ACTIVIDAD 1 BICI

IMPORTAR LA BASE DE DATOS

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
rentadebicis <- read_csv("rentadebicis.csv")
## Rows: 10886 Columns: 14
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (14): hora, dia, mes, año, estacion, dia_de_la_semana, asueto, temperatu...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(rentadebicis)

##ENTENDER LA BASE DE DATOS

summary(rentadebicis)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0
#OBSERVACIONES
#1.Los días llegasta hasta el 19 y no 31.

##GENERAR LA REGRESIÓN LINEAL

regresion <- lm(rentas_totales ~hora+dia+mes+año+estacion+dia_de_la_semana+asueto+temperatura+sensacion_termica+humedad+velocidad_del_viento,data=rentadebicis)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion + 
##     dia_de_la_semana + asueto + temperatura + sensacion_termica + 
##     humedad + velocidad_del_viento, data = rentadebicis)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -305.52  -93.64  -27.70   61.85  649.10 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.661e+05  5.496e+03 -30.217  < 2e-16 ***
## hora                  7.735e+00  2.070e-01  37.368  < 2e-16 ***
## dia                   3.844e-01  2.482e-01   1.549  0.12150    
## mes                   9.996e+00  1.682e+00   5.943 2.89e-09 ***
## año                   8.258e+01  2.732e+00  30.225  < 2e-16 ***
## estacion             -7.774e+00  5.177e+00  -1.502  0.13324    
## dia_de_la_semana      4.393e-01  6.918e-01   0.635  0.52545    
## asueto               -4.864e+00  8.365e+00  -0.582  0.56089    
## temperatura           1.582e+00  1.038e+00   1.524  0.12752    
## sensacion_termica     4.748e+00  9.552e-01   4.971 6.76e-07 ***
## humedad              -2.115e+00  7.884e-02 -26.827  < 2e-16 ***
## velocidad_del_viento  5.582e-01  1.809e-01   3.086  0.00203 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10874 degrees of freedom
## Multiple R-squared:  0.3891, Adjusted R-squared:  0.3885 
## F-statistic: 629.6 on 11 and 10874 DF,  p-value: < 2.2e-16

##AJUSTAR EL MODELO

regresion <- lm(rentas_totales ~hora+mes+año+sensacion_termica+humedad+velocidad_del_viento,data=rentadebicis)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica + 
##     humedad + velocidad_del_viento, data = rentadebicis)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -308.60  -93.85  -28.34   61.05  648.09 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.662e+05  5.496e+03 -30.250  < 2e-16 ***
## hora                  7.734e+00  2.070e-01  37.364  < 2e-16 ***
## mes                   7.574e+00  4.207e-01  18.002  < 2e-16 ***
## año                   8.266e+01  2.732e+00  30.258  < 2e-16 ***
## sensacion_termica     6.172e+00  1.689e-01  36.539  < 2e-16 ***
## humedad              -2.121e+00  7.858e-02 -26.988  < 2e-16 ***
## velocidad_del_viento  6.208e-01  1.771e-01   3.506 0.000457 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared:  0.3886, Adjusted R-squared:  0.3883 
## F-statistic:  1153 on 6 and 10879 DF,  p-value: < 2.2e-16

##CONSTRUIR UN MODELO PREDICTIVO ## ACTIVIDAD 2 HOUSEPRICEDATA

IMPORTAR LA BASE DE DATOS

library(dplyr)
library(readr)
library(readr)
HousePriceData <- read_csv("HousePriceData.csv")
## Rows: 905 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Parking, City_Category
## dbl (8): Observation, Dist_Taxi, Dist_Market, Dist_Hospital, Carpet, Builtup...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(HousePriceData)

##ENTENDER LA BASE DE DATOS

summary(HousePriceData)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 
#OBSERVACIONES
#1.El precio de la casa está con datos atípicos.
#2.Rainfall tiene valores negativos. 
#3.Carpet tiene 7 Na

##GENERAR LA REGRESIÓN LINEAL

library(dplyr)
count(HousePriceData,Parking,sort=TRUE)
## # A tibble: 4 × 2
##   Parking          n
##   <chr>        <int>
## 1 Open           355
## 2 Not Provided   225
## 3 Covered        184
## 4 No Parking     141
count(HousePriceData,City_Category,sort=TRUE)
## # A tibble: 3 × 2
##   City_Category     n
##   <chr>         <int>
## 1 CAT B           351
## 2 CAT A           320
## 3 CAT C           234

##LIMPIAR LA BASE DE DATOS

#¿Cuántos NA tengo en la base de datos?
sum(is.na(HousePriceData))
## [1] 7
#¿Cuántos NA tengo por varibale?
sapply(HousePriceData,function(x)sum(is.na(x)))
##   Observation     Dist_Taxi   Dist_Market Dist_Hospital        Carpet 
##             0             0             0             0             7 
##       Builtup       Parking City_Category      Rainfall   House_Price 
##             0             0             0             0             0
#Eliminar NA
HousePriceData <-na.omit(HousePriceData)
#Eliminar registro del precio atípico
HousePriceData <- HousePriceData[HousePriceData$House_Price<12000000, ]

#Eliminar registro de rainfall Negativo
HousePriceData<- HousePriceData[HousePriceData$Rainfall>=0, ]
#Gráficas
boxplot(HousePriceData$House_Price,horizontal=TRUE)

##REGRESIÓN LINEAL

RegresionHousePriceData <- lm(House_Price ~ Dist_Taxi+ Dist_Market+ Dist_Hospital+ Carpet+ Builtup+ Parking+ City_Category+ Rainfall, data = HousePriceData)
summary(RegresionHousePriceData)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = HousePriceData)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572009  -800792   -65720   761534  4401585 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.599e+06  3.672e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.009e+01  2.682e+01   1.122   0.2622    
## Dist_Market          1.285e+01  2.081e+01   0.618   0.5370    
## Dist_Hospital        4.864e+01  3.008e+01   1.617   0.1062    
## Carpet              -7.997e+02  3.476e+03  -0.230   0.8181    
## Builtup              1.339e+03  2.901e+03   0.462   0.6444    
## ParkingNo Parking   -6.040e+05  1.389e+05  -4.348 1.53e-05 ***
## ParkingNot Provided -4.924e+05  1.235e+05  -3.988 7.22e-05 ***
## ParkingOpen         -2.632e+05  1.126e+05  -2.338   0.0196 *  
## City_CategoryCAT B  -1.877e+06  9.598e+04 -19.554  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.300  < 2e-16 ***
## Rainfall            -1.175e+02  1.550e+02  -0.758   0.4484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1222000 on 884 degrees of freedom
## Multiple R-squared:  0.5007, Adjusted R-squared:  0.4945 
## F-statistic: 80.58 on 11 and 884 DF,  p-value: < 2.2e-16
##CONSTRUIR UN MODELO PREDICTIVOShiny applications not supported in static R Markdown documents

```

LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAxIFJFR1JFU0nDk04gTMONTkVBTCINCmF1dGhvcjogIkx1aXNhIEJlbHRyw6FuIEEwMTU3MDY5MCINCmRhdGU6ICIyMDIzLTA5LTIwIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgdGhlbWU6ICJzaW1wbGV4Ig0KICBoaWdobGlnaHQ6ICJtb25vY2hyb21lIg0KLS0tDQogPGNlbnRlcj4gDQojIyA8c3BhbiBzdHlsZSA9ImNvbG9yOnBpbms7Ij4qKkFDVElWSURBRCAxIEJJQ0kqKjwvc3Bhbj4NCg0KICA8Y2VudGVyPg0KIVtdKEM6XFxVc2Vyc1xcbHVpc2FcXERvY3VtZW50c1xcUiBMVUlTQVxcTU9EVUxPIDRcXGJpa2UuanBnKQ0KDQoNCjxjZW50ZXI+IA0KIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpwaW5rOyI+SU1QT1JUQVIgTEEgQkFTRSBERSBEQVRPUzwvc3Bhbj4NCg0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShyZWFkcikNCnJlbnRhZGViaWNpcyA8LSByZWFkX2NzdigicmVudGFkZWJpY2lzLmNzdiIpDQpWaWV3KHJlbnRhZGViaWNpcykNCmBgYA0KIDxjZW50ZXI+IA0KIyM8c3BhbiBzdHlsZSA9ImNvbG9yOnBpbms7Ij5FTlRFTkRFUiBMQSBCQVNFIERFIERBVE9TPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KHJlbnRhZGViaWNpcykNCg0KI09CU0VSVkFDSU9ORVMNCiMxLkxvcyBkw61hcyBsbGVnYXN0YSBoYXN0YSBlbCAxOSB5IG5vIDMxLg0KYGBgDQoNCjxjZW50ZXI+IA0KIyM8c3BhbiBzdHlsZSA9ImNvbG9yOnBpbms7Ij5HRU5FUkFSIExBIFJFR1JFU0nDk04gTElORUFMPC9zcGFuPg0KDQpgYGB7cn0NCnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlcyB+aG9yYStkaWErbWVzK2HDsW8rZXN0YWNpb24rZGlhX2RlX2xhX3NlbWFuYSthc3VldG8rdGVtcGVyYXR1cmErc2Vuc2FjaW9uX3Rlcm1pY2EraHVtZWRhZCt2ZWxvY2lkYWRfZGVsX3ZpZW50byxkYXRhPXJlbnRhZGViaWNpcykNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQoNCg0KPGNlbnRlcj4gDQojIzxzcGFuIHN0eWxlID0iY29sb3I6cGluazsiPkFKVVNUQVIgRUwgTU9ERUxPPC9zcGFuPg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0ocmVudGFzX3RvdGFsZXMgfmhvcmErbWVzK2HDsW8rc2Vuc2FjaW9uX3Rlcm1pY2EraHVtZWRhZCt2ZWxvY2lkYWRfZGVsX3ZpZW50byxkYXRhPXJlbnRhZGViaWNpcykNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQo8Y2VudGVyPiANCiMjPHNwYW4gc3R5bGUgPSJjb2xvcjpwaW5rOyI+Q09OU1RSVUlSIFVOIE1PREVMTyBQUkVESUNUSVZPPC9zcGFuDQoNCmBgYHtyfQ0KZGF0b3MgPC0gZGF0YS5mcmFtZShob3JhPTExLjU0LG1lcz0xOjEyLGHDsW89MjAxMyxzZW5zYWNpb25fdGVybWljYT0yMy42NixodW1lZGFkPTYxLjg5LHZlbG9jaWRhZF9kZWxfdmllbnRvPTEyLjc5OSkNCnByZWRpY3QocmVncmVzaW9uLGRhdG9zKQ0KYGBgDQogPGNlbnRlcj4gDQojIyA8c3BhbiBzdHlsZSA9ImNvbG9yOnB1cnBsZTsiPioqQUNUSVZJREFEIDIgSE9VU0VQUklDRURBVEEqKjwvc3Bhbj4NCg0KICA8Y2VudGVyPg0KIVtdKEM6XFxVc2Vyc1xcbHVpc2FcXERvY3VtZW50c1xcUiBMVUlTQVxcTU9EVUxPIDRcXHJzY29ubmVjdFxcaG91c2UuanBnKQ0KDQoNCjxjZW50ZXI+IA0KIyMgPHNwYW4gc3R5bGUgPSJjb2xvcjpwdXJwbGU7Ij5JTVBPUlRBUiBMQSBCQVNFIERFIERBVE9TPC9zcGFuPg0KDQpgYGB7cn0NCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KHJlYWRyKQ0KbGlicmFyeShyZWFkcikNCkhvdXNlUHJpY2VEYXRhIDwtIHJlYWRfY3N2KCJIb3VzZVByaWNlRGF0YS5jc3YiKQ0KVmlldyhIb3VzZVByaWNlRGF0YSkNCmBgYA0KPGNlbnRlcj4gDQojIzxzcGFuIHN0eWxlID0iY29sb3I6cHVycGxlOyI+RU5URU5ERVIgTEEgQkFTRSBERSBEQVRPUzwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShIb3VzZVByaWNlRGF0YSkNCg0KI09CU0VSVkFDSU9ORVMNCiMxLkVsIHByZWNpbyBkZSBsYSBjYXNhIGVzdMOhIGNvbiBkYXRvcyBhdMOtcGljb3MuDQojMi5SYWluZmFsbCB0aWVuZSB2YWxvcmVzIG5lZ2F0aXZvcy4gDQojMy5DYXJwZXQgdGllbmUgNyBOYQ0KYGBgDQoNCg0KPGNlbnRlcj4gDQojIzxzcGFuIHN0eWxlID0iY29sb3I6cHVycGxlOyI+R0VORVJBUiBMQSBSRUdSRVNJw5NOIExJTkVBTDwvc3Bhbj4NCg0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0KY291bnQoSG91c2VQcmljZURhdGEsUGFya2luZyxzb3J0PVRSVUUpDQpjb3VudChIb3VzZVByaWNlRGF0YSxDaXR5X0NhdGVnb3J5LHNvcnQ9VFJVRSkNCmBgYA0KDQo8Y2VudGVyPiANCiMjPHNwYW4gc3R5bGUgPSJjb2xvcjpwdXJwbGU7Ij5MSU1QSUFSIExBIEJBU0UgREUgREFUT1M8L3NwYW4+DQpgYGB7cn0NCiPCv0N1w6FudG9zIE5BIHRlbmdvIGVuIGxhIGJhc2UgZGUgZGF0b3M/DQpzdW0oaXMubmEoSG91c2VQcmljZURhdGEpKQ0KDQojwr9DdcOhbnRvcyBOQSB0ZW5nbyBwb3IgdmFyaWJhbGU/DQpzYXBwbHkoSG91c2VQcmljZURhdGEsZnVuY3Rpb24oeClzdW0oaXMubmEoeCkpKQ0KDQojRWxpbWluYXIgTkENCkhvdXNlUHJpY2VEYXRhIDwtbmEub21pdChIb3VzZVByaWNlRGF0YSkNCmBgYA0KYGBge3J9DQojRWxpbWluYXIgcmVnaXN0cm8gZGVsIHByZWNpbyBhdMOtcGljbw0KSG91c2VQcmljZURhdGEgPC0gSG91c2VQcmljZURhdGFbSG91c2VQcmljZURhdGEkSG91c2VfUHJpY2U8MTIwMDAwMDAsIF0NCg0KI0VsaW1pbmFyIHJlZ2lzdHJvIGRlIHJhaW5mYWxsIE5lZ2F0aXZvDQpIb3VzZVByaWNlRGF0YTwtIEhvdXNlUHJpY2VEYXRhW0hvdXNlUHJpY2VEYXRhJFJhaW5mYWxsPj0wLCBdDQpgYGANCg0KYGBge3J9DQojR3LDoWZpY2FzDQpib3hwbG90KEhvdXNlUHJpY2VEYXRhJEhvdXNlX1ByaWNlLGhvcml6b250YWw9VFJVRSkNCmBgYA0KDQo8Y2VudGVyPiANCiMjPHNwYW4gc3R5bGUgPSJjb2xvcjpwdXJwbGU7Ij5SRUdSRVNJw5NOIExJTkVBTDwvc3Bhbj4NCg0KYGBge3J9DQpSZWdyZXNpb25Ib3VzZVByaWNlRGF0YSA8LSBsbShIb3VzZV9QcmljZSB+IERpc3RfVGF4aSsgRGlzdF9NYXJrZXQrIERpc3RfSG9zcGl0YWwrIENhcnBldCsgQnVpbHR1cCsgUGFya2luZysgQ2l0eV9DYXRlZ29yeSsgUmFpbmZhbGwsIGRhdGEgPSBIb3VzZVByaWNlRGF0YSkNCnN1bW1hcnkoUmVncmVzaW9uSG91c2VQcmljZURhdGEpDQpgYGANCjxjZW50ZXI+IA0KIyM8c3BhbiBzdHlsZSA9ImNvbG9yOnB1cnBsZTsiPkNPTlNUUlVJUiBVTiBNT0RFTE8gUFJFRElDVElWTzwvc3Bhbg0KDQpgYGB7cn0NCmRhdG9zIDwtIGRhdGEuZnJhbWUoRGlzdF9UYXhpPSA4Mjc4LCBEaXN0X01hcmtldD0gMTYyNTEsIERpc3RfSG9zcGl0YWw9MTM4NTcsIENhcnBldD0xNDU1LCBCdWlsdHVwPSAxNzY0LCBQYXJraW5nPSJDb3ZlcmVkIiwgQ2l0eV9DYXRlZ29yeT0iQ0FUIEEiLCBSYWluZmFsbD0gMzkwKQ0KcHJlZGljdChSZWdyZXNpb25Ib3VzZVByaWNlRGF0YSwgZGF0b3MpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShIb3VzZVByaWNlRGF0YSREaXN0X0hvc3BpdGFsKQ0KYGBgDQpgYGB7cn0NCnN1bW1hcnkoSG91c2VQcmljZURhdGEkQ2FycGV0KQ0KYGBgDQpgYGB7cn0NCnN1bW1hcnkoSG91c2VQcmljZURhdGEkQnVpbHR1cCkNCmBgYA0KYGBge3J9DQpzdW1tYXJ5KEhvdXNlUHJpY2VEYXRhJFBhcmtpbmcpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KEhvdXNlUHJpY2VEYXRhJENpdHlfQ2F0ZWdvcnkpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShIb3VzZVByaWNlRGF0YSRSYWluZmFsbCkNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoc2hpbnkpDQpsaWJyYXJ5KHNoaW55dGhlbWVzKQ0KbGlicmFyeShkcGx5cikNCg0KIyBDYXJnYXIgZWwgY29uanVudG8gZGUgZGF0b3MNCkhvdXNlUHJpY2VEYXRhIDwtIHJlYWQuY3N2KCJIb3VzZVByaWNlRGF0YS5jc3YiKQ0KDQp1aSA8LSBmbHVpZFBhZ2UodGhlbWUgPSBzaGlueXRoZW1lKCJzcGFjZWxhYiIpLA0KICAgICAgICAgICAgICAgIG5hdmJhclBhZ2UoIkFQUFMiLA0KICAgICAgICAgICAgICAgICAgdGFiUGFuZWwoIlByZWNpbyBpbm11ZWJsZSIpLA0KICAgICAgICAgICAgICAgICAgc2lkZWJhclBhbmVsKA0KICAgICAgICAgICAgICAgICAgICB0YWdzJGg1KCJJbmdyZXNhIGxhcyBlc3BlY2lmaWNhY2lvbmVzIHNvYnJlIGxhcyBjYXJhY3RlcsOtc3RpY2FzIGRlIGhvZ2FyIHNvw7FhZG86IiksDQogICAgICAgICAgICAgICAgICAgIHNsaWRlcklucHV0KCJEaXN0X1RheGkiLCAiU2VsZWNjaW9uYSBsYSBkaXN0YW5jaWEgYSBsYSBxdWUgdGUgZ3VzdGFyw61hIHRlbmVyIHVuIHRheGkgZW4gbXRzOiIsIDAsIDE3MDAwLCA4NTAwKSwNCiAgICAgICAgICAgICAgICAgICAgc2xpZGVySW5wdXQoIkRpc3RfSG9zcGl0YWwiLCAiU2VsZWNjaW9uYSBsYSBkaXN0YW5jaWEgYSBsYSBxdWUgdGUgZ3VzdGFyw61hIHRlbmVyIHVuIGhvc3BpdGFsIGVuIG10czoiLCBtaW49MCwgbWF4PTI1MDAwLCB2YWx1ZT0xMjUwMCksDQogICAgICAgICAgICAgICAgICAgIHNsaWRlcklucHV0KCJDYXJwZXQiLCAiU2VsZWNjaW9uYSBsb3MgbTIgcXVlIHRlIGd1c3RhcsOtYSBlbiB0dSBwaXNvOiIsIG1pbj0wLCBtYXg9MjUwMDAsIHZhbHVlPTEyNTAwKSwNCiAgICAgICAgICAgICAgICAgICAgc2xpZGVySW5wdXQoIkJ1aWx0dXAiLCAiQ3VhbnRvcyBtMiB0ZSBndXN0YXLDrWEgcXVlIGZ1ZXJhIHR1IGNvbnN0cnVjY2nDs24/IiwgbWluPTAsIG1heD0xNTAwMCwgdmFsdWU9NzUwMCksDQogICAgICAgICAgICAgICAgICAgIHNlbGVjdElucHV0KCJQYXJraW5nIiwgIlRlIGd1c3RhcsOtYSB0ZW5lciBlc3RhY2lvbmFtaWVudG8/OiIsIGNob2ljZXMgPSBjKCJPcGVuIiwgIk5vdCBQcm92aWRlZCIsICJDb3ZlcmVkIiwgIk5vIFBhcmtpbmciKSksDQogICAgICAgICAgICAgICAgICAgIHNlbGVjdElucHV0KCJDaXR5X0NhdGVnb3J5IiwgIkVuIHF1w6kgY2F0ZWdvcsOtYSBkZSBjaXVkYWQgdGUgZ3VzdGFyw61hIHZpdmlyPzoiLCBjaG9pY2VzID0gYygiQ0FUIEEiLCAiQ0FUIEIiLCAiQ0FUIEMiKSksDQogICAgICAgICAgICAgICAgICAgIHNsaWRlcklucHV0KCJSYWluZmFsbCIsICJRdcOpIHRhbnRhIHByZWNpcGl0YWNpw7NuIHRlIGd1c3RhcsOtYSBlbiBlbCDDoXJlYSBkb25kZSB2aXZhcz86IiwgbWluPS0yMDAsIG1heD0yMDAwLCB2YWx1ZT05MDApDQogICAgICAgICAgICAgICAgICApLA0KICAgICAgICAgICAgICAgICAgbWFpblBhbmVsKA0KICAgICAgICAgICAgICAgICAgICBoMSgiRXN0byBjb3N0YXLDrWEgdHUgY2FzYSBzb8OxYWRhOiIpLA0KICAgICAgICAgICAgICAgICAgICB2ZXJiYXRpbVRleHRPdXRwdXQoInZhbG9yIikNCiAgICAgICAgICAgICAgICAgICkNCiAgICAgICAgICAgICAgICApDQopDQoNCnNlcnZlciA8LSBmdW5jdGlvbihpbnB1dCwgb3V0cHV0KSB7DQogIG91dHB1dCR2YWxvciA8LSByZW5kZXJQcmludCh7DQogICAgIyBDcmVhciB1biBudWV2byBjb25qdW50byBkZSBkYXRvcyBjb24gbG9zIHZhbG9yZXMgaW5ncmVzYWRvcyBwb3IgZWwgdXN1YXJpbw0KICAgIG5ld19kYXRhIDwtIGRhdGEuZnJhbWUoDQogICAgICBEaXN0X1RheGkgPSBpbnB1dCREaXN0X1RheGksDQogICAgICBEaXN0X0hvc3BpdGFsID0gaW5wdXQkRGlzdF9Ib3NwaXRhbCwNCiAgICAgIENhcnBldCA9IGlucHV0JENhcnBldCwNCiAgICAgIEJ1aWx0dXAgPSBpbnB1dCRCdWlsdHVwLA0KICAgICAgUGFya2luZyA9IGlucHV0JFBhcmtpbmcsDQogICAgICBDaXR5X0NhdGVnb3J5ID0gaW5wdXQkQ2l0eV9DYXRlZ29yeSwNCiAgICAgIFJhaW5mYWxsID0gaW5wdXQkUmFpbmZhbGwNCiAgICApDQogICAgDQogICAgIyBSZWFsaXphciBsYSBwcmVkaWNjacOzbiB1dGlsaXphbmRvIGVsIG1vZGVsbyBkZSByZWdyZXNpw7NuIHByZXZpYW1lbnRlIGVudHJlbmFkbw0KICAgIHJlZ3Jlc2lvbiA8LSBsbShIb3VzZV9QcmljZSB+IERpc3RfVGF4aSArIERpc3RfSG9zcGl0YWwgKyBDYXJwZXQgKyBCdWlsdHVwICsgUGFya2luZyArIENpdHlfQ2F0ZWdvcnkgKyBSYWluZmFsbCwgZGF0YSA9IEhvdXNlUHJpY2VEYXRhKQ0KICAgIHByZWRpY3RlZF9wcmljZSA8LSBwcmVkaWN0KHJlZ3Jlc2lvbiwgbmV3ZGF0YSA9IG5ld19kYXRhKQ0KICAgIA0KICAgIHJldHVybihwcmVkaWN0ZWRfcHJpY2UpDQogIH0pDQp9DQoNCnNoaW55QXBwKHVpID0gdWksIHNlcnZlciA9IHNlcnZlcikNCmBgYA0KDQoNCg0KDQoNCg==