\(Y_i\) = \(\mu\) + \(\tau_i\) + \(\epsilon_ij\)
\(H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4\)
\(H_a:\) any of the mean is not equal
m1 <- c(0.34,0.12,1.23,0.70,1.75,0.12)
m2 <- c(0.91,2.94,2.14,2.36,2.86,4.55)
m3<- c(6.31,8.37,9.75,6.09,9.82,7.24)
m4<- c(17.15,11.82,10.97,17.20,14.35,16.82)
dat<- c(m1,m2,m3,m4)
qqnorm(dat)
qqline(dat)
dat<- data.frame(m1,m2,m3,m4)
boxplot(dat, xlab = "methods", ylab = "Observations")
library(tidyr)
dat<-pivot_longer(dat,c(m1,m2,m3,m4))
library(MASS)
kruskal.test(value~name,data = dat)
##
## Kruskal-Wallis rank sum test
##
## data: value by name
## Kruskal-Wallis chi-squared = 21.156, df = 3, p-value = 9.771e-05
m1 <- c(0.34,0.12,1.23,0.70,1.75,0.12)
m2 <- c(0.91,2.94,2.14,2.36,2.86,4.55)
m3<- c(6.31,8.37,9.75,6.09,9.82,7.24)
m4<- c(17.15,11.82,10.97,17.20,14.35,16.82)
dat1<- c(m1,m2,m3,m4)
library(MASS)
x<-c(rep("met1",6),rep("met2",6),rep("met3",6),rep("met4",6))
boxcox(dat1~x)
dat1<-dat1^(0.5)
boxcox(dat1~x)
anova_Test<- aov(dat1~x)
summary(anova_Test)
## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 32.69 10.898 81.17 2.27e-11 ***
## Residuals 20 2.69 0.134
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Complete R Code
It is a good idea to include this at the end of every RMarkdown document
m1 <- c(0.34,0.12,1.23,0.70,1.75,0.12)
m2 <- c(0.91,2.94,2.14,2.36,2.86,4.55)
m3<- c(6.31,8.37,9.75,6.09,9.82,7.24)
m4<- c(17.15,11.82,10.97,17.20,14.35,16.82)
dat<- c(m1,m2,m3,m4)
qqnorm(dat)
qqline(dat)
dat<- data.frame(m1,m2,m3,m4)
boxplot(dat, xlab = "methods", ylab = "Observations")
library(tidyr)
?pivot_longer
dat<-pivot_longer(dat,c(m1,m2,m3,m4))
#colnames(dat,"Methods","Observations")
library(MASS)
kruskal.test(value~name,data = dat)
m1 <- c(0.34,0.12,1.23,0.70,1.75,0.12)
m2 <- c(0.91,2.94,2.14,2.36,2.86,4.55)
m3<- c(6.31,8.37,9.75,6.09,9.82,7.24)
m4<- c(17.15,11.82,10.97,17.20,14.35,16.82)
dat1<- c(m1,m2,m3,m4)
?boxcox
library(MASS)
x<-c(rep("met1",6),rep("met2",6),rep("met3",6),rep("met4",6))
boxcox(dat1~x)
dat1<-dat1^(0.5)
boxcox(dat1~x)
anova_Test<- aov(dat1~x)
summary(anova_Test)