Ljk2JSB0byA3NS4wMCUuDQoNCklmIEkgd2VyZSB0byByZXBlYXQgdGhpcyB3aXRoIGRpZmZlcmVudCBzZWVkcywgSSBhc3N1bWUgdGhlIGludGVydmFscyB3b3VsZCBjb250aW51ZSB0byBjYXB0dXJlIHRoaXMgdmFsdWUgYWJvdXQgOTUlIG9mIHRoZSB0aW1lLg0KDQpgYGB7ciBleGVyY2lzZS00fQ0Kc2V0LnNlZWQoMTIzNCkNCnNhbXAgfD4NCiAgICAgc3BlY2lmeShyZXNwb25zZSA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHN1Y2Nlc3MgPSAiWWVzIikgfD4NCiAgICAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgfD4NCiAgICAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpIHw+DQogICAgIGdldF9jaShsZXZlbCA9IDAuOTUpDQpgYGANCg0KDQojIyBFeGVyY2lzZSA1DQoNCiMjIyBFYWNoIHN0dWRlbnQgc2hvdWxkIGhhdmUgZ290dGVuIGEgc2xpZ2h0bHkgZGlmZmVyZW50IGNvbmZpZGVuY2UgaW50ZXJ2YWwuIFdoYXQgcHJvcG9ydGlvbiBvZiB0aG9zZSBpbnRlcnZhbHMgd291bGQgeW91IGV4cGVjdCB0byBjYXB0dXJlIHRoZSB0cnVlIHBvcHVsYXRpb24gbWVhbj8gV2h5Pw0KDQpJIHdvdWxkIGV4cGVjdCBhYm91dCA5NSUgb2YgdGhlIGludGVydmFscyB0byBjYXB0dXJlIHRoZSB0cnVlIHBvcHVsYXRpb24gbWVhbi4gU2luY2UgdGhlIGludGVydmFsIGlzIGEgOTUlIGNvbmZpZGVuY2UgaW50ZXJ2YWwsIHRoZSBwcm9iYWJpbGl0eSB0aGF0IHRoZSBwb3B1bGF0aW9uIG1lYW4gaXMgd2l0aGluIHRoZSBpbnRlcnZhbCBpcyA5NSUuIFRoaXMgYWxzbyBtZWFucyB0aGF0IDk1JSBvZiB0aGUgdGltZSwgdGhlIHRydWUgbWVhbiB3aWxsIGZhbGwgd2l0aGluIHRoZSBpbnRlcnZhbC4NCg0KDQoNCiMjIEV4ZXJjaXNlIDYNCg0KIyMjIEdpdmVuIGEgc2FtcGxlIHNpemUgb2YgNjAsIDEwMDAgYm9vdHN0cmFwIHNhbXBsZXMgZm9yIGVhY2ggaW50ZXJ2YWwsIGFuZCA1MCBjb25maWRlbmNlIGludGVydmFscyBjb25zdHJ1Y3RlZCAodGhlIGRlZmF1bHQgdmFsdWVzIGZvciB0aGUgYWJvdmUgYXBwKSwgd2hhdCBwcm9wb3J0aW9uIG9mIHlvdXIgY29uZmlkZW5jZSBpbnRlcnZhbHMgaW5jbHVkZSB0aGUgdHJ1ZSBwb3B1bGF0aW9uIHByb3BvcnRpb24/IElzIHRoaXMgcHJvcG9ydGlvbiBleGFjdGx5IGVxdWFsIHRvIHRoZSBjb25maWRlbmNlIGxldmVsPyBJZiBub3QsIGV4cGxhaW4gd2h5LiBNYWtlIHN1cmUgdG8gaW5jbHVkZSB5b3VyIHBsb3QgaW4geW91ciBhbnN3ZXIuDQoNCldoZW4gSSByYW4gdGhlIHNpbXVsYXRpb24sIDU2IG91dCBvZiA2MCBjb25maWRlbmNlIGludGVydmFscyBpbmNsdWRlZCB0aGUgdHJ1ZSBwb3B1bGF0aW9uIHByb3BvcnRpb24uIFRoaXMgcHJvcG9ydGlvbiBpcyAwLjkzLiBUaGlzIGlzIG5vdCBleGFjdGx5IGVxdWFsIHRvIHRoZSBjb25maWRlbmNlIGxldmVsLiBUaGlzIGNvdWxkIGhhdmUgaGFwcGVuZWQgYmVjYXVzZSBhIDk1JSBjb25maWRlbmNlIGludGVydmFsIG1lYW5zIHRoYXQgYWJvdXQgOTUlIG9mIHRoZSB0aW1lLCB0aGUgdHJ1ZSBwcm9wb3J0aW9uIHdpbGwgYmUgd2l0aGluIHRoZSBpbnRlcnZhbC4gSXQgaXMgbm90IGFsd2F5cyA5NSUgb2YgdGhlIHRpbWUuIFNvbWV0aW1lcywgOTQlIG9yIDk2JSBvZiB0aGUgaW50ZXJ2YWxzIGNvbnRhaW4gdGhlIHRydWUgbWVhbi4gSXQgaXMgYW4gYXZlcmFnZSBwZXJjZW50YWdlIGFuZCBub3QgZXhhY3QuDQoNCkkgY29weSBhbmQgcGFzdGVkIHRoZSBwbG90IGF0IHRoaXMgdXJsIHNpbmNlIEknbSBub3Qgc3VyZSBob3cgdG8gcmVjcmVhdGUgaXQgaW4gUjogaHR0cHM6Ly9naXRodWIuY29tL2p1bGlhRGF0YVNjaWVuY2UtMjIvY3VueS1mYWxsLTIzL2Jsb2Ivc3RhdHMtYW5kLXByb2JhYmlsaXR5L2ltYWdlLWxhYi01Yi5wbmcNCg0KDQojIyBFeGVyY2lzZSA3DQoNCiMjIyBDaG9vc2UgYSBkaWZmZXJlbnQgY29uZmlkZW5jZSBsZXZlbCB0aGFuIDk1JS4gV291bGQgeW91IGV4cGVjdCBhIGNvbmZpZGVuY2UgaW50ZXJ2YWwgYXQgdGhpcyBsZXZlbCB0byBtZSB3aWRlciBvciBuYXJyb3dlciB0aGFuIHRoZSBjb25maWRlbmNlIGludGVydmFsIHlvdSBjYWxjdWxhdGVkIGF0IHRoZSA5NSUgY29uZmlkZW5jZSBsZXZlbD8gRXhwbGFpbiB5b3VyIHJlYXNvbmluZy4NCg0KSSBjaG9zZSBhIGNvbmZpZGVuY2UgbGV2ZWwgb2YgOTAlLiBJIHdvdWxkIGV4cGVjdCB0aGlzIHRvIGJlIG5hcnJvd2VyIHRoYW4gdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgb2YgOTUlLiBJdCBpcyBsZXNzIGxpa2VseSB0aGF0IHRoZSBtZWFuIHdpbGwgYmUgaW4gdGhlIHJhbmdlLCBzbyBpdCBpcyBwcm9iYWJseSBuYXJyb3dlciAoaXQgd2lsbCBoYXZlIGZld2VyIHZhbHVlcywgc28gdGhlIHByb2JhYmlsaXR5IG9mIGl0IGluY2x1ZGluZyB0aGUgbWVhbiB3aWxsIGJlIGxlc3MpLg0KDQojIyBFeGVyY2lzZSA4DQoNCiMjIyBVc2luZyBjb2RlIGZyb20gdGhlICoqaW5mZXIqKiBwYWNrYWdlIGFuZCBkYXRhIGZyb20gdGhlIG9uZSBzYW1wbGUgeW91IGhhdmUgKHNhbXApLCBmaW5kIGEgY29uZmlkZW5jZSBpbnRlcnZhbCBmb3IgdGhlIHByb3BvcnRpb24gb2YgVVMgQWR1bHRzIHdobyB0aGluayBjbGltYXRlIGNoYW5nZSBpcyBhZmZlY3RpbmcgdGhlaXIgbG9jYWwgY29tbXVuaXR5IHdpdGggYSBjb25maWRlbmNlIGxldmVsIG9mIHlvdXIgY2hvb3NpbmcgKG90aGVyIHRoYW4gOTUlKSBhbmQgaW50ZXJwcmV0IGl0Lg0KDQpUaGlzIGNvbmZpZGVuY2UgaW50ZXJ2YWwgaXMgYSA5MCUgY29uZmlkZW5jZSBpbnRlcnZhbC4gVGhpcyBtZWFucyBJIGFtIDkwJSBjb25maWRlbnQgdGhhdCB0aGUgbWVhbiBvZiA2MiUsIHdoaWNoIGlzIHRoZSB0cnVlIHBvcHVsYXRpb24gcHJvcG9ydGlvbiwgZmFsbHMgd2l0aGluIHRoZSByYW5nZSBvZiAwLjUxNjcgdG8gMC43MTY3LiBUaGUgbWVhbiBmYWxscyB3aXRoaW4gdGhpcyByYW5nZSwgd2hpY2ggbWFrZXMgc2Vuc2UgYmVjYXVzZSBpdCBpcyBtb3JlIGxpa2VseSB0aGF0IHRoZSBtZWFuIGZhbGxzIHdpdGhpbiB0aGUgcmFuZ2UgdGhhbiBub3QuIElmIEkgd2VyZSB0byBjcmVhdGUgYSBjb25maWRlbmNlIGludGVydmFsIDEwMCB0aW1lcyAod2l0aG91dCBzZXR0aW5nIHRoZSBzZWVkKSwgYWJvdXQgOTAgb2YgdGhlbSB3b3VsZCBoYXZlIGEgcmFuZ2UgdGhhdCBpbmNsdWRlZCAwLjYyLCBhbmQgYWJvdXQgMTAgb2YgdGhlbSB3b3VsZCBub3QgaW5jbHVkZSAwLjYyLg0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMzQpDQpzYW1wIHw+DQogICAgIHNwZWNpZnkocmVzcG9uc2UgPSBjbGltYXRlX2NoYW5nZV9hZmZlY3RzLCBzdWNjZXNzID0gIlllcyIpIHw+DQogICAgIGdlbmVyYXRlKHJlcHMgPSAxMDAwLCB0eXBlID0gImJvb3RzdHJhcCIpIHw+DQogICAgIGNhbGN1bGF0ZShzdGF0ID0gInByb3AiKSB8Pg0KICAgICBnZXRfY2kobGV2ZWwgPSAwLjkwKQ0KYGBgDQogICAgDQojIyBFeGVyY2lzZSA5DQoNCiMjIyBVc2luZyB0aGUgYXBwLCBjYWxjdWxhdGUgNTAgY29uZmlkZW5jZSBpbnRlcnZhbHMgYXQgdGhlIGNvbmZpZGVuY2UgbGV2ZWwgeW91IGNob3NlIGluIHRoZSBwcmV2aW91cyBxdWVzdGlvbiwgYW5kIHBsb3QgYWxsIGludGVydmFscyBvbiBvbmUgcGxvdCwgYW5kIGNhbGN1bGF0ZSB0aGUgcHJvcG9ydGlvbiBvZiBpbnRlcnZhbHMgdGhhdCBpbmNsdWRlIHRoZSB0cnVlIHBvcHVsYXRpb24gcHJvcG9ydGlvbi4gSG93IGRvZXMgdGhpcyBwZXJjZW50YWdlIGNvbXBhcmUgdG8gdGhlIGNvbmZpZGVuY2UgbGV2ZWwgc2VsZWN0ZWQgZm9yIHRoZSBpbnRlcnZhbHM/DQoNCkkgY2hvc2UgYSA5MCUgY29uZmlkZW5jZSBpbnRlcnZhbC4gNyBvZiB0aGUgaW50ZXJ2YWxzIGRpZCBub3QgaW5jbHVkZSB0aGUgbWVhbiwgYW5kIHRoZSBvdGhlciA1MyBpbnRlcnZhbHMgZGlkLiA1MyAvIDYwID0gMC44ODMzLiBUaGlzIG1lYW5zIDg4LjMzJSBvZiB0aGUgaW50ZXJ2YWxzIGluY2x1ZGVkIHRoZSBtZWFuLiBUaGF0IG51bWJlciBpcyB2ZXJ5IGNsb3NlIHRvIDkwIGFzIGV4cGVjdGVkLg0KDQojIyBFeGVyY2lzZSAxMA0KDQojIyMgTGFzdGx5LCB0cnkgb25lIG1vcmUgKGRpZmZlcmVudCkgY29uZmlkZW5jZSBsZXZlbC4gRmlyc3QsIHN0YXRlIGhvdyB5b3UgZXhwZWN0IHRoZSB3aWR0aCBvZiB0aGlzIGludGVydmFsIHRvIGNvbXBhcmUgdG8gcHJldmlvdXMgb25lcyB5b3UgY2FsY3VsYXRlZC4gVGhlbiwgY2FsY3VsYXRlIHRoZSBib3VuZHMgb2YgdGhlIGludGVydmFsIHVzaW5nIHRoZSAqKmluZmVyKiogcGFja2FnZSBhbmQgZGF0YSBmcm9tIHNhbXAgYW5kIGludGVycHJldCBpdC4gRmluYWxseSwgdXNlIHRoZSBhcHAgdG8gZ2VuZXJhdGUgbWFueSBpbnRlcnZhbHMgYW5kIGNhbGN1bGF0ZSB0aGUgcHJvcG9ydGlvbiBvZiBpbnRlcnZhbHMgdGhhdCBhcmUgY2FwdHVyZSB0aGUgdHJ1ZSBwb3B1bGF0aW9uIHByb3BvcnRpb24uDQoNCkkgd2lsbCB0cnkgYSBjb25maWRlbmNlIGxldmVsIG9mIDUwJS4gSSBleHBlY3QgdGhlIHdpZHRoIG9mIHRoaXMgaW50ZXJ2YWwgdG8gYmUgbXVjaCBzbWFsbGVyIHRoYW4gdGhlIHByZXZpb3VzIG9uZXMgSSBjYWxjdWxhdGVkLiBUaGUgaW50ZXJ2YWwgaXMgc2VlbiBiZWxvdy4gVGhlIHRydWUgcG9wdWxhdGlvbiBwcm9wb3J0aW9uIG9mIDAuNjIgZGlkIGZhbGwgd2l0aGluIHRoZSByYW5nZSwgd2hpY2ggd2FzIGEgYml0IHN1cnByaXNpbmcgY29uc2lkZXJpbmcgSSBoYWQgYSA1MC01MCBjaGFuY2Ugb2YgaXQgaGFwcGVuaW5nLiBJdCB3YXMgdmVyeSBjbG9zZSB0byB0aGUgYm91bmRzIHRob3VnaCwgc28gdGhhdCB3YXMgZXhwZWN0ZWQuIA0KDQpXaGVuIEkgdXNlZCB0aGUgYXBwLCB0aGUgcHJvcG9ydGlvbiBvZiBpbnRlcnZhbHMgdGhhdCBjYXB0dXJlZCB0aGUgdHJ1ZSBwb3B1bGF0aW9uIHByb3BvcnRpb24gd2FzIDAuNDUuDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzNCkNCnNhbXAgfD4NCiAgICAgc3BlY2lmeShyZXNwb25zZSA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHN1Y2Nlc3MgPSAiWWVzIikgfD4NCiAgICAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgfD4NCiAgICAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpIHw+DQogICAgIGdldF9jaShsZXZlbCA9IDAuNTApDQpgYGANCiAgICANCiMjIEV4ZXJjaXNlIDExDQoNCiMjIyBVc2luZyB0aGUgYXBwLCBleHBlcmltZW50IHdpdGggZGlmZmVyZW50IHNhbXBsZSBzaXplcyBhbmQgY29tbWVudCBvbiBob3cgdGhlIHdpZHRocyBvZiBpbnRlcnZhbHMgY2hhbmdlIGFzIHNhbXBsZSBzaXplIGNoYW5nZXMgKGluY3JlYXNlcyBhbmQgZGVjcmVhc2VzKS4NCg0KQXMgdGhlIHNhbXBsZSBzaXplIGluY3JlYXNlZCwgdGhlIHdpZHRocyBvZiB0aGUgaW50ZXJ2YWxzIGRlY3JlYXNlZC4gQXMgdGhlIHNhbXBsZSBzaXplIGRlY3JlYXNlZCwgdGhlIHdpZHRocyBvZiB0aGUgaW50ZXJ2YWxzIGluY3JlYXNlZC4gVGhlc2UgdHdvIHN0YXRlbWVudHMgd2VyZSB0cnVlIHdoZW4gdGhlIGNvbmZpZGVuY2UgbGV2ZWwgcmVtYWluZWQgY29uc3RhbnQuDQoNCkl0IHdhcyBjaGFsbGVuZ2luZyB0byB0ZWxsIGJlY2F1c2UgdGhlIHdpZHRocyBvZiB0aGUgY29uZmlkZW5jZSBpbnRlcnZhbHMgd2VyZSBkaWZmZXJlbnQgaW4gb25lIGdyYXBoLg0KDQojIyBFeGVyY2lzZSAxMg0KDQojIyMgRmluYWxseSwgZ2l2ZW4gYSBzYW1wbGUgc2l6ZSAoc2F5LCA2MCksIGhvdyBkb2VzIHRoZSB3aWR0aCBvZiB0aGUgaW50ZXJ2YWwgY2hhbmdlIGFzIHlvdSBpbmNyZWFzZSB0aGUgbnVtYmVyIG9mIGJvb3RzdHJhcCBzYW1wbGVzLiAqKkhpbnQ6KiogRG9lcyBjaGFuZ2luZyB0aGUgbnVtYmVyIG9mIGJvb3RzdHJhcCBzYW1wbGVzIGFmZmVjdCB0aGUgc3RhbmRhcmQgZXJyb3I/DQoNClRoZSB3aWR0aCBvZiB0aGUgaW50ZXJ2YWxzIHNlZW1lZCB0byBkZWNyZWFzZSB3aXRoIG1vcmUgYm9vdHN0cmFwIHNhbXBsZXMuIEFnYWluLCBpdCB3YXMgY2hhbGxlbmdpbmcgdG8ga25vdyBmb3Igc3VyZSBiZWNhdXNlIHRoZSB3aWR0aHMgb2YgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHdlcmUgZGlmZmVyZW50IGFjcm9zcyBvbmUgZ3JhcGguDQoNCg0K