Bicicletas

1. Importar la base de datos

df <-  read.csv("/Users/danrwar/Desktop/Rstudio works/etapa 1/rentadebicis.csv")

2. Entender la base de datos

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

##3. Generar regresión lineal

regresion <- lm(rentas_totales ~ hora +dia + mes + año + estacion + dia_de_la_semana + sensacion_termica + humedad + velocidad_del_viento + asueto, data= df)

4. Ajustar el modelo

regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + velocidad_del_viento, data= df)

##5. Construir el modelo predictivo

datos <- data.frame(hora= 11.54, mes=1:12, año=2013, sensacion_termica=22.66, humedad=61.89,  velocidad_del_viento=12.799)
predict(regresion,datos)
##        1        2        3        4        5        6        7        8 
## 267.4283 275.0020 282.5757 290.1494 297.7231 305.2968 312.8705 320.4443 
##        9       10       11       12 
## 328.0180 335.5917 343.1654 350.7391

Casas

## 1. Abrir base de datos

bd <- read.csv("/Users/danrwar/Desktop/Rstudio works/etapa 1/HousePriceData.csv")
summary(bd)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 

Observaciones 1. El precio de la casa está con datos atípicos. 2. Rainfall tiene valores negativos. 3. Carpet tiene 7 NA.

2. Entender la vase de datos

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
count(bd,Parking, sort=TRUE)
##        Parking   n
## 1         Open 355
## 2 Not Provided 225
## 3      Covered 184
## 4   No Parking 141
count(bd,City_Category, sort=TRUE)
##   City_Category   n
## 1         CAT B 351
## 2         CAT A 320
## 3         CAT C 234

3. Limpiar la vase de datos

# Cuantos NA tengo en la base de datos
sum(is.na(bd))
## [1] 7
# Cuantos NA tengo por variable
sapply(bd, function(x)sum(is.na(bd)))
##   Observation     Dist_Taxi   Dist_Market Dist_Hospital        Carpet 
##             7             7             7             7             7 
##       Builtup       Parking City_Category      Rainfall   House_Price 
##             7             7             7             7             7
# Eliminar NA
bd <- na.omit(bd)

# Eliminar registro del precio atípico
bd <- bd[bd$House_Price<12000000,]

# Eliminar registro de rainfall negativo
bd <- bd[bd$Rainfall>=0,]

# Gráficas
boxplot(bd$House_Price, horizontal = TRUE)

4. Generar regresión lineal

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572009  -800792   -65720   761534  4401585 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.599e+06  3.672e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.009e+01  2.682e+01   1.122   0.2622    
## Dist_Market          1.285e+01  2.081e+01   0.618   0.5370    
## Dist_Hospital        4.864e+01  3.008e+01   1.617   0.1062    
## Carpet              -7.997e+02  3.476e+03  -0.230   0.8181    
## Builtup              1.339e+03  2.901e+03   0.462   0.6444    
## ParkingNo Parking   -6.040e+05  1.389e+05  -4.348 1.53e-05 ***
## ParkingNot Provided -4.924e+05  1.235e+05  -3.988 7.22e-05 ***
## ParkingOpen         -2.632e+05  1.126e+05  -2.338   0.0196 *  
## City_CategoryCAT B  -1.877e+06  9.598e+04 -19.554  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.300  < 2e-16 ***
## Rainfall            -1.175e+02  1.550e+02  -0.758   0.4484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1222000 on 884 degrees of freedom
## Multiple R-squared:  0.5007, Adjusted R-squared:  0.4945 
## F-statistic: 80.58 on 11 and 884 DF,  p-value: < 2.2e-16

5. Construir un modelo predictivo

datos <- data.frame(Dist_Taxi=8278, Dist_Market=16251, Dist_Hospital=13857,Carpet=1455, Builtup=1764,Parking="Covered",City_Category="CAT A",Rainfall=390)
predict(regresion,datos)
##       1 
## 7883860
LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDQuMyBSZWdyZXNpw7NuIExpbmVhbCIKYXV0aG9yOiAiUm9nZWlybyBEYW5pZWwgUmFtw61yZXogR2FyemEiCmRhdGU6ICIyMDIzLTA5LTIwIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogInNpbXBsZXgiCiAgICBoaWdobGl0Z2h0OiAibW9ub2Nocm9tZSIKLS0tCiMgPHNwYW4gc3R5bGUgPSJjb2xvcjpibHVlIj4gQmljaWNsZXRhcwohW10oL1VzZXJzL2RhbnJ3YXIvRGVza3RvcC9Sc3R1ZGlvIHdvcmtzL2V0YXBhIDEvYzMzOGM2ZGE4MGYzMjNkNzc4MDc4MTA0NWU5YWQ1N2YuZ2lmKQoKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpibHVlIj4xLiBJbXBvcnRhciBsYSBiYXNlICBkZSBkYXRvcwpgYGB7cn0KZGYgPC0gIHJlYWQuY3N2KCIvVXNlcnMvZGFucndhci9EZXNrdG9wL1JzdHVkaW8gd29ya3MvZXRhcGEgMS9yZW50YWRlYmljaXMuY3N2IikKYGBgCgojIyA8c3BhbiBzdHlsZSA9ImNvbG9yOmJsdWUiPjIuIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MKYGBge3J9CnN1bW1hcnkoZGYpCmBgYAoKIyM8c3BhbiBzdHlsZSA9ImNvbG9yOmJsdWUiPjMuIEdlbmVyYXIgcmVncmVzacOzbiBsaW5lYWwKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlcyB+IGhvcmEgK2RpYSArIG1lcyArIGHDsW8gKyBlc3RhY2lvbiArIGRpYV9kZV9sYV9zZW1hbmEgKyBzZW5zYWNpb25fdGVybWljYSArIGh1bWVkYWQgKyB2ZWxvY2lkYWRfZGVsX3ZpZW50byArIGFzdWV0bywgZGF0YT0gZGYpCmBgYAoKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpibHVlIj40LiBBanVzdGFyIGVsIG1vZGVsbyAKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlcyB+IGhvcmEgKyBtZXMgKyBhw7FvICsgc2Vuc2FjaW9uX3Rlcm1pY2EgKyBodW1lZGFkICsgdmVsb2NpZGFkX2RlbF92aWVudG8sIGRhdGE9IGRmKQpgYGAKCiMjPHNwYW4gc3R5bGUgPSJjb2xvcjpibHVlIj41LiBDb25zdHJ1aXIgZWwgbW9kZWxvIHByZWRpY3Rpdm8KYGBge3J9CmRhdG9zIDwtIGRhdGEuZnJhbWUoaG9yYT0gMTEuNTQsIG1lcz0xOjEyLCBhw7FvPTIwMTMsIHNlbnNhY2lvbl90ZXJtaWNhPTIyLjY2LCBodW1lZGFkPTYxLjg5LCAgdmVsb2NpZGFkX2RlbF92aWVudG89MTIuNzk5KQpwcmVkaWN0KHJlZ3Jlc2lvbixkYXRvcykKYGBgCgoKCiMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmVlbiI+IENhc2FzCiFbXSgvVXNlcnMvZGFucndhci9EZXNrdG9wL1JzdHVkaW8gd29ya3MvZXRhcGEgMS9ob3VzZS5naWYpCiMjIDEuIDxzcGFuIHN0eWxlID0iY29sb3I6Z3JlZW4iPiBBYnJpciBiYXNlIGRlIGRhdG9zCmBgYHtyfQpiZCA8LSByZWFkLmNzdigiL1VzZXJzL2RhbnJ3YXIvRGVza3RvcC9Sc3R1ZGlvIHdvcmtzL2V0YXBhIDEvSG91c2VQcmljZURhdGEuY3N2IikKc3VtbWFyeShiZCkKYGBgCk9ic2VydmFjaW9uZXMKMS4gRWwgcHJlY2lvIGRlIGxhIGNhc2EgZXN0w6EgY29uIGRhdG9zIGF0w61waWNvcy4KMi4gUmFpbmZhbGwgdGllbmUgdmFsb3JlcyBuZWdhdGl2b3MuCjMuIENhcnBldCB0aWVuZSA3IE5BLgoKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmVlbiI+IDIuIEVudGVuZGVyIGxhIHZhc2UgZGUgZGF0b3MKYGBge3J9CmxpYnJhcnkoZHBseXIpCmNvdW50KGJkLFBhcmtpbmcsIHNvcnQ9VFJVRSkKY291bnQoYmQsQ2l0eV9DYXRlZ29yeSwgc29ydD1UUlVFKQpgYGAKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmVlbiI+IDMuIExpbXBpYXIgbGEgdmFzZSBkZSBkYXRvcwpgYGB7cn0KIyBDdWFudG9zIE5BIHRlbmdvIGVuIGxhIGJhc2UgZGUgZGF0b3MKc3VtKGlzLm5hKGJkKSkKCiMgQ3VhbnRvcyBOQSB0ZW5nbyBwb3IgdmFyaWFibGUKc2FwcGx5KGJkLCBmdW5jdGlvbih4KXN1bShpcy5uYShiZCkpKQoKIyBFbGltaW5hciBOQQpiZCA8LSBuYS5vbWl0KGJkKQoKIyBFbGltaW5hciByZWdpc3RybyBkZWwgcHJlY2lvIGF0w61waWNvCmJkIDwtIGJkW2JkJEhvdXNlX1ByaWNlPDEyMDAwMDAwLF0KCiMgRWxpbWluYXIgcmVnaXN0cm8gZGUgcmFpbmZhbGwgbmVnYXRpdm8KYmQgPC0gYmRbYmQkUmFpbmZhbGw+PTAsXQoKIyBHcsOhZmljYXMKYm94cGxvdChiZCRIb3VzZV9QcmljZSwgaG9yaXpvbnRhbCA9IFRSVUUpCmBgYAoKIyMgIDxzcGFuIHN0eWxlID0iY29sb3I6Z3JlZW4iPjQuIEdlbmVyYXIgcmVncmVzacOzbiBsaW5lYWwKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShIb3VzZV9QcmljZSB+IERpc3RfVGF4aSArIERpc3RfTWFya2V0ICsgRGlzdF9Ib3NwaXRhbCArIENhcnBldCArIEJ1aWx0dXAgKyBQYXJraW5nICsgQ2l0eV9DYXRlZ29yeSArIFJhaW5mYWxsLCBkYXRhID0gYmQpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpncmVlbiI+NS4gQ29uc3RydWlyIHVuIG1vZGVsbyBwcmVkaWN0aXZvIApgYGB7cn0KZGF0b3MgPC0gZGF0YS5mcmFtZShEaXN0X1RheGk9ODI3OCwgRGlzdF9NYXJrZXQ9MTYyNTEsIERpc3RfSG9zcGl0YWw9MTM4NTcsQ2FycGV0PTE0NTUsIEJ1aWx0dXA9MTc2NCxQYXJraW5nPSJDb3ZlcmVkIixDaXR5X0NhdGVnb3J5PSJDQVQgQSIsUmFpbmZhbGw9MzkwKQpwcmVkaWN0KHJlZ3Jlc2lvbixkYXRvcykKYGBgCgoK