b. Actions by Ideology
i. Strong Liberals
# Action 1
slib.b1 <- lm(act1 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b1)
##
## Call:
## lm(formula = act1 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.646 -1.962 0.038 2.038 3.490
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1714 0.3635 0.472 0.637
## SlibsSC.d -0.6330 0.4509 -1.404 0.161
## SlibsC.d -0.6614 0.4224 -1.566 0.118
## SlibsM.d -0.2095 0.3966 -0.528 0.598
## SlibsL.d 0.4747 0.4509 1.053 0.293
##
## Residual standard error: 2.151 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.0298, Adjusted R-squared: 0.02106
## F-statistic: 3.409 on 4 and 444 DF, p-value: 0.00923
# Action 2
slib.b2 <- lm(act2 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b2)
##
## Call:
## lm(formula = act2 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.2212 0.1077 1.7788 2.1077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04167 0.36851 2.827 0.00504 **
## SlibsSC.d -0.08514 0.45459 -0.187 0.85156
## SlibsC.d -0.14936 0.43121 -0.346 0.72932
## SlibsM.d 0.17957 0.40576 0.443 0.65842
## SlibsL.d 0.52976 0.46195 1.147 0.25243
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 285 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01519, Adjusted R-squared: 0.001372
## F-statistic: 1.099 on 4 and 285 DF, p-value: 0.3572
# Action 3
slib.b3 <- lm(act3 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b3)
##
## Call:
## lm(formula = act3 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.9837 0.0163 1.4167 3.8852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3714 0.3397 1.093 0.27483
## SlibsSC.d -1.2567 0.4262 -2.949 0.00336 **
## SlibsC.d -0.7881 0.3968 -1.986 0.04766 *
## SlibsM.d -0.3877 0.3706 -1.046 0.29605
## SlibsL.d -0.5626 0.4181 -1.346 0.17911
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 439 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02777, Adjusted R-squared: 0.01891
## F-statistic: 3.134 on 4 and 439 DF, p-value: 0.01467
# Action 4
slib.b4 <- lm(act4 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b4)
##
## Call:
## lm(formula = act4 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.7938 0.2062 2.0051 3.2877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4828 0.4014 1.203 0.230
## SlibsSC.d -0.2867 0.5027 -0.570 0.569
## SlibsC.d -0.7704 0.4745 -1.624 0.105
## SlibsM.d -0.6890 0.4363 -1.579 0.115
## SlibsL.d -0.1034 0.4916 -0.210 0.833
##
## Residual standard error: 2.162 on 366 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01709, Adjusted R-squared: 0.006351
## F-statistic: 1.591 on 4 and 366 DF, p-value: 0.176
# Action 5
slib.b5 <- lm(act5 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b5)
##
## Call:
## lm(formula = act5 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4048 -1.0917 0.2653 1.5952 2.5833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4167 0.3820 1.091 0.2763
## SlibsSC.d 0.3180 0.4662 0.682 0.4957
## SlibsC.d 0.5559 0.4403 1.263 0.2077
## SlibsM.d 0.6751 0.4219 1.600 0.1107
## SlibsL.d 0.9881 0.4788 2.064 0.0399 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 292 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.01867, Adjusted R-squared: 0.005229
## F-statistic: 1.389 on 4 and 292 DF, p-value: 0.2378
# Action 6
slib.b6 <- lm(act6 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b6)
##
## Call:
## lm(formula = act6 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4348 -1.3099 0.6706 1.6706 2.1296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1875 0.3205 3.705 0.000245 ***
## SlibsSC.d -0.3171 0.4044 -0.784 0.433482
## SlibsC.d 0.1419 0.3760 0.377 0.706075
## SlibsM.d 0.1224 0.3547 0.345 0.730361
## SlibsL.d 0.2473 0.4173 0.593 0.553852
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 354 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.00896, Adjusted R-squared: -0.002238
## F-statistic: 0.8001 on 4 and 354 DF, p-value: 0.5257
# Action 7
slib.b7 <- lm(act7 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b7)
##
## Call:
## lm(formula = act7 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.8652 0.1348 1.6286 3.3140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3714 0.3531 1.052 0.293
## SlibsSC.d -0.5293 0.4486 -1.180 0.239
## SlibsC.d -0.6854 0.4188 -1.636 0.103
## SlibsM.d -0.5063 0.3862 -1.311 0.191
## SlibsL.d -0.4053 0.4457 -0.909 0.364
##
## Residual standard error: 2.089 on 410 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.006798, Adjusted R-squared: -0.002892
## F-statistic: 0.7016 on 4 and 410 DF, p-value: 0.5912
# Action 8
slib.b8 <- lm(act8 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b8)
##
## Call:
## lm(formula = act8 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.625 -1.855 -0.287 1.713 4.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6250 0.3354 1.864 0.06298 .
## SlibsSC.d -1.7699 0.4215 -4.199 3.2e-05 ***
## SlibsC.d -1.3380 0.3926 -3.408 0.00071 ***
## SlibsM.d -1.0678 0.3672 -2.908 0.00381 **
## SlibsL.d -0.1488 0.4288 -0.347 0.72872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 476 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.06121, Adjusted R-squared: 0.05332
## F-statistic: 7.759 on 4 and 476 DF, p-value: 4.609e-06
# Action 9
slib.b9 <- lm(act9 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b9)
##
## Call:
## lm(formula = act9 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5781 -1.5781 0.2525 1.7167 3.7167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.194444 0.327704 0.593 0.5532
## SlibsSC.d -0.911111 0.414516 -2.198 0.0285 *
## SlibsC.d -0.446970 0.382676 -1.168 0.2434
## SlibsM.d 0.005556 0.357404 0.016 0.9876
## SlibsL.d 0.383681 0.409630 0.937 0.3494
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.966 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03759, Adjusted R-squared: 0.02892
## F-statistic: 4.336 on 4 and 444 DF, p-value: 0.00189
# Action 10
slib.b10 <- lm(act10 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b10)
##
## Call:
## lm(formula = act10 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1500 0.3281 3.505 0.000500 ***
## SlibsSC.d -1.7676 0.4135 -4.275 2.31e-05 ***
## SlibsC.d -1.4071 0.3855 -3.650 0.000292 ***
## SlibsM.d -1.0696 0.3595 -2.975 0.003081 **
## SlibsL.d -0.4731 0.4170 -1.135 0.257147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
# Action 11
slib.b11 <- lm(act11 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b11)
##
## Call:
## lm(formula = act11 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6585 -0.8154 0.2741 1.3415 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5417 0.3812 4.045 6.62e-05 ***
## SlibsSC.d -0.8070 0.4652 -1.735 0.0838 .
## SlibsC.d -0.7263 0.4460 -1.628 0.1045
## SlibsM.d -0.8157 0.4136 -1.972 0.0495 *
## SlibsL.d 0.1169 0.4799 0.244 0.8078
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 309 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03501, Adjusted R-squared: 0.02252
## F-statistic: 2.803 on 4 and 309 DF, p-value: 0.02604
# Action 12
slib.b12 <- lm(act12 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b12)
##
## Call:
## lm(formula = act12 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.736 -2.158 0.000 2.000 3.842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3333 0.4129 0.807 0.4200
## SlibsSC.d -1.1754 0.5013 -2.345 0.0195 *
## SlibsC.d -0.9333 0.4708 -1.982 0.0482 *
## SlibsM.d -0.3333 0.4468 -0.746 0.4561
## SlibsL.d 0.4025 0.5073 0.793 0.4280
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.146 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0525, Adjusted R-squared: 0.04253
## F-statistic: 5.264 on 4 and 380 DF, p-value: 0.0003892
# Action 13
slib.b13 <- lm(act13 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b13)
##
## Call:
## lm(formula = act13 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3437 -1.9149 0.0851 1.6563 3.5781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.25714 0.35140 0.732 0.4647
## SlibsSC.d -0.83527 0.43705 -1.911 0.0566 .
## SlibsC.d -0.47453 0.41287 -1.149 0.2510
## SlibsM.d -0.34225 0.38272 -0.894 0.3717
## SlibsL.d 0.08661 0.43705 0.198 0.8430
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.079 on 438 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01713, Adjusted R-squared: 0.008155
## F-statistic: 1.909 on 4 and 438 DF, p-value: 0.108
# Action 14
slib.b14 <- lm(act14 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b14)
##
## Call:
## lm(formula = act14 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9487 -1.4219 -0.0198 1.6780 2.9091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09091 0.43309 0.210 0.834
## SlibsSC.d 0.40909 0.53920 0.759 0.449
## SlibsC.d 0.23112 0.50746 0.455 0.649
## SlibsM.d 0.33097 0.46884 0.706 0.481
## SlibsL.d 0.85781 0.54165 1.584 0.114
##
## Residual standard error: 2.031 on 283 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.01158, Adjusted R-squared: -0.002388
## F-statistic: 0.829 on 4 and 283 DF, p-value: 0.5076
# Action 15
slib.b15 <- lm(act15 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b15)
##
## Call:
## lm(formula = act15 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8889 -2.1024 0.1111 1.8916 3.3559
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3125 0.3621 0.863 0.389
## SlibsSC.d -0.6684 0.4497 -1.487 0.138
## SlibsC.d -0.2041 0.4262 -0.479 0.632
## SlibsM.d -0.2101 0.3954 -0.531 0.596
## SlibsL.d 0.5764 0.4736 1.217 0.224
##
## Residual standard error: 2.048 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.02508, Adjusted R-squared: 0.01482
## F-statistic: 2.444 on 4 and 380 DF, p-value: 0.0462
# Action 16
slib.b16 <- lm(act16 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b16)
##
## Call:
## lm(formula = act16 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0698 -0.9861 0.0357 1.4375 2.4375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.03448 0.34080 3.035 0.00259 **
## SlibsSC.d -0.47198 0.43164 -1.093 0.27499
## SlibsC.d -0.04837 0.40364 -0.120 0.90468
## SlibsM.d -0.07020 0.37443 -0.187 0.85140
## SlibsL.d 0.03528 0.44099 0.080 0.93628
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 327 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.007238, Adjusted R-squared: -0.004905
## F-statistic: 0.5961 on 4 and 327 DF, p-value: 0.6657
# Action 17
slib.b17 <- lm(act17 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b17)
##
## Call:
## lm(formula = act17 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2059 -1.4798 -0.1685 1.6230 2.8315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2059 0.3430 3.515 0.000488 ***
## SlibsSC.d -0.8288 0.4281 -1.936 0.053539 .
## SlibsC.d -1.0373 0.4033 -2.572 0.010452 *
## SlibsM.d -0.7261 0.3752 -1.935 0.053664 .
## SlibsL.d -0.6559 0.4294 -1.528 0.127391
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2 on 412 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: 0.006815
## F-statistic: 1.714 on 4 and 412 DF, p-value: 0.146
# Action 18
slib.b18 <- lm(act18 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b18)
##
## Call:
## lm(formula = act18 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1196 0.1844 1.5135 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.75862 0.34198 2.218 0.0272 *
## SlibsSC.d -0.56994 0.42538 -1.340 0.1812
## SlibsC.d -0.27213 0.40347 -0.674 0.5004
## SlibsM.d 0.05698 0.37551 0.152 0.8795
## SlibsL.d 0.15366 0.42007 0.366 0.7147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01769, Adjusted R-squared: 0.006435
## F-statistic: 1.572 on 4 and 349 DF, p-value: 0.1814
# Action 19
slib.b19 <- lm(act19 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b19)
##
## Call:
## lm(formula = act19 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.438 -1.050 0.093 1.704 2.093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.29630 0.34665 3.740 0.000225 ***
## SlibsSC.d -0.38932 0.44229 -0.880 0.379510
## SlibsC.d -0.24630 0.41742 -0.590 0.555654
## SlibsM.d -0.06621 0.38585 -0.172 0.863887
## SlibsL.d 0.14120 0.47069 0.300 0.764416
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 270 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.00789, Adjusted R-squared: -0.006807
## F-statistic: 0.5368 on 4 and 270 DF, p-value: 0.7088
# Action 20
slib.b20 <- lm(act20 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b20)
##
## Call:
## lm(formula = act20 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3566 -1.1957 0.6434 1.6434 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0000 0.3450 2.898 0.00401 **
## SlibsSC.d 0.1509 0.4239 0.356 0.72203
## SlibsC.d 0.1304 0.4070 0.320 0.74881
## SlibsM.d 0.3566 0.3794 0.940 0.34805
## SlibsL.d 0.1957 0.4347 0.450 0.65293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.793 on 319 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.004413, Adjusted R-squared: -0.008071
## F-statistic: 0.3535 on 4 and 319 DF, p-value: 0.8415
# Action 21
slib.b21 <- lm(act21 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b21)
##
## Call:
## lm(formula = act21 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4407 -1.9401 0.0599 1.5806 3.5806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42424 0.35863 1.183 0.2375
## SlibsSC.d -1.00489 0.44392 -2.264 0.0241 *
## SlibsC.d -0.69254 0.42470 -1.631 0.1038
## SlibsM.d -0.48412 0.39246 -1.234 0.2181
## SlibsL.d 0.01644 0.44783 0.037 0.9707
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 398 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02474, Adjusted R-squared: 0.01494
## F-statistic: 2.524 on 4 and 398 DF, p-value: 0.04049
# Action 22
slib.b22 <- lm(act22 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b22)
##
## Call:
## lm(formula = act22 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1351 -1.3415 -0.1351 1.7143 3.3279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1351 0.3247 3.496 0.000525 ***
## SlibsSC.d -1.4630 0.4115 -3.555 0.000423 ***
## SlibsC.d -0.7937 0.3911 -2.029 0.043089 *
## SlibsM.d -0.8494 0.3586 -2.369 0.018335 *
## SlibsL.d -0.5458 0.4184 -1.305 0.192756
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.975 on 399 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03383, Adjusted R-squared: 0.02414
## F-statistic: 3.492 on 4 and 399 DF, p-value: 0.008087
# Action 23
slib.b23 <- lm(act23 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b23)
##
## Call:
## lm(formula = act23 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6154 -2.1138 0.1846 2.1846 3.1846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56000 0.45302 1.236 0.217
## SlibsSC.d -0.29171 0.57477 -0.508 0.612
## SlibsC.d -0.74462 0.53307 -1.397 0.164
## SlibsM.d -0.44618 0.49693 -0.898 0.370
## SlibsL.d 0.05538 0.58033 0.095 0.924
##
## Residual standard error: 2.265 on 288 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.01368, Adjusted R-squared: -2.033e-05
## F-statistic: 0.9985 on 4 and 288 DF, p-value: 0.4087
# Action 24
slib.b24 <- lm(act24 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b24)
##
## Call:
## lm(formula = act24 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9189 -1.8727 0.1273 1.6453 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08108 0.34610 -0.234 0.815
## SlibsSC.d -0.04619 0.44762 -0.103 0.918
## SlibsC.d -0.41892 0.40983 -1.022 0.307
## SlibsM.d -0.14880 0.38112 -0.390 0.696
## SlibsL.d -0.05685 0.44294 -0.128 0.898
##
## Residual standard error: 2.105 on 411 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.004608, Adjusted R-squared: -0.005079
## F-statistic: 0.4757 on 4 and 411 DF, p-value: 0.7536
# Action 25
slib.b25 <- lm(act25 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b25)
##
## Call:
## lm(formula = act25 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3429 -0.8925 0.1167 1.5000 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3429 0.3099 4.333 1.82e-05 ***
## SlibsSC.d -1.4595 0.3900 -3.743 0.000206 ***
## SlibsC.d -0.8429 0.3592 -2.347 0.019380 *
## SlibsM.d -0.4504 0.3378 -1.333 0.183136
## SlibsL.d -0.2159 0.3865 -0.559 0.576784
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 441 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.049, Adjusted R-squared: 0.04037
## F-statistic: 5.68 on 4 and 441 DF, p-value: 0.0001824
# Action 26
slib.b26 <- lm(act26 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b26)
##
## Call:
## lm(formula = act26 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5686 -1.2581 0.4595 1.4314 2.0526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9474 0.4193 2.259 0.0248 *
## SlibsSC.d 0.5932 0.5158 1.150 0.2514
## SlibsC.d 0.6213 0.4912 1.265 0.2073
## SlibsM.d 0.6706 0.4619 1.452 0.1480
## SlibsL.d 0.3107 0.5325 0.583 0.5602
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.828 on 222 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01216, Adjusted R-squared: -0.005638
## F-statistic: 0.6832 on 4 and 222 DF, p-value: 0.6042
# Action 27
slib.b27 <- lm(act27 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b27)
##
## Call:
## lm(formula = act27 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3871 -0.9483 0.2812 1.5577 2.5577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3871 0.3372 4.113 4.99e-05 ***
## SlibsSC.d -0.9448 0.4261 -2.217 0.0273 *
## SlibsC.d -0.6683 0.4109 -1.627 0.1048
## SlibsM.d -0.8359 0.3762 -2.222 0.0270 *
## SlibsL.d -0.2093 0.4383 -0.478 0.6333
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 314 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02704, Adjusted R-squared: 0.01464
## F-statistic: 2.182 on 4 and 314 DF, p-value: 0.07092
# Action 28
slib.b28 <- lm(act28 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b28)
##
## Call:
## lm(formula = act28 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3214 -0.9728 0.2105 1.6786 2.2105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1935 0.3277 3.642 0.000309 ***
## SlibsSC.d -0.4041 0.4072 -0.992 0.321683
## SlibsC.d 0.1279 0.3834 0.334 0.738946
## SlibsM.d -0.2208 0.3606 -0.612 0.540805
## SlibsL.d -0.1935 0.4098 -0.472 0.636987
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 369 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.009436, Adjusted R-squared: -0.001302
## F-statistic: 0.8787 on 4 and 369 DF, p-value: 0.4767
# Action 29
slib.b29 <- lm(act29 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b29)
##
## Call:
## lm(formula = act29 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4828 -1.0893 0.0182 1.5172 2.0182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4828 0.3277 4.525 8.19e-06 ***
## SlibsSC.d -0.3935 0.4037 -0.975 0.330
## SlibsC.d -0.4587 0.3807 -1.205 0.229
## SlibsM.d -0.3399 0.3586 -0.948 0.344
## SlibsL.d -0.5009 0.4050 -1.237 0.217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.765 on 365 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.005014, Adjusted R-squared: -0.00589
## F-statistic: 0.4598 on 4 and 365 DF, p-value: 0.7652
# Action 30
slib.b30 <- lm(act30 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d, data = d)
summary(slib.b30)
##
## Call:
## lm(formula = act30 ~ SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1765 -1.0435 0.8235 1.8235 1.9875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.142857 0.354557 3.223 0.00139 **
## SlibsSC.d -0.002506 0.432970 -0.006 0.99538
## SlibsC.d -0.130357 0.411958 -0.316 0.75186
## SlibsM.d -0.099379 0.388866 -0.256 0.79844
## SlibsL.d 0.033613 0.441280 0.076 0.93933
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.001091, Adjusted R-squared: -0.01036
## F-statistic: 0.09525 on 4 and 349 DF, p-value: 0.9839
Significantly higher than 0: 2, 6, 10, 11, 16, 17, 18, 19, 20, 22,
25, 26, 27, 28, 29, 30 Not different from 0: 1, 3, 4, 5, 7, 8, 9, 12,
13, 14, 15, 21, 23, 24 Significantly lower than 0: None
1. Condition Differences?
# Action 1
slib.c.b1 <- lm(act1 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b1) # no
##
## Call:
## lm(formula = act1 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.750 -2.200 0.250 1.765 3.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07343 0.37571 0.195 0.845
## SlibsSC.d -0.55914 0.46104 -1.213 0.226
## SlibsC.d -0.55232 0.43355 -1.274 0.203
## SlibsM.d -0.13050 0.40785 -0.320 0.749
## SlibsL.d 0.57430 0.46060 1.247 0.213
## cond.c -0.76224 0.75142 -1.014 0.311
## SlibsSC.d:cond.c 1.39081 0.92209 1.508 0.132
## SlibsC.d:cond.c 0.57717 0.86711 0.666 0.506
## SlibsM.d:cond.c 0.17871 0.81569 0.219 0.827
## SlibsL.d:cond.c 0.96678 0.92121 1.049 0.295
##
## Residual standard error: 2.148 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.04314, Adjusted R-squared: 0.02353
## F-statistic: 2.199 on 9 and 439 DF, p-value: 0.02116
# Action 2
slib.c.b2 <- lm(act2 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b2) #no
##
## Call:
## lm(formula = act2 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -1.068 0.375 1.615 2.375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04545 0.37117 2.817 0.0052 **
## SlibsSC.d -0.06690 0.45975 -0.146 0.8844
## SlibsC.d -0.15720 0.43393 -0.362 0.7174
## SlibsM.d 0.14685 0.40926 0.359 0.7200
## SlibsL.d 0.51705 0.46645 1.108 0.2686
## cond.c 0.09091 0.74234 0.122 0.9026
## SlibsSC.d:cond.c -0.34432 0.91950 -0.374 0.7083
## SlibsC.d:cond.c -0.61742 0.86785 -0.711 0.4774
## SlibsM.d:cond.c -0.47552 0.81852 -0.581 0.5617
## SlibsL.d:cond.c -0.21591 0.93289 -0.231 0.8171
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.812 on 280 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -0.006049
## F-statistic: 0.8069 on 9 and 280 DF, p-value: 0.6102
# Action 3
slib.c.b3 <- lm(act3 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b3) #no
##
## Call:
## lm(formula = act3 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9375 0.0625 1.6410 3.9394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34239 0.35791 0.957 0.33928
## SlibsSC.d -1.22280 0.44135 -2.771 0.00584 **
## SlibsC.d -0.76303 0.41335 -1.846 0.06558 .
## SlibsM.d -0.35660 0.38743 -0.920 0.35787
## SlibsL.d -0.45601 0.43455 -1.049 0.29459
## cond.c -0.18478 0.71583 -0.258 0.79642
## SlibsSC.d:cond.c 0.06682 0.88270 0.076 0.93970
## SlibsC.d:cond.c 0.24827 0.82670 0.300 0.76408
## SlibsM.d:cond.c 0.28137 0.77486 0.363 0.71669
## SlibsL.d:cond.c 1.23960 0.86911 1.426 0.15450
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03846, Adjusted R-squared: 0.01852
## F-statistic: 1.929 on 9 and 434 DF, p-value: 0.04628
# Action 4
slib.c.b4 <- lm(act4 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b4) # no
##
## Call:
## lm(formula = act4 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8400 -1.8941 0.1059 2.0378 3.3488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.46316 0.42370 1.093 0.275
## SlibsSC.d -0.26518 0.52218 -0.508 0.612
## SlibsC.d -0.73758 0.49607 -1.487 0.138
## SlibsM.d -0.67610 0.45721 -1.479 0.140
## SlibsL.d -0.02801 0.51207 -0.055 0.956
## cond.c -0.12632 0.84741 -0.149 0.882
## SlibsSC.d:cond.c 0.08750 1.04436 0.084 0.933
## SlibsC.d:cond.c -0.02252 0.99214 -0.023 0.982
## SlibsM.d:cond.c -0.08780 0.91443 -0.096 0.924
## SlibsL.d:cond.c 0.93601 1.02414 0.914 0.361
##
## Residual standard error: 2.169 on 361 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.0238, Adjusted R-squared: -0.0005384
## F-statistic: 0.9779 on 9 and 361 DF, p-value: 0.4579
# Action 8
slib.c.b8 <- lm(act8 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b8) # yes, cond difference (negative)
##
## Call:
## lm(formula = act8 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7083 0.3409 2.078 0.038259 *
## SlibsSC.d -1.8635 0.4266 -4.368 1.54e-05 ***
## SlibsC.d -1.3385 0.3984 -3.360 0.000843 ***
## SlibsM.d -1.1487 0.3721 -3.087 0.002141 **
## SlibsL.d -0.1976 0.4335 -0.456 0.648692
## cond.c 0.8333 0.6818 1.222 0.222206
## SlibsSC.d:cond.c -0.6769 0.8532 -0.793 0.427957
## SlibsC.d:cond.c -1.8270 0.7967 -2.293 0.022285 *
## SlibsM.d:cond.c -0.7235 0.7442 -0.972 0.331434
## SlibsL.d:cond.c -0.2119 0.8670 -0.244 0.807017
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
# Action 9
slib.c.b9 <- lm(act9 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b9) # no
##
## Call:
## lm(formula = act9 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.5893 0.0465 1.4286 4.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.12500 0.34711 0.360 0.7189
## SlibsSC.d -0.91572 0.43117 -2.124 0.0342 *
## SlibsC.d -0.35361 0.40014 -0.884 0.3773
## SlibsM.d 0.08077 0.37535 0.215 0.8297
## SlibsL.d 0.45238 0.42624 1.061 0.2891
## cond.c -0.41667 0.69422 -0.600 0.5487
## SlibsSC.d:cond.c 1.52753 0.86233 1.771 0.0772 .
## SlibsC.d:cond.c 0.05246 0.80028 0.066 0.9478
## SlibsM.d:cond.c 0.57331 0.75070 0.764 0.4455
## SlibsL.d:cond.c 0.40476 0.85248 0.475 0.6352
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.964 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.05102, Adjusted R-squared: 0.03157
## F-statistic: 2.623 on 9 and 439 DF, p-value: 0.00582
# Action 10
slib.c.b10 <- lm(act10 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b10) # no
##
## Call:
## lm(formula = act10 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3750 -1.9896 0.0217 1.8350 3.6579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1875 0.3357 3.538 0.000444 ***
## SlibsSC.d -1.7998 0.4209 -4.276 2.31e-05 ***
## SlibsC.d -1.4187 0.3931 -3.609 0.000340 ***
## SlibsM.d -1.1102 0.3667 -3.028 0.002600 **
## SlibsL.d -0.4756 0.4249 -1.119 0.263546
## cond.c 0.3750 0.6713 0.559 0.576709
## SlibsSC.d:cond.c -0.4662 0.8419 -0.554 0.579986
## SlibsC.d:cond.c -0.7939 0.7862 -1.010 0.313080
## SlibsM.d:cond.c -0.5505 0.7333 -0.751 0.453245
## SlibsL.d:cond.c 0.1298 0.8498 0.153 0.878642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.08 on 467 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05853, Adjusted R-squared: 0.04038
## F-statistic: 3.226 on 9 and 467 DF, p-value: 0.000826
# Action 11
slib.c.b11 <- lm(act11 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b11) # no
##
## Call:
## lm(formula = act11 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -1.0299 0.3452 1.5429 2.5735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.49286 0.38503 3.877 0.00013 ***
## SlibsSC.d -0.76202 0.46784 -1.629 0.10439
## SlibsC.d -0.64762 0.44921 -1.442 0.15042
## SlibsM.d -0.76470 0.41698 -1.834 0.06765 .
## SlibsL.d 0.16190 0.49199 0.329 0.74232
## cond.c -0.58571 0.77007 -0.761 0.44749
## SlibsSC.d:cond.c 0.96405 0.93568 1.030 0.30368
## SlibsC.d:cond.c -0.19048 0.89841 -0.212 0.83224
## SlibsM.d:cond.c -0.01767 0.83397 -0.021 0.98311
## SlibsL.d:cond.c 0.56190 0.98398 0.571 0.56838
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 304 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.0581, Adjusted R-squared: 0.03021
## F-statistic: 2.083 on 9 and 304 DF, p-value: 0.03077
# Action 12
slib.c.b12 <- lm(act12 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b12) # no
##
## Call:
## lm(formula = act12 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1304 -1.8929 -0.1098 1.8696 4.1071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38824 0.42814 0.907 0.3651
## SlibsSC.d -1.23491 0.51412 -2.402 0.0168 *
## SlibsC.d -0.95686 0.48531 -1.972 0.0494 *
## SlibsM.d -0.39257 0.46105 -0.851 0.3951
## SlibsL.d 0.39365 0.52149 0.755 0.4508
## cond.c 0.42353 0.85628 0.495 0.6212
## SlibsSC.d:cond.c 0.09741 1.02825 0.095 0.9246
## SlibsC.d:cond.c -0.89412 0.97063 -0.921 0.3576
## SlibsM.d:cond.c -0.65171 0.92210 -0.707 0.4802
## SlibsL.d:cond.c 0.27357 1.04299 0.262 0.7932
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.149 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0624, Adjusted R-squared: 0.0399
## F-statistic: 2.773 on 9 and 375 DF, p-value: 0.003732
# Action 13
slib.c.b13 <- lm(act13 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b13) # yes, condition difference
##
## Call:
## lm(formula = act13 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.23810 0.35832 0.664 0.5067
## SlibsSC.d -0.78567 0.44527 -1.764 0.0784 .
## SlibsC.d -0.40787 0.41934 -0.973 0.3313
## SlibsM.d -0.31785 0.38906 -0.817 0.4144
## SlibsL.d 0.10112 0.44280 0.228 0.8195
## cond.c -0.19048 0.71665 -0.266 0.7905
## SlibsSC.d:cond.c -0.13543 0.89053 -0.152 0.8792
## SlibsC.d:cond.c -0.68566 0.83869 -0.818 0.4141
## SlibsM.d:cond.c 0.52581 0.77812 0.676 0.4996
## SlibsL.d:cond.c 0.04538 0.88559 0.051 0.9592
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
# Action 14
slib.c.b14 <- lm(act14 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b14) # no
##
## Call:
## lm(formula = act14 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.3731 0.1429 1.6269 3.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1786 0.4521 0.395 0.693
## SlibsSC.d 0.2716 0.5576 0.487 0.627
## SlibsC.d 0.1559 0.5249 0.297 0.767
## SlibsM.d 0.2457 0.4869 0.505 0.614
## SlibsL.d 0.8160 0.5610 1.455 0.147
## cond.c 0.6429 0.9043 0.711 0.478
## SlibsSC.d:cond.c 0.0221 1.1152 0.020 0.984
## SlibsC.d:cond.c -0.9368 1.0498 -0.892 0.373
## SlibsM.d:cond.c -0.5406 0.9737 -0.555 0.579
## SlibsL.d:cond.c -0.1320 1.1220 -0.118 0.906
##
## Residual standard error: 2.04 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.02046, Adjusted R-squared: -0.01125
## F-statistic: 0.6452 on 9 and 278 DF, p-value: 0.7579
# Action 15
slib.c.b15 <- lm(act15 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b15) # no
##
## Call:
## lm(formula = act15 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32549 0.36180 0.900 0.369
## SlibsSC.d -0.70078 0.45015 -1.557 0.120
## SlibsC.d -0.20374 0.42670 -0.477 0.633
## SlibsM.d -0.22648 0.39518 -0.573 0.567
## SlibsL.d 0.47951 0.47411 1.011 0.312
## cond.c 0.41569 0.72361 0.574 0.566
## SlibsSC.d:cond.c -0.08935 0.90029 -0.099 0.921
## SlibsC.d:cond.c -0.61663 0.85340 -0.723 0.470
## SlibsM.d:cond.c -0.50981 0.79036 -0.645 0.519
## SlibsL.d:cond.c -1.92569 0.94822 -2.031 0.043 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
# Action 16
slib.c.b16 <- lm(act16 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b16) # no
##
## Call:
## lm(formula = act16 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2105 -1.1000 0.2034 1.4500 2.4500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.955263 0.359998 2.654 0.00836 **
## SlibsSC.d -0.394549 0.449865 -0.877 0.38112
## SlibsC.d 0.019195 0.420615 0.046 0.96363
## SlibsM.d 0.009023 0.392248 0.023 0.98166
## SlibsL.d 0.128070 0.459059 0.279 0.78044
## cond.c -0.510526 0.719997 -0.709 0.47880
## SlibsSC.d:cond.c 0.531955 0.899730 0.591 0.55478
## SlibsC.d:cond.c 0.930031 0.841230 1.106 0.26974
## SlibsM.d:cond.c 0.781955 0.784497 0.997 0.31963
## SlibsL.d:cond.c 0.677193 0.918117 0.738 0.46130
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.843 on 322 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.01422, Adjusted R-squared: -0.01334
## F-statistic: 0.5159 on 9 and 322 DF, p-value: 0.8629
# Action 17
slib.c.b17 <- lm(act17 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b17) # marginal
##
## Call:
## lm(formula = act17 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.28214 0.34678 3.697 0.000248 ***
## SlibsSC.d -0.93907 0.43086 -2.180 0.029865 *
## SlibsC.d -1.03372 0.40799 -2.534 0.011661 *
## SlibsM.d -0.81187 0.37848 -2.145 0.032540 *
## SlibsL.d -0.72154 0.43238 -1.669 0.095933 .
## cond.c 0.86429 0.69357 1.246 0.213428
## SlibsSC.d:cond.c -0.03528 0.86172 -0.041 0.967361
## SlibsC.d:cond.c -1.70076 0.81598 -2.084 0.037754 *
## SlibsM.d:cond.c -1.16286 0.75697 -1.536 0.125264
## SlibsL.d:cond.c -0.65216 0.86475 -0.754 0.451189
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
# Action 18
slib.c.b18 <- lm(act18 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b18) # no
##
## Call:
## lm(formula = act18 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.1538 0.2031 1.4211 3.0400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.77020 0.35405 2.175 0.0303 *
## SlibsSC.d -0.59377 0.43606 -1.362 0.1742
## SlibsC.d -0.28628 0.41430 -0.691 0.4900
## SlibsM.d 0.04382 0.38709 0.113 0.9099
## SlibsL.d 0.16156 0.43113 0.375 0.7081
## cond.c 0.09596 0.70810 0.136 0.8923
## SlibsSC.d:cond.c 0.33690 0.87212 0.386 0.6995
## SlibsC.d:cond.c -0.28602 0.82860 -0.345 0.7302
## SlibsM.d:cond.c -0.13025 0.77418 -0.168 0.8665
## SlibsL.d:cond.c 0.34821 0.86227 0.404 0.6866
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.85 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.0227, Adjusted R-squared: -0.002867
## F-statistic: 0.8879 on 9 and 344 DF, p-value: 0.5362
# Action 19
slib.c.b19 <- lm(act19 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b19) # marginal
##
## Call:
## lm(formula = act19 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.29396 0.34618 3.738 0.000227 ***
## SlibsSC.d -0.39349 0.44749 -0.879 0.380015
## SlibsC.d -0.15507 0.41945 -0.370 0.711907
## SlibsM.d -0.04537 0.38551 -0.118 0.906394
## SlibsL.d 0.11081 0.47161 0.235 0.814428
## cond.c -0.12637 0.69236 -0.183 0.855309
## SlibsSC.d:cond.c 0.17730 0.89498 0.198 0.843115
## SlibsC.d:cond.c -0.76252 0.83890 -0.909 0.364203
## SlibsM.d:cond.c -0.33800 0.77102 -0.438 0.661465
## SlibsL.d:cond.c -0.39744 0.94322 -0.421 0.673835
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
# Action 20
slib.c.b20 <- lm(act20 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b20) # no
##
## Call:
## lm(formula = act20 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.589 -1.054 0.411 1.411 2.308
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98901 0.34388 2.876 0.0043 **
## SlibsSC.d 0.20012 0.42365 0.472 0.6370
## SlibsC.d 0.15584 0.40584 0.384 0.7012
## SlibsM.d 0.33230 0.37869 0.877 0.3809
## SlibsL.d 0.17575 0.43370 0.405 0.6856
## cond.c -0.59341 0.68776 -0.863 0.3889
## SlibsSC.d:cond.c 0.01515 0.84730 0.018 0.9857
## SlibsC.d:cond.c 0.19560 0.81168 0.241 0.8097
## SlibsM.d:cond.c 0.05794 0.75738 0.076 0.9391
## SlibsL.d:cond.c -0.11707 0.86740 -0.135 0.8927
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.786 on 314 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.028, Adjusted R-squared: 0.0001354
## F-statistic: 1.005 on 9 and 314 DF, p-value: 0.4359
# Action 21
slib.c.b21 <- lm(act21 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b21) # no
##
## Call:
## lm(formula = act21 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5556 -1.8723 0.1609 1.9286 3.9286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42778 0.36123 1.184 0.2370
## SlibsSC.d -1.03912 0.44723 -2.323 0.0207 *
## SlibsC.d -0.72018 0.42861 -1.680 0.0937 .
## SlibsM.d -0.48324 0.39510 -1.223 0.2220
## SlibsL.d 0.02187 0.45099 0.049 0.9613
## cond.c 0.07778 0.72246 0.108 0.9143
## SlibsSC.d:cond.c 0.55668 0.89446 0.622 0.5341
## SlibsC.d:cond.c 0.25171 0.85721 0.294 0.7692
## SlibsM.d:cond.c 0.13314 0.79019 0.168 0.8663
## SlibsL.d:cond.c 0.13403 0.90197 0.149 0.8820
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.067 on 393 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.03105, Adjusted R-squared: 0.008857
## F-statistic: 1.399 on 9 and 393 DF, p-value: 0.1863
# Action 23
slib.c.b23 <- lm(act23 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b23) # no
##
## Call:
## lm(formula = act23 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.222 -2.250 0.125 1.870 3.297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7049 0.4716 1.495 0.1361
## SlibsSC.d -0.4370 0.5895 -0.741 0.4591
## SlibsC.d -0.8714 0.5503 -1.584 0.1144
## SlibsM.d -0.5995 0.5140 -1.166 0.2444
## SlibsL.d -0.2021 0.5985 -0.338 0.7358
## cond.c 1.0347 0.9432 1.097 0.2736
## SlibsSC.d:cond.c -0.9990 1.1789 -0.847 0.3975
## SlibsC.d:cond.c -1.2963 1.1005 -1.178 0.2398
## SlibsM.d:cond.c -1.4489 1.0279 -1.410 0.1598
## SlibsL.d:cond.c -2.2902 1.1970 -1.913 0.0567 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.264 on 283 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.03197, Adjusted R-squared: 0.001189
## F-statistic: 1.039 on 9 and 283 DF, p-value: 0.4092
# Action 24
slib.c.b24 <- lm(act24 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b24) # no
##
## Call:
## lm(formula = act24 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08939 0.35250 -0.254 0.800
## SlibsSC.d -0.04233 0.45407 -0.093 0.926
## SlibsC.d -0.37942 0.41707 -0.910 0.364
## SlibsM.d -0.15915 0.38706 -0.411 0.681
## SlibsL.d -0.06502 0.45059 -0.144 0.885
## cond.c -0.08788 0.70500 -0.125 0.901
## SlibsSC.d:cond.c 0.15777 0.90815 0.174 0.862
## SlibsC.d:cond.c -0.27080 0.83413 -0.325 0.746
## SlibsM.d:cond.c -0.56138 0.77413 -0.725 0.469
## SlibsL.d:cond.c -0.10330 0.90117 -0.115 0.909
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
# Action 25
slib.c.b25 <- lm(act25 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b25) # no
##
## Call:
## lm(formula = act25 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -0.9307 0.1529 1.3778 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.41667 0.31603 4.483 9.44e-06 ***
## SlibsSC.d -1.55303 0.39544 -3.927 9.98e-05 ***
## SlibsC.d -0.90380 0.36502 -2.476 0.0137 *
## SlibsM.d -0.52779 0.34359 -1.536 0.1252
## SlibsL.d -0.28310 0.39135 -0.723 0.4698
## cond.c 0.73810 0.63207 1.168 0.2435
## SlibsSC.d:cond.c -0.34416 0.79088 -0.435 0.6637
## SlibsC.d:cond.c -0.95681 0.73004 -1.311 0.1907
## SlibsM.d:cond.c -0.82173 0.68718 -1.196 0.2324
## SlibsL.d:cond.c 0.09154 0.78271 0.117 0.9069
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 436 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.06134, Adjusted R-squared: 0.04197
## F-statistic: 3.166 on 9 and 436 DF, p-value: 0.001022
# Action 28
slib.c.b28 <- lm(act28 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b28) # no
##
## Call:
## lm(formula = act28 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.219298 0.336662 3.622 0.000334 ***
## SlibsSC.d -0.391134 0.415083 -0.942 0.346662
## SlibsC.d 0.102130 0.391200 0.261 0.794186
## SlibsM.d -0.240759 0.368931 -0.653 0.514436
## SlibsL.d -0.200956 0.419089 -0.480 0.631866
## cond.c 0.228070 0.673325 0.339 0.735014
## SlibsSC.d:cond.c -1.110204 0.830166 -1.337 0.181951
## SlibsC.d:cond.c -0.489975 0.782399 -0.626 0.531546
## SlibsM.d:cond.c -0.040222 0.737862 -0.055 0.956558
## SlibsL.d:cond.c -0.003885 0.838178 -0.005 0.996304
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
# Action 30
slib.c.b30 <- lm(act30 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) * cond.c, data = d)
summary(slib.c.b30) # no
##
## Call:
## lm(formula = act30 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15625 0.35805 3.229 0.00136 **
## SlibsSC.d -0.08375 0.43685 -0.192 0.84808
## SlibsC.d -0.13226 0.41545 -0.318 0.75041
## SlibsM.d -0.11213 0.39203 -0.286 0.77503
## SlibsL.d 0.02635 0.44551 0.059 0.95287
## cond.c 0.18750 0.71611 0.262 0.79361
## SlibsSC.d:cond.c 0.91750 0.87370 1.050 0.29440
## SlibsC.d:cond.c -0.41730 0.83091 -0.502 0.61584
## SlibsM.d:cond.c -0.27574 0.78407 -0.352 0.72530
## SlibsL.d:cond.c -0.09816 0.89101 -0.110 0.91234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
Climate > Control: none Control > Climate: none
2. Gender effects?
# Action 1
slib.g.b1 <- lm(act1 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b1)
##
## Call:
## lm(formula = act1 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8261 0.2263 2.1538 4.1538
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1739 0.3913 -0.444 0.6570
## SlibsSC.d -0.2226 0.4794 -0.464 0.6427
## SlibsC.d -0.5314 0.4608 -1.153 0.2495
## SlibsM.d 0.3108 0.4316 0.720 0.4718
## SlibsL.d 0.7806 0.5019 1.555 0.1206
## gend.mf -1.6522 0.7827 -2.111 0.0353 *
## SlibsSC.d:gend.mf 2.0973 0.9588 2.187 0.0292 *
## SlibsC.d:gend.mf 0.7551 0.9217 0.819 0.4131
## SlibsM.d:gend.mf 2.3785 0.8631 2.756 0.0061 **
## SlibsL.d:gend.mf 1.5055 1.0038 1.500 0.1344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.135 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.05646, Adjusted R-squared: 0.03703
## F-statistic: 2.906 on 9 and 437 DF, p-value: 0.002374
# Action 2
slib.g.b2 <- lm(act2 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b2)
##
## Call:
## lm(formula = act2 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4375 -1.2184 0.5263 1.5625 2.6087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.94167 0.39471 2.386 0.0177 *
## SlibsSC.d 0.09147 0.47821 0.191 0.8484
## SlibsC.d -0.16268 0.45879 -0.355 0.7232
## SlibsM.d 0.24753 0.44458 0.557 0.5781
## SlibsL.d 0.77708 0.51233 1.517 0.1305
## gend.mf -0.38333 0.78942 -0.486 0.6276
## SlibsSC.d:gend.mf 1.26442 0.95642 1.322 0.1872
## SlibsC.d:gend.mf -0.39203 0.91758 -0.427 0.6695
## SlibsM.d:gend.mf 0.32494 0.88916 0.365 0.7151
## SlibsL.d:gend.mf 0.94583 1.02466 0.923 0.3568
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.803 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.03738, Adjusted R-squared: 0.006217
## F-statistic: 1.199 on 9 and 278 DF, p-value: 0.2951
# Action 3
slib.g.b3 <- lm(act3 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b3)
##
## Call:
## lm(formula = act3 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.8390 -0.0368 1.4167 4.1579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2417 0.3798 0.636 0.5249
## SlibsSC.d -1.0380 0.4640 -2.237 0.0258 *
## SlibsC.d -0.6555 0.4435 -1.478 0.1401
## SlibsM.d -0.3084 0.4164 -0.741 0.4593
## SlibsL.d -0.3539 0.4703 -0.753 0.4521
## gend.mf -0.6833 0.7595 -0.900 0.3688
## SlibsSC.d:gend.mf 1.4064 0.9280 1.516 0.1304
## SlibsC.d:gend.mf 0.6962 0.8870 0.785 0.4329
## SlibsM.d:gend.mf 0.4764 0.8328 0.572 0.5676
## SlibsL.d:gend.mf 1.0189 0.9405 1.083 0.2793
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.03535, Adjusted R-squared: 0.01525
## F-statistic: 1.759 on 9 and 432 DF, p-value: 0.07405
# Action 4
slib.g.b4 <- lm(act4 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b4)
##
## Call:
## lm(formula = act4 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.944 -1.904 0.200 2.056 3.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3222 0.4279 0.753 0.452
## SlibsSC.d -0.1087 0.5257 -0.207 0.836
## SlibsC.d -0.7513 0.5116 -1.468 0.143
## SlibsM.d -0.5399 0.4766 -1.133 0.258
## SlibsL.d 0.1331 0.5336 0.250 0.803
## gend.mf -1.2444 0.8558 -1.454 0.147
## SlibsSC.d:gend.mf 1.6000 1.0513 1.522 0.129
## SlibsC.d:gend.mf 0.5787 1.0233 0.566 0.572
## SlibsM.d:gend.mf 1.2092 0.9532 1.269 0.205
## SlibsL.d:gend.mf 1.5837 1.0671 1.484 0.139
##
## Residual standard error: 2.17 on 359 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02849, Adjusted R-squared: 0.004137
## F-statistic: 1.17 on 9 and 359 DF, p-value: 0.3132
# Action 5
slib.g.b5 <- lm(act5 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b5) # nothing
##
## Call:
## lm(formula = act5 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3000 -1.2128 0.4615 1.7000 2.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3808 0.3953 0.963 0.3362
## SlibsSC.d 0.3391 0.4781 0.709 0.4787
## SlibsC.d 0.4948 0.4572 1.082 0.2800
## SlibsM.d 0.7057 0.4470 1.579 0.1156
## SlibsL.d 1.1026 0.5092 2.165 0.0312 *
## gend.mf -0.1615 0.7905 -0.204 0.8382
## SlibsSC.d:gend.mf -0.3217 0.9562 -0.336 0.7368
## SlibsC.d:gend.mf -0.5128 0.9143 -0.561 0.5754
## SlibsM.d:gend.mf 0.2109 0.8941 0.236 0.8137
## SlibsL.d:gend.mf 0.5282 1.0183 0.519 0.6044
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 285 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: -0.0005149
## F-statistic: 0.9832 on 9 and 285 DF, p-value: 0.454
# Action 6
slib.g.b6 <- lm(act6 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b6)
##
## Call:
## lm(formula = act6 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5455 -1.2424 0.5667 1.5667 2.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9394 0.3588 2.618 0.00923 **
## SlibsSC.d -0.1147 0.4391 -0.261 0.79404
## SlibsC.d 0.3173 0.4187 0.758 0.44912
## SlibsM.d 0.4188 0.4024 1.041 0.29873
## SlibsL.d 0.6434 0.4657 1.381 0.16803
## gend.mf -1.2121 0.7176 -1.689 0.09208 .
## SlibsSC.d:gend.mf 0.8009 0.8782 0.912 0.36242
## SlibsC.d:gend.mf 0.8588 0.8374 1.026 0.30584
## SlibsM.d:gend.mf 1.4332 0.8049 1.781 0.07586 .
## SlibsL.d:gend.mf 1.8928 0.9314 2.032 0.04290 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 347 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -1.033e-06
## F-statistic: 1 on 9 and 347 DF, p-value: 0.4397
# Action 7
slib.g.b7 <- lm(act7 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b7)
##
## Call:
## lm(formula = act7 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8433 0.1567 1.6364 3.6364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1178 0.4077 0.289 0.773
## SlibsSC.d -0.2295 0.4976 -0.461 0.645
## SlibsC.d -0.5375 0.4831 -1.113 0.267
## SlibsM.d -0.2194 0.4472 -0.491 0.624
## SlibsL.d -0.0746 0.5143 -0.145 0.885
## gend.mf -1.1244 0.8153 -1.379 0.169
## SlibsSC.d:gend.mf 1.5296 0.9952 1.537 0.125
## SlibsC.d:gend.mf 0.6912 0.9662 0.715 0.475
## SlibsM.d:gend.mf 1.2347 0.8944 1.380 0.168
## SlibsL.d:gend.mf 1.4381 1.0286 1.398 0.163
##
## Residual standard error: 2.097 on 403 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: -0.006717
## F-statistic: 0.6946 on 9 and 403 DF, p-value: 0.714
# Action 8
slib.g.b8 <- lm(act8 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b8)
##
## Call:
## lm(formula = act8 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9286 -1.9091 -0.2143 1.6875 4.5319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4188 0.3772 1.110 0.26735
## SlibsSC.d -1.3439 0.4661 -2.883 0.00411 **
## SlibsC.d -1.1554 0.4432 -2.607 0.00942 **
## SlibsM.d -0.8022 0.4165 -1.926 0.05471 .
## SlibsL.d 0.1424 0.4954 0.287 0.77391
## gend.mf -1.0195 0.7543 -1.352 0.17718
## SlibsSC.d:gend.mf 2.2332 0.9321 2.396 0.01697 *
## SlibsC.d:gend.mf 0.9213 0.8864 1.039 0.29917
## SlibsM.d:gend.mf 1.2331 0.8330 1.480 0.13949
## SlibsL.d:gend.mf 1.3256 0.9908 1.338 0.18157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 469 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.07584, Adjusted R-squared: 0.05811
## F-statistic: 4.276 on 9 and 469 DF, p-value: 2.361e-05
# Action 9
slib.g.b9 <- lm(act9 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b9)
##
## Call:
## lm(formula = act9 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5882 -1.5882 0.1481 1.5417 3.8261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04356 0.35872 -0.121 0.903
## SlibsSC.d -0.69381 0.44398 -1.563 0.119
## SlibsC.d -0.17635 0.42203 -0.418 0.676
## SlibsM.d 0.21092 0.39622 0.532 0.595
## SlibsL.d 0.62491 0.45435 1.375 0.170
## gend.mf -1.00379 0.71745 -1.399 0.162
## SlibsSC.d:gend.mf 0.82635 0.88796 0.931 0.353
## SlibsC.d:gend.mf 1.14731 0.84407 1.359 0.175
## SlibsM.d:gend.mf 0.93573 0.79245 1.181 0.238
## SlibsL.d:gend.mf 1.01756 0.90869 1.120 0.263
##
## Residual standard error: 1.97 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.04187, Adjusted R-squared: 0.02214
## F-statistic: 2.122 on 9 and 437 DF, p-value: 0.02658
# Action 10
slib.g.b10 <- lm(act10 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b10)
##
## Call:
## lm(formula = act10 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5862 -2.0719 0.1948 1.5714 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7431 0.3793 1.959 0.05069 .
## SlibsSC.d -1.2842 0.4628 -2.775 0.00574 **
## SlibsC.d -1.0548 0.4427 -2.383 0.01759 *
## SlibsM.d -0.6528 0.4173 -1.564 0.11839
## SlibsL.d 0.1899 0.4823 0.394 0.69388
## gend.mf -1.6862 0.7586 -2.223 0.02671 *
## SlibsSC.d:gend.mf 2.1596 0.9255 2.333 0.02005 *
## SlibsC.d:gend.mf 1.4524 0.8854 1.640 0.10158
## SlibsM.d:gend.mf 1.7230 0.8346 2.065 0.03951 *
## SlibsL.d:gend.mf 2.6951 0.9645 2.794 0.00542 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 466 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07046, Adjusted R-squared: 0.05251
## F-statistic: 3.925 on 9 and 466 DF, p-value: 7.905e-05
# Action 11
slib.g.b11 <- lm(act11 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b11)
##
## Call:
## lm(formula = act11 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5625 -1.0000 0.2834 1.4375 2.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.49554 0.42349 3.531 0.000478 ***
## SlibsSC.d -0.70261 0.50138 -1.401 0.162142
## SlibsC.d -0.76826 0.48924 -1.570 0.117384
## SlibsM.d -0.77894 0.46165 -1.687 0.092576 .
## SlibsL.d 0.23386 0.52699 0.444 0.657527
## gend.mf -0.13393 0.84698 -0.158 0.874464
## SlibsSC.d:gend.mf 1.27534 1.00277 1.272 0.204415
## SlibsC.d:gend.mf -0.41153 0.97847 -0.421 0.674360
## SlibsM.d:gend.mf 0.07217 0.92329 0.078 0.937750
## SlibsL.d:gend.mf 0.52129 1.05397 0.495 0.621244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 302 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.05336, Adjusted R-squared: 0.02515
## F-statistic: 1.891 on 9 and 302 DF, p-value: 0.05276
# Action 12
slib.g.b12 <- lm(act12 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b12)
##
## Call:
## lm(formula = act12 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5625 -1.8571 -0.1345 1.8655 4.3043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1813 0.4290 0.422 0.6729
## SlibsSC.d -0.9345 0.5176 -1.805 0.0718 .
## SlibsC.d -1.0125 0.5002 -2.024 0.0437 *
## SlibsM.d -0.3377 0.4726 -0.714 0.4754
## SlibsL.d 0.9427 0.5533 1.704 0.0892 .
## gend.mf -0.7625 0.8581 -0.889 0.3748
## SlibsSC.d:gend.mf 1.5417 1.0352 1.489 0.1373
## SlibsC.d:gend.mf -0.1836 1.0005 -0.184 0.8545
## SlibsM.d:gend.mf 0.1807 0.9453 0.191 0.8485
## SlibsL.d:gend.mf 2.1812 1.1065 1.971 0.0494 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.129 on 373 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.08175, Adjusted R-squared: 0.0596
## F-statistic: 3.69 on 9 and 373 DF, p-value: 0.0001907
# Action 13
slib.g.b13 <- lm(act13 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b13)
##
## Call:
## lm(formula = act13 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.8095 0.1884 1.9558 3.3636
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1225 0.3776 0.324 0.74573
## SlibsSC.d -0.4223 0.4648 -0.908 0.36412
## SlibsC.d -0.3689 0.4518 -0.817 0.41462
## SlibsM.d -0.2744 0.4161 -0.659 0.50994
## SlibsL.d 0.3546 0.4895 0.724 0.46918
## gend.mf -0.9723 0.7552 -1.287 0.19862
## SlibsSC.d:gend.mf 2.7537 0.9297 2.962 0.00323 **
## SlibsC.d:gend.mf 0.8564 0.9035 0.948 0.34376
## SlibsM.d:gend.mf 0.7109 0.8322 0.854 0.39346
## SlibsL.d:gend.mf 1.4466 0.9790 1.478 0.14022
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.04764, Adjusted R-squared: 0.0278
## F-statistic: 2.401 on 9 and 432 DF, p-value: 0.01156
# Action 14
slib.g.b14 <- lm(act14 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b14)
##
## Call:
## lm(formula = act14 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8235 -1.2778 0.2195 1.5455 3.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.14286 0.46673 -0.306 0.7598
## SlibsSC.d 0.68506 0.56731 1.208 0.2282
## SlibsC.d 0.17199 0.54691 0.314 0.7534
## SlibsM.d 0.53069 0.51020 1.040 0.2992
## SlibsL.d 1.24513 0.58869 2.115 0.0353 *
## gend.mf -1.42857 0.93346 -1.530 0.1271
## SlibsSC.d:gend.mf 1.99123 1.13461 1.755 0.0804 .
## SlibsC.d:gend.mf -0.07414 1.09382 -0.068 0.9460
## SlibsM.d:gend.mf 1.27791 1.02040 1.252 0.2115
## SlibsL.d:gend.mf 2.13312 1.17739 1.812 0.0711 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.017 on 276 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.04977, Adjusted R-squared: 0.01878
## F-statistic: 1.606 on 9 and 276 DF, p-value: 0.1132
# Action 15
slib.g.b15 <- lm(act15 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b15)
##
## Call:
## lm(formula = act15 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6563 -1.7674 0.4444 1.6917 3.5714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.23333 0.37240 0.627 0.531
## SlibsSC.d -0.53988 0.46015 -1.173 0.241
## SlibsC.d -0.22970 0.44247 -0.519 0.604
## SlibsM.d -0.30139 0.41287 -0.730 0.466
## SlibsL.d 0.82556 0.50119 1.647 0.100
## gend.mf -0.63333 0.74480 -0.850 0.396
## SlibsSC.d:gend.mf 1.16310 0.92030 1.264 0.207
## SlibsC.d:gend.mf 0.03347 0.88494 0.038 0.970
## SlibsM.d:gend.mf -0.11944 0.82575 -0.145 0.885
## SlibsL.d:gend.mf 1.43862 1.00239 1.435 0.152
##
## Residual standard error: 2.04 on 374 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.04838, Adjusted R-squared: 0.02548
## F-statistic: 2.113 on 9 and 374 DF, p-value: 0.0277
# Action 16
slib.g.b16 <- lm(act16 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b16)
##
## Call:
## lm(formula = act16 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3636 -1.1400 0.1589 1.6364 2.7586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.94444 0.37065 2.548 0.0113 *
## SlibsSC.d -0.29744 0.45877 -0.648 0.5172
## SlibsC.d -0.05626 0.43852 -0.128 0.8980
## SlibsM.d 0.15793 0.41309 0.382 0.7025
## SlibsL.d 0.02733 0.48411 0.056 0.9550
## gend.mf -0.11111 0.74130 -0.150 0.8809
## SlibsSC.d:gend.mf 0.92236 0.91754 1.005 0.3155
## SlibsC.d:gend.mf -0.39253 0.87703 -0.448 0.6548
## SlibsM.d:gend.mf 0.63363 0.82619 0.767 0.4437
## SlibsL.d:gend.mf -0.33244 0.96822 -0.343 0.7316
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 321 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.02518, Adjusted R-squared: -0.002148
## F-statistic: 0.9214 on 9 and 321 DF, p-value: 0.5066
# Action 17
slib.g.b17 <- lm(act17 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b17)
##
## Call:
## lm(formula = act17 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.391 -1.477 -0.033 1.630 3.077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0957 0.3803 2.881 0.00418 **
## SlibsSC.d -0.7072 0.4637 -1.525 0.12799
## SlibsC.d -0.9992 0.4466 -2.238 0.02579 *
## SlibsM.d -0.6130 0.4193 -1.462 0.14455
## SlibsL.d -0.3394 0.4884 -0.695 0.48747
## gend.mf -0.5913 0.7606 -0.777 0.43738
## SlibsSC.d:gend.mf 0.6840 0.9274 0.738 0.46121
## SlibsC.d:gend.mf 0.2445 0.8931 0.274 0.78437
## SlibsM.d:gend.mf 0.6028 0.8387 0.719 0.47273
## SlibsL.d:gend.mf 1.3646 0.9769 1.397 0.16320
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.008 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.02291, Adjusted R-squared: 0.001247
## F-statistic: 1.058 on 9 and 406 DF, p-value: 0.3934
# Action 18
slib.g.b18 <- lm(act18 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b18)
##
## Call:
## lm(formula = act18 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.1369 0.1776 1.4528 3.1000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.78947 0.37407 2.110 0.0355 *
## SlibsSC.d -0.55686 0.45340 -1.228 0.2202
## SlibsC.d -0.34922 0.44356 -0.787 0.4316
## SlibsM.d -0.01462 0.41691 -0.035 0.9720
## SlibsL.d 0.17647 0.46994 0.376 0.7075
## gend.mf 0.42105 0.74814 0.563 0.5739
## SlibsSC.d:gend.mf 0.24416 0.90680 0.269 0.7879
## SlibsC.d:gend.mf -0.63489 0.88712 -0.716 0.4747
## SlibsM.d:gend.mf -0.51621 0.83381 -0.619 0.5363
## SlibsL.d:gend.mf -0.21009 0.93988 -0.224 0.8233
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.02394, Adjusted R-squared: -0.001748
## F-statistic: 0.9319 on 9 and 342 DF, p-value: 0.4973
# Action 19
slib.g.b19 <- lm(act19 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b19)
##
## Call:
## lm(formula = act19 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1622 0.3462 1.6250 2.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.138158 0.380634 2.990 0.00305 **
## SlibsSC.d -0.164176 0.473531 -0.347 0.72909
## SlibsC.d -0.122294 0.449877 -0.272 0.78596
## SlibsM.d -0.007206 0.428628 -0.017 0.98660
## SlibsL.d 0.361842 0.529926 0.683 0.49532
## gend.mf -0.776316 0.761269 -1.020 0.30877
## SlibsSC.d:gend.mf 1.416587 0.947062 1.496 0.13591
## SlibsC.d:gend.mf 0.483719 0.899753 0.538 0.59130
## SlibsM.d:gend.mf 0.442982 0.857257 0.517 0.60577
## SlibsL.d:gend.mf 1.026316 1.059852 0.968 0.33375
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.806 on 264 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.0208, Adjusted R-squared: -0.01258
## F-statistic: 0.6232 on 9 and 264 DF, p-value: 0.7769
# Action 20
slib.g.b20 <- lm(act20 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b20)
##
## Call:
## lm(formula = act20 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.398 -1.200 0.602 1.602 2.391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8922 0.3710 2.405 0.0168 *
## SlibsSC.d 0.2709 0.4465 0.607 0.5444
## SlibsC.d 0.1078 0.4364 0.247 0.8050
## SlibsM.d 0.4068 0.4158 0.978 0.3287
## SlibsL.d 0.3750 0.4785 0.784 0.4338
## gend.mf -0.4510 0.7420 -0.608 0.5438
## SlibsSC.d:gend.mf 0.7082 0.8929 0.793 0.4283
## SlibsC.d:gend.mf -0.3316 0.8729 -0.380 0.7043
## SlibsM.d:gend.mf 0.2530 0.8316 0.304 0.7611
## SlibsL.d:gend.mf 0.7500 0.9570 0.784 0.4338
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.8 on 312 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.01743, Adjusted R-squared: -0.01091
## F-statistic: 0.615 on 9 and 312 DF, p-value: 0.7842
# Action 21
slib.g.b21 <- lm(act21 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b21)
##
## Call:
## lm(formula = act21 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.556 -1.840 0.160 1.696 3.818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42995 0.40660 1.057 0.2910
## SlibsSC.d -1.06404 0.49058 -2.169 0.0307 *
## SlibsC.d -0.79058 0.47783 -1.655 0.0988 .
## SlibsM.d -0.41239 0.44717 -0.922 0.3570
## SlibsL.d 0.04126 0.51081 0.081 0.9357
## gend.mf 0.25121 0.81320 0.309 0.7576
## SlibsSC.d:gend.mf -0.61939 0.98116 -0.631 0.5282
## SlibsC.d:gend.mf -0.69661 0.95566 -0.729 0.4665
## SlibsM.d:gend.mf 0.10391 0.89435 0.116 0.9076
## SlibsL.d:gend.mf -0.12697 1.02162 -0.124 0.9012
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.068 on 391 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.0295, Adjusted R-squared: 0.007162
## F-statistic: 1.321 on 9 and 391 DF, p-value: 0.2241
# Action 22
slib.g.b22 <- lm(act22 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b22)
##
## Call:
## lm(formula = act22 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.4912 -0.1538 1.6410 3.6410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0769 0.3671 2.933 0.00355 **
## SlibsSC.d -1.2838 0.4516 -2.843 0.00471 **
## SlibsC.d -0.8313 0.4368 -1.903 0.05775 .
## SlibsM.d -0.6797 0.4098 -1.659 0.09798 .
## SlibsL.d -0.4517 0.4820 -0.937 0.34923
## gend.mf -0.1538 0.7342 -0.210 0.83414
## SlibsSC.d:gend.mf 1.0221 0.9033 1.132 0.25850
## SlibsC.d:gend.mf -0.3374 0.8736 -0.386 0.69956
## SlibsM.d:gend.mf 0.6226 0.8196 0.760 0.44790
## SlibsL.d:gend.mf 0.2880 0.9639 0.299 0.76526
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.973 on 392 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.04639, Adjusted R-squared: 0.02449
## F-statistic: 2.119 on 9 and 392 DF, p-value: 0.02709
# Action 23
slib.g.b23 <- lm(act23 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b23)
##
## Call:
## lm(formula = act23 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9474 -2.0103 0.1875 2.0227 3.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28125 0.48926 0.575 0.5658
## SlibsSC.d 0.03334 0.60381 0.055 0.9560
## SlibsC.d -0.55452 0.57374 -0.966 0.3346
## SlibsM.d -0.02610 0.54921 -0.048 0.9621
## SlibsL.d 0.30625 0.61455 0.498 0.6186
## gend.mf -1.06250 0.97851 -1.086 0.2785
## SlibsSC.d:gend.mf 2.32805 1.20763 1.928 0.0549 .
## SlibsC.d:gend.mf 0.56142 1.14748 0.489 0.6250
## SlibsM.d:gend.mf 1.55219 1.09842 1.413 0.1587
## SlibsL.d:gend.mf 0.82083 1.22910 0.668 0.5048
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.26 on 282 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03359, Adjusted R-squared: 0.002749
## F-statistic: 1.089 on 9 and 282 DF, p-value: 0.3707
# Action 24
slib.g.b24 <- lm(act24 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b24)
##
## Call:
## lm(formula = act24 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5455 -1.8425 0.1575 1.8214 3.8214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2130 0.3883 -0.548 0.5837
## SlibsSC.d 0.1978 0.4839 0.409 0.6829
## SlibsC.d -0.3774 0.4553 -0.829 0.4076
## SlibsM.d -0.1158 0.4282 -0.270 0.7870
## SlibsL.d 0.1708 0.5044 0.339 0.7351
## gend.mf -0.5741 0.7766 -0.739 0.4602
## SlibsSC.d:gend.mf 1.6953 0.9678 1.752 0.0806 .
## SlibsC.d:gend.mf 0.1120 0.9105 0.123 0.9021
## SlibsM.d:gend.mf 0.2316 0.8564 0.270 0.7870
## SlibsL.d:gend.mf 0.9442 1.0087 0.936 0.3498
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.098 on 405 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.02029, Adjusted R-squared: -0.001484
## F-statistic: 0.9318 on 9 and 405 DF, p-value: 0.4971
# Action 25
slib.g.b25 <- lm(act25 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b25)
##
## Call:
## lm(formula = act25 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -0.8936 0.1642 1.4389 3.2051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3622 0.3580 3.805 0.000162 ***
## SlibsSC.d -1.4410 0.4362 -3.303 0.001035 **
## SlibsC.d -0.9511 0.4134 -2.301 0.021872 *
## SlibsM.d -0.4770 0.3903 -1.222 0.222329
## SlibsL.d -0.1535 0.4463 -0.344 0.731164
## gend.mf 0.1644 0.7160 0.230 0.818450
## SlibsSC.d:gend.mf 0.0883 0.8724 0.101 0.919427
## SlibsC.d:gend.mf -0.5422 0.8267 -0.656 0.512263
## SlibsM.d:gend.mf -0.1476 0.7806 -0.189 0.850081
## SlibsL.d:gend.mf 0.1680 0.8927 0.188 0.850803
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.05138, Adjusted R-squared: 0.03171
## F-statistic: 2.612 on 9 and 434 DF, p-value: 0.006027
# Action 26
slib.g.b26 <- lm(act26 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b26)
##
## Call:
## lm(formula = act26 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0000 0.5278 1.3433 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9722 0.4213 2.307 0.022 *
## SlibsSC.d 0.5719 0.5187 1.103 0.271
## SlibsC.d 0.5556 0.4997 1.112 0.267
## SlibsM.d 0.5704 0.4797 1.189 0.236
## SlibsL.d 0.5992 0.5768 1.039 0.300
## gend.mf 0.9444 0.8427 1.121 0.264
## SlibsSC.d:gend.mf -0.8562 1.0374 -0.825 0.410
## SlibsC.d:gend.mf -1.2222 0.9995 -1.223 0.223
## SlibsM.d:gend.mf -1.1726 0.9594 -1.222 0.223
## SlibsL.d:gend.mf 0.1984 1.1536 0.172 0.864
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 216 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.02923, Adjusted R-squared: -0.01122
## F-statistic: 0.7225 on 9 and 216 DF, p-value: 0.688
# Action 27
slib.g.b27 <- lm(act27 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b27)
##
## Call:
## lm(formula = act27 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4545 -1.1667 0.2174 1.5521 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.35885 0.35584 3.819 0.000162 ***
## SlibsSC.d -0.87969 0.44146 -1.993 0.047182 *
## SlibsC.d -0.62608 0.43185 -1.450 0.148142
## SlibsM.d -0.73489 0.40647 -1.808 0.071587 .
## SlibsL.d -0.18461 0.47631 -0.388 0.698592
## gend.mf 0.19139 0.71169 0.269 0.788171
## SlibsSC.d:gend.mf 0.76695 0.88292 0.869 0.385717
## SlibsC.d:gend.mf -0.09171 0.86370 -0.106 0.915511
## SlibsM.d:gend.mf 0.16070 0.81294 0.198 0.843432
## SlibsL.d:gend.mf -0.20654 0.95261 -0.217 0.828498
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 307 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.03928, Adjusted R-squared: 0.01112
## F-statistic: 1.395 on 9 and 307 DF, p-value: 0.1895
# Action 28
slib.g.b28 <- lm(act28 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b28)
##
## Call:
## lm(formula = act28 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4262 -0.9511 0.1944 1.5738 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98137 0.39567 2.480 0.0136 *
## SlibsSC.d -0.19764 0.46893 -0.421 0.6737
## SlibsC.d 0.25349 0.45481 0.557 0.5776
## SlibsM.d 0.02427 0.43526 0.056 0.9556
## SlibsL.d -0.07148 0.49609 -0.144 0.8855
## gend.mf -0.81988 0.79134 -1.036 0.3009
## SlibsSC.d:gend.mf 0.77622 0.93787 0.828 0.4084
## SlibsC.d:gend.mf 0.43712 0.90963 0.481 0.6311
## SlibsM.d:gend.mf 0.99043 0.87051 1.138 0.2560
## SlibsL.d:gend.mf 0.50011 0.99218 0.504 0.6145
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 362 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.01604, Adjusted R-squared: -0.008426
## F-statistic: 0.6556 on 9 and 362 DF, p-value: 0.749
# Action 29
slib.g.b29 <- lm(act29 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b29)
##
## Call:
## lm(formula = act29 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1003 0.1951 1.5000 2.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.42982 0.35890 3.984 8.21e-05 ***
## SlibsSC.d -0.31078 0.43445 -0.715 0.475
## SlibsC.d -0.43759 0.41823 -1.046 0.296
## SlibsM.d -0.31490 0.39796 -0.791 0.429
## SlibsL.d -0.27739 0.45187 -0.614 0.540
## gend.mf -0.19298 0.71780 -0.269 0.788
## SlibsSC.d:gend.mf 0.43108 0.86889 0.496 0.620
## SlibsC.d:gend.mf 0.04185 0.83647 0.050 0.960
## SlibsM.d:gend.mf 0.13455 0.79592 0.169 0.866
## SlibsL.d:gend.mf 0.88810 0.90374 0.983 0.326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.774 on 358 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01019, Adjusted R-squared: -0.0147
## F-statistic: 0.4093 on 9 and 358 DF, p-value: 0.93
# Action 30
slib.g.b30 <- lm(act30 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf, data = d)
summary(slib.g.b30)
##
## Call:
## lm(formula = act30 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3529 -1.0654 0.5928 1.6471 2.3913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07647 0.37504 2.870 0.00436 **
## SlibsSC.d 0.01304 0.45300 0.029 0.97705
## SlibsC.d -0.18440 0.44124 -0.418 0.67627
## SlibsM.d -0.09376 0.42244 -0.222 0.82448
## SlibsL.d 0.19377 0.48175 0.402 0.68777
## gend.mf -0.55294 0.75008 -0.737 0.46152
## SlibsSC.d:gend.mf 0.02609 0.90600 0.029 0.97705
## SlibsC.d:gend.mf -0.01380 0.88249 -0.016 0.98753
## SlibsM.d:gend.mf 0.38752 0.84487 0.459 0.64676
## SlibsL.d:gend.mf 0.93553 0.96350 0.971 0.33225
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.882 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.01188, Adjusted R-squared: -0.01412
## F-statistic: 0.4569 on 9 and 342 DF, p-value: 0.9027
a. Gender means
aggregate(d$act1[d$ideology == "Strong Liberal"], list(d$gend.mf[d$ideology == "Strong Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 -0.5 0.65
## 2 0.5 -1.00
table(d$ideology, d$gend.mf)
##
## -0.5 0.5
## Strong Liberal 33 13
## Liberal 58 19
## Moderate 175 53
## Conservative 87 31
## Strong Conservative 50 24
aggregate(d$act10[d$ideology == "Strong Liberal"], list(d$gend.mf[d$ideology == "Strong Liberal"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 -0.5 1.586207
## 2 0.5 -0.100000
table(d$ideology, d$gend.mf)
##
## -0.5 0.5
## Strong Liberal 33 13
## Liberal 58 19
## Moderate 175 53
## Conservative 87 31
## Strong Conservative 50 24
3. Gender x Condition
Actions 1, 13, 16, 17, 18
# Action 1
summary(lm(act1 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.960 0.080 2.000 5.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2729 0.3968 -0.688 0.49199
## SlibsSC.d -0.1292 0.4838 -0.267 0.78950
## SlibsC.d -0.4012 0.4698 -0.854 0.39355
## SlibsM.d 0.3818 0.4364 0.875 0.38212
## SlibsL.d 0.8674 0.5056 1.716 0.08694 .
## gend.mf -1.2542 0.7937 -1.580 0.11480
## cond.c 0.1208 0.7937 0.152 0.87906
## SlibsSC.d:gend.mf 1.7554 0.9676 1.814 0.07033 .
## SlibsC.d:gend.mf 0.4194 0.9396 0.446 0.65552
## SlibsM.d:gend.mf 1.9564 0.8728 2.241 0.02551 *
## SlibsL.d:gend.mf 1.0831 1.0111 1.071 0.28469
## SlibsSC.d:cond.c 0.6304 0.9676 0.652 0.51503
## SlibsC.d:cond.c -0.3231 0.9396 -0.344 0.73112
## SlibsM.d:cond.c -0.8230 0.8728 -0.943 0.34625
## SlibsL.d:cond.c -0.2469 1.0111 -0.244 0.80720
## gend.mf:cond.c 4.1583 1.5873 2.620 0.00911 **
## SlibsSC.d:gend.mf:cond.c -3.6003 1.9351 -1.860 0.06350 .
## SlibsC.d:gend.mf:cond.c -4.5643 1.8791 -2.429 0.01555 *
## SlibsM.d:gend.mf:cond.c -4.5940 1.7457 -2.632 0.00880 **
## SlibsL.d:gend.mf:cond.c -5.3705 2.0222 -2.656 0.00821 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.124 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.0873, Adjusted R-squared: 0.04669
## F-statistic: 2.15 on 19 and 427 DF, p-value: 0.003504
# Action 2
summary(lm(act2 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6000 -1.0000 0.3485 1.5192 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.80833 0.40542 1.994 0.0472 *
## SlibsSC.d 0.24138 0.48909 0.494 0.6220
## SlibsC.d -0.01212 0.46800 -0.026 0.9794
## SlibsM.d 0.35234 0.45446 0.775 0.4389
## SlibsL.d 0.86250 0.52519 1.642 0.1017
## gend.mf -0.55000 0.81085 -0.678 0.4982
## cond.c 0.61667 0.81085 0.761 0.4476
## SlibsSC.d:gend.mf 1.33693 0.97818 1.367 0.1728
## SlibsC.d:gend.mf -0.19394 0.93599 -0.207 0.8360
## SlibsM.d:gend.mf 0.56200 0.90891 0.618 0.5369
## SlibsL.d:gend.mf 1.12500 1.05038 1.071 0.2851
## SlibsSC.d:cond.c -0.76723 0.97818 -0.784 0.4335
## SlibsC.d:cond.c -1.34242 0.93599 -1.434 0.1527
## SlibsM.d:cond.c -0.77610 0.90891 -0.854 0.3939
## SlibsL.d:cond.c -0.62500 1.05038 -0.595 0.5523
## gend.mf:cond.c 2.23333 1.62169 1.377 0.1696
## SlibsSC.d:gend.mf:cond.c -1.15947 1.95636 -0.593 0.5539
## SlibsC.d:gend.mf:cond.c -3.81212 1.87199 -2.036 0.0427 *
## SlibsM.d:gend.mf:cond.c -1.24780 1.81783 -0.686 0.4930
## SlibsL.d:gend.mf:cond.c -1.38333 2.10076 -0.658 0.5108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 268 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.07459, Adjusted R-squared: 0.008984
## F-statistic: 1.137 on 19 and 268 DF, p-value: 0.3138
# Action 3
summary(lm(act3 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7059 -1.8261 0.0278 1.7143 3.9412
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19790 0.39142 0.506 0.6134
## SlibsSC.d -0.98812 0.47401 -2.085 0.0377 *
## SlibsC.d -0.52429 0.45873 -1.143 0.2537
## SlibsM.d -0.26264 0.42709 -0.615 0.5389
## SlibsL.d -0.26040 0.48312 -0.539 0.5902
## gend.mf -0.59580 0.78284 -0.761 0.4470
## cond.c 0.08992 0.78284 0.115 0.9086
## SlibsSC.d:gend.mf 1.28987 0.94801 1.361 0.1744
## SlibsC.d:gend.mf 0.80413 0.91747 0.876 0.3813
## SlibsM.d:gend.mf 0.38471 0.85418 0.450 0.6527
## SlibsL.d:gend.mf 0.86366 0.96624 0.894 0.3719
## SlibsSC.d:cond.c -0.09281 0.94801 -0.098 0.9221
## SlibsC.d:cond.c -0.40936 0.91747 -0.446 0.6557
## SlibsM.d:cond.c -0.02496 0.85418 -0.029 0.9767
## SlibsL.d:cond.c 0.67794 0.96624 0.702 0.4833
## gend.mf:cond.c 1.02017 1.56568 0.652 0.5150
## SlibsSC.d:gend.mf:cond.c -0.24165 1.89602 -0.127 0.8986
## SlibsC.d:gend.mf:cond.c -2.60350 1.83494 -1.419 0.1567
## SlibsM.d:gend.mf:cond.c -1.16457 1.70836 -0.682 0.4958
## SlibsL.d:gend.mf:cond.c -2.27017 1.93247 -1.175 0.2408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.05725, Adjusted R-squared: 0.01481
## F-statistic: 1.349 on 19 and 422 DF, p-value: 0.1485
# Action 4
summary(lm(act4 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2000 -1.8551 0.1449 2.0909 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.36154 0.44910 0.805 0.421
## SlibsSC.d -0.16167 0.54610 -0.296 0.767
## SlibsC.d -0.72009 0.53416 -1.348 0.179
## SlibsM.d -0.57411 0.49649 -1.156 0.248
## SlibsL.d 0.15322 0.55658 0.275 0.783
## gend.mf -1.32308 0.89820 -1.473 0.142
## cond.c 0.07692 0.89820 0.086 0.932
## SlibsSC.d:gend.mf 1.69607 1.09219 1.553 0.121
## SlibsC.d:gend.mf 0.85749 1.06833 0.803 0.423
## SlibsM.d:gend.mf 1.31072 0.99299 1.320 0.188
## SlibsL.d:gend.mf 1.69356 1.11316 1.521 0.129
## SlibsSC.d:cond.c -0.08628 1.09219 -0.079 0.937
## SlibsC.d:cond.c -0.60084 1.06833 -0.562 0.574
## SlibsM.d:cond.c -0.41964 0.99299 -0.423 0.673
## SlibsL.d:cond.c 0.68303 1.11316 0.614 0.540
## gend.mf:cond.c -0.55385 1.79640 -0.308 0.758
## SlibsSC.d:gend.mf:cond.c 0.11802 2.18438 0.054 0.957
## SlibsC.d:gend.mf:cond.c -1.26369 2.13665 -0.591 0.555
## SlibsM.d:gend.mf:cond.c 0.11428 1.98597 0.058 0.954
## SlibsL.d:gend.mf:cond.c 0.23394 2.22632 0.105 0.916
##
## Residual standard error: 2.183 on 349 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.04372, Adjusted R-squared: -0.008345
## F-statistic: 0.8397 on 19 and 349 DF, p-value: 0.6588
# Action 5
summary(lm(act5 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4800 -1.2500 0.1622 1.5200 3.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2708 0.4153 0.652 0.5149
## SlibsSC.d 0.4588 0.4988 0.920 0.3585
## SlibsC.d 0.6892 0.4787 1.440 0.1511
## SlibsM.d 0.8033 0.4652 1.727 0.0853 .
## SlibsL.d 1.2006 0.5279 2.274 0.0237 *
## gend.mf -0.1250 0.8307 -0.150 0.8805
## cond.c 0.1250 0.8307 0.150 0.8805
## SlibsSC.d:gend.mf -0.3570 0.9977 -0.358 0.7208
## SlibsC.d:gend.mf -0.3441 0.9574 -0.359 0.7196
## SlibsM.d:gend.mf 0.1855 0.9305 0.199 0.8421
## SlibsL.d:gend.mf 0.6108 1.0558 0.579 0.5634
## SlibsSC.d:cond.c -0.3930 0.9977 -0.394 0.6939
## SlibsC.d:cond.c -0.4474 0.9574 -0.467 0.6407
## SlibsM.d:cond.c -0.5124 0.9305 -0.551 0.5823
## SlibsL.d:cond.c -0.9469 1.0558 -0.897 0.3706
## gend.mf:cond.c 1.5833 1.6613 0.953 0.3414
## SlibsSC.d:gend.mf:cond.c -2.0018 1.9954 -1.003 0.3166
## SlibsC.d:gend.mf:cond.c -3.3699 1.9148 -1.760 0.0795 .
## SlibsM.d:gend.mf:cond.c -1.5338 1.8609 -0.824 0.4105
## SlibsL.d:gend.mf:cond.c -1.0824 2.1115 -0.513 0.6086
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.884 on 275 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.0598, Adjusted R-squared: -0.005162
## F-statistic: 0.9205 on 19 and 275 DF, p-value: 0.5577
# Action 6
summary(lm(act6 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.0816 0.5333 1.5294 2.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93036 0.36597 2.542 0.0115 *
## SlibsSC.d -0.08673 0.44631 -0.194 0.8460
## SlibsC.d 0.38266 0.42696 0.896 0.3708
## SlibsM.d 0.42020 0.40941 1.026 0.3055
## SlibsL.d 0.63888 0.47304 1.351 0.1777
## gend.mf -1.21071 0.73194 -1.654 0.0990 .
## cond.c 0.03929 0.73194 0.054 0.9572
## SlibsSC.d:gend.mf 0.73255 0.89262 0.821 0.4124
## SlibsC.d:gend.mf 0.98469 0.85392 1.153 0.2497
## SlibsM.d:gend.mf 1.44686 0.81882 1.767 0.0781 .
## SlibsL.d:gend.mf 1.83415 0.94608 1.939 0.0534 .
## SlibsSC.d:cond.c -0.08060 0.89262 -0.090 0.9281
## SlibsC.d:cond.c -0.42015 0.85392 -0.492 0.6230
## SlibsM.d:cond.c -0.19210 0.81882 -0.235 0.8147
## SlibsL.d:cond.c -0.48728 0.94608 -0.515 0.6069
## gend.mf:cond.c 0.22143 1.46388 0.151 0.8799
## SlibsSC.d:gend.mf:cond.c 1.07939 1.78524 0.605 0.5458
## SlibsC.d:gend.mf:cond.c -1.85969 1.70783 -1.089 0.2770
## SlibsM.d:gend.mf:cond.c 0.07635 1.63764 0.047 0.9628
## SlibsL.d:gend.mf:cond.c -1.51591 1.89216 -0.801 0.4236
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 337 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.04582, Adjusted R-squared: -0.00798
## F-statistic: 0.8517 on 19 and 337 DF, p-value: 0.6439
# Action 7
summary(lm(act7 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0625 -1.8571 0.0625 1.7143 3.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.02604 0.42698 -0.061 0.9514
## SlibsSC.d -0.07571 0.51252 -0.148 0.8826
## SlibsC.d -0.31041 0.50245 -0.618 0.5371
## SlibsM.d -0.06978 0.46432 -0.150 0.8806
## SlibsL.d 0.10660 0.53132 0.201 0.8411
## gend.mf -1.11458 0.85395 -1.305 0.1926
## cond.c -0.11458 0.85395 -0.134 0.8933
## SlibsSC.d:gend.mf 1.49990 1.02504 1.463 0.1442
## SlibsC.d:gend.mf 0.89463 1.00489 0.890 0.3739
## SlibsM.d:gend.mf 1.22830 0.92864 1.323 0.1867
## SlibsL.d:gend.mf 1.34236 1.06263 1.263 0.2073
## SlibsSC.d:cond.c 0.24631 1.02504 0.240 0.8102
## SlibsC.d:cond.c -0.20832 1.00489 -0.207 0.8359
## SlibsM.d:cond.c 0.52944 0.92864 0.570 0.5689
## SlibsL.d:cond.c 0.97014 1.06263 0.913 0.3618
## gend.mf:cond.c 1.89583 1.70790 1.110 0.2677
## SlibsSC.d:gend.mf:cond.c -0.70474 2.05008 -0.344 0.7312
## SlibsC.d:gend.mf:cond.c -4.03575 2.00978 -2.008 0.0453 *
## SlibsM.d:gend.mf:cond.c -1.42684 1.85728 -0.768 0.4428
## SlibsL.d:gend.mf:cond.c -3.71806 2.12526 -1.749 0.0810 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.081 on 393 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.05477, Adjusted R-squared: 0.009077
## F-statistic: 1.199 on 19 and 393 DF, p-value: 0.2548
# Action 8
summary(lm(act8 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4000 -1.6786 -0.1429 1.5466 4.8421
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4333 0.3797 1.141 0.25442
## SlibsSC.d -1.3833 0.4678 -2.957 0.00326 **
## SlibsC.d -0.8960 0.4510 -1.987 0.04755 *
## SlibsM.d -0.8194 0.4183 -1.959 0.05074 .
## SlibsL.d 0.1500 0.4961 0.302 0.76252
## gend.mf -1.2000 0.7595 -1.580 0.11480
## cond.c 1.2000 0.7595 1.580 0.11480
## SlibsSC.d:gend.mf 2.4636 0.9355 2.633 0.00874 **
## SlibsC.d:gend.mf 1.6106 0.9019 1.786 0.07480 .
## SlibsM.d:gend.mf 1.4087 0.8366 1.684 0.09290 .
## SlibsL.d:gend.mf 1.4619 0.9922 1.473 0.14133
## SlibsSC.d:cond.c -1.0760 0.9355 -1.150 0.25068
## SlibsC.d:cond.c -2.8752 0.9019 -3.188 0.00153 **
## SlibsM.d:cond.c -0.9625 0.8366 -1.151 0.25053
## SlibsL.d:cond.c -0.6048 0.9922 -0.610 0.54249
## gend.mf:cond.c 0.9333 1.5190 0.614 0.53923
## SlibsSC.d:gend.mf:cond.c -1.7267 1.8711 -0.923 0.35657
## SlibsC.d:gend.mf:cond.c -3.5010 1.8039 -1.941 0.05289 .
## SlibsM.d:gend.mf:cond.c -0.4481 1.6732 -0.268 0.78896
## SlibsL.d:gend.mf:cond.c -0.9810 1.9844 -0.494 0.62131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.102 on 459 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1107, Adjusted R-squared: 0.07388
## F-statistic: 3.007 on 19 and 459 DF, p-value: 2.47e-05
# Action 9
summary(lm(act9 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8000 -1.5455 0.0455 1.5000 4.4545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.066667 0.377581 -0.177 0.860
## SlibsSC.d -0.732955 0.460320 -1.592 0.112
## SlibsC.d 0.002554 0.443179 0.006 0.995
## SlibsM.d 0.233734 0.413408 0.565 0.572
## SlibsL.d 0.629762 0.471382 1.336 0.182
## gend.mf -0.966667 0.755161 -1.280 0.201
## cond.c -0.033333 0.755161 -0.044 0.965
## SlibsSC.d:gend.mf 0.861364 0.920640 0.936 0.350
## SlibsC.d:gend.mf 1.428225 0.886358 1.611 0.108
## SlibsM.d:gend.mf 0.891426 0.826816 1.078 0.282
## SlibsL.d:gend.mf 0.926190 0.942765 0.982 0.326
## SlibsSC.d:cond.c 1.155303 0.920640 1.255 0.210
## SlibsC.d:cond.c -0.853062 0.886358 -0.962 0.336
## SlibsM.d:cond.c 0.237922 0.826816 0.288 0.774
## SlibsL.d:cond.c -0.140476 0.942765 -0.149 0.882
## gend.mf:cond.c 0.266667 1.510323 0.177 0.860
## SlibsSC.d:gend.mf:cond.c -0.101515 1.841280 -0.055 0.956
## SlibsC.d:gend.mf:cond.c -2.271655 1.772717 -1.281 0.201
## SlibsM.d:gend.mf:cond.c 0.023761 1.653633 0.014 0.989
## SlibsL.d:gend.mf:cond.c -0.947619 1.885530 -0.503 0.616
##
## Residual standard error: 1.968 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.06597, Adjusted R-squared: 0.02441
## F-statistic: 1.587 on 19 and 427 DF, p-value: 0.05552
# Action 10
summary(lm(act10 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.8630 0.1739 1.7370 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7303 0.3816 1.914 0.05626 .
## SlibsSC.d -1.2680 0.4651 -2.726 0.00665 **
## SlibsC.d -0.9277 0.4483 -2.069 0.03907 *
## SlibsM.d -0.6446 0.4192 -1.538 0.12486
## SlibsL.d 0.2354 0.4845 0.486 0.62725
## gend.mf -1.6606 0.7632 -2.176 0.03007 *
## cond.c 1.1939 0.7632 1.564 0.11841
## SlibsSC.d:gend.mf 2.1298 0.9302 2.290 0.02249 *
## SlibsC.d:gend.mf 1.6554 0.8966 1.846 0.06549 .
## SlibsM.d:gend.mf 1.7065 0.8385 2.035 0.04240 *
## SlibsL.d:gend.mf 2.6041 0.9690 2.687 0.00746 **
## SlibsSC.d:cond.c -1.2597 0.9302 -1.354 0.17634
## SlibsC.d:cond.c -1.9943 0.8966 -2.224 0.02661 *
## SlibsM.d:cond.c -1.1111 0.8385 -1.325 0.18580
## SlibsL.d:cond.c -1.0254 0.9690 -1.058 0.29051
## gend.mf:cond.c 2.8121 1.5263 1.842 0.06607 .
## SlibsSC.d:gend.mf:cond.c -2.8019 1.8604 -1.506 0.13273
## SlibsC.d:gend.mf:cond.c -4.4114 1.7931 -2.460 0.01426 *
## SlibsM.d:gend.mf:cond.c -1.8474 1.6769 -1.102 0.27119
## SlibsL.d:gend.mf:cond.c -3.8992 1.9380 -2.012 0.04481 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 456 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.0938, Adjusted R-squared: 0.05604
## F-statistic: 2.484 on 19 and 456 DF, p-value: 0.0005392
# Action 11
summary(lm(act11 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9000 -1.0292 0.3902 1.5200 3.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.43333 0.42829 3.347 0.000925 ***
## SlibsSC.d -0.64300 0.50466 -1.274 0.203635
## SlibsC.d -0.65924 0.49312 -1.337 0.182306
## SlibsM.d -0.72081 0.46566 -1.548 0.122718
## SlibsL.d 0.33869 0.53665 0.631 0.528457
## gend.mf -0.03333 0.85658 -0.039 0.968985
## cond.c -0.36667 0.85658 -0.428 0.668924
## SlibsSC.d:gend.mf 1.17994 1.00933 1.169 0.243343
## SlibsC.d:gend.mf -0.43152 0.98624 -0.438 0.662043
## SlibsM.d:gend.mf -0.04203 0.93131 -0.045 0.964031
## SlibsL.d:gend.mf 0.22738 1.07330 0.212 0.832371
## SlibsSC.d:cond.c 0.77950 1.00933 0.772 0.440560
## SlibsC.d:cond.c -0.68514 0.98624 -0.695 0.487795
## SlibsM.d:cond.c -0.28426 0.93131 -0.305 0.760415
## SlibsL.d:cond.c -0.01071 1.07330 -0.010 0.992042
## gend.mf:cond.c 1.06667 1.71316 0.623 0.534013
## SlibsSC.d:gend.mf:cond.c -0.80143 2.01865 -0.397 0.691647
## SlibsC.d:gend.mf:cond.c -2.79638 1.97249 -1.418 0.157348
## SlibsM.d:gend.mf:cond.c -1.28770 1.86263 -0.691 0.489905
## SlibsL.d:gend.mf:cond.c -3.12143 2.14660 -1.454 0.146986
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.858 on 292 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.09531, Adjusted R-squared: 0.03644
## F-statistic: 1.619 on 19 and 292 DF, p-value: 0.05071
# Action 12
summary(lm(act12 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.000 -1.875 0.125 1.635 4.235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24091 0.44000 0.548 0.5844
## SlibsSC.d -0.99544 0.52593 -1.893 0.0592 .
## SlibsC.d -0.81211 0.51760 -1.569 0.1175
## SlibsM.d -0.40457 0.48224 -0.839 0.4020
## SlibsL.d 0.91289 0.56140 1.626 0.1048
## gend.mf -0.88182 0.88001 -1.002 0.3170
## cond.c 0.71818 0.88001 0.816 0.4150
## SlibsSC.d:gend.mf 1.66361 1.05186 1.582 0.1146
## SlibsC.d:gend.mf 0.47066 1.03520 0.455 0.6496
## SlibsM.d:gend.mf 0.31441 0.96447 0.326 0.7446
## SlibsL.d:gend.mf 2.24089 1.12280 1.996 0.0467 *
## SlibsSC.d:cond.c -0.08286 1.05186 -0.079 0.9373
## SlibsC.d:cond.c -1.90077 1.03520 -1.836 0.0672 .
## SlibsM.d:cond.c -0.67375 0.96447 -0.699 0.4853
## SlibsL.d:cond.c -0.20225 1.12280 -0.180 0.8572
## gend.mf:cond.c 0.16364 1.76002 0.093 0.9260
## SlibsSC.d:gend.mf:cond.c 0.74753 2.10372 0.355 0.7225
## SlibsC.d:gend.mf:cond.c -3.19131 2.07041 -1.541 0.1241
## SlibsM.d:gend.mf:cond.c 0.90539 1.92895 0.469 0.6391
## SlibsL.d:gend.mf:cond.c -0.52883 2.24559 -0.235 0.8140
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.117 on 363 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.06946
## F-statistic: 2.501 on 19 and 363 DF, p-value: 0.0005499
# Action 13
summary(lm(act13 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1333 -1.8000 0.1852 1.8235 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05208 0.38224 -0.136 0.89168
## SlibsSC.d -0.24876 0.46992 -0.529 0.59683
## SlibsC.d -0.03630 0.45985 -0.079 0.93712
## SlibsM.d -0.09578 0.41982 -0.228 0.81964
## SlibsL.d 0.55369 0.49335 1.122 0.26238
## gend.mf -0.86250 0.76448 -1.128 0.25987
## cond.c 0.56250 0.76448 0.736 0.46226
## SlibsSC.d:gend.mf 2.64600 0.93983 2.815 0.00510 **
## SlibsC.d:gend.mf 1.03927 0.91970 1.130 0.25911
## SlibsM.d:gend.mf 0.59301 0.83963 0.706 0.48041
## SlibsL.d:gend.mf 1.40096 0.98671 1.420 0.15639
## SlibsSC.d:cond.c -0.69146 0.93983 -0.736 0.46231
## SlibsC.d:cond.c -1.83018 0.91970 -1.990 0.04724 *
## SlibsM.d:cond.c -0.26422 0.83963 -0.315 0.75316
## SlibsL.d:cond.c -0.35737 0.98671 -0.362 0.71739
## gend.mf:cond.c 4.14167 1.52895 2.709 0.00703 **
## SlibsSC.d:gend.mf:cond.c -4.42921 1.87967 -2.356 0.01891 *
## SlibsC.d:gend.mf:cond.c -5.60631 1.83939 -3.048 0.00245 **
## SlibsM.d:gend.mf:cond.c -4.30345 1.67926 -2.563 0.01073 *
## SlibsL.d:gend.mf:cond.c -2.96859 1.97342 -1.504 0.13325
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.08224, Adjusted R-squared: 0.04091
## F-statistic: 1.99 on 19 and 422 DF, p-value: 0.008085
# Action 14
summary(lm(act14 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1818 -1.2411 0.3129 1.5849 3.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2083 0.4911 -0.424 0.6718
## SlibsSC.d 0.7100 0.5913 1.201 0.2310
## SlibsC.d 0.2525 0.5698 0.443 0.6581
## SlibsM.d 0.5939 0.5339 1.112 0.2670
## SlibsL.d 1.3464 0.6121 2.200 0.0287 *
## gend.mf -1.6667 0.9822 -1.697 0.0909 .
## cond.c 1.4167 0.9822 1.442 0.1504
## SlibsSC.d:gend.mf 2.2777 1.1827 1.926 0.0552 .
## SlibsC.d:gend.mf 0.1784 1.1396 0.157 0.8757
## SlibsM.d:gend.mf 1.4988 1.0678 1.404 0.1616
## SlibsL.d:gend.mf 2.2905 1.2242 1.871 0.0624 .
## SlibsSC.d:cond.c -0.8277 1.1827 -0.700 0.4847
## SlibsC.d:cond.c -1.7231 1.1396 -1.512 0.1317
## SlibsM.d:cond.c -1.2750 1.0678 -1.194 0.2335
## SlibsL.d:cond.c -1.1111 1.2242 -0.908 0.3649
## gend.mf:cond.c 2.3333 1.9645 1.188 0.2360
## SlibsSC.d:gend.mf:cond.c -3.1399 2.3654 -1.327 0.1855
## SlibsC.d:gend.mf:cond.c -2.5204 2.2793 -1.106 0.2698
## SlibsM.d:gend.mf:cond.c -2.2674 2.1356 -1.062 0.2893
## SlibsL.d:gend.mf:cond.c -3.1446 2.4484 -1.284 0.2001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.033 on 266 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.06875, Adjusted R-squared: 0.002233
## F-statistic: 1.034 on 19 and 266 DF, p-value: 0.4224
# Action 15
summary(lm(act15 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5294 -1.7357 0.3167 1.4947 4.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13899 0.37519 0.370 0.7113
## SlibsSC.d -0.48125 0.46232 -1.041 0.2986
## SlibsC.d -0.04163 0.44684 -0.093 0.9258
## SlibsM.d -0.21834 0.41487 -0.526 0.5990
## SlibsL.d 0.86628 0.50579 1.713 0.0876 .
## gend.mf -0.76369 0.75039 -1.018 0.3095
## cond.c 0.81131 0.75039 1.081 0.2803
## SlibsSC.d:gend.mf 1.36488 0.92464 1.476 0.1408
## SlibsC.d:gend.mf 0.38662 0.89369 0.433 0.6656
## SlibsM.d:gend.mf 0.02121 0.82973 0.026 0.9796
## SlibsL.d:gend.mf 1.57815 1.01158 1.560 0.1196
## SlibsSC.d:cond.c -0.49583 0.92464 -0.536 0.5921
## SlibsC.d:cond.c -1.35505 0.89369 -1.516 0.1303
## SlibsM.d:cond.c -0.67558 0.82973 -0.814 0.4161
## SlibsL.d:cond.c -1.95518 1.01158 -1.933 0.0540 .
## gend.mf:cond.c 2.20595 1.50078 1.470 0.1425
## SlibsSC.d:gend.mf:cond.c -3.00357 1.84928 -1.624 0.1052
## SlibsC.d:gend.mf:cond.c -4.28318 1.78738 -2.396 0.0171 *
## SlibsM.d:gend.mf:cond.c -1.37070 1.65947 -0.826 0.4094
## SlibsL.d:gend.mf:cond.c -0.76821 2.02316 -0.380 0.7044
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.021 on 364 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.09033, Adjusted R-squared: 0.04285
## F-statistic: 1.902 on 19 and 364 DF, p-value: 0.013
# Action 16
summary(lm(act16 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -0.9811 0.2963 1.4800 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.51667 0.41233 1.253 0.21113
## SlibsSC.d 0.11717 0.49442 0.237 0.81282
## SlibsC.d 0.38239 0.47520 0.805 0.42161
## SlibsM.d 0.58469 0.45061 1.298 0.19541
## SlibsL.d 0.50636 0.51741 0.979 0.32852
## gend.mf 0.13333 0.82465 0.162 0.87166
## cond.c -0.03333 0.82465 -0.040 0.96778
## SlibsSC.d:gend.mf 0.71010 0.98885 0.718 0.47323
## SlibsC.d:gend.mf -0.61521 0.95040 -0.647 0.51790
## SlibsM.d:gend.mf 0.38454 0.90123 0.427 0.66990
## SlibsL.d:gend.mf -0.67939 1.03482 -0.657 0.51197
## SlibsSC.d:cond.c 0.09899 0.98885 0.100 0.92032
## SlibsC.d:cond.c 0.29368 0.95040 0.309 0.75753
## SlibsM.d:cond.c 0.28234 0.90123 0.313 0.75427
## SlibsL.d:cond.c -0.26272 1.03482 -0.254 0.79976
## gend.mf:cond.c 3.73333 1.64931 2.264 0.02429 *
## SlibsSC.d:gend.mf:cond.c -4.08687 1.97769 -2.066 0.03961 *
## SlibsC.d:gend.mf:cond.c -4.73265 1.90079 -2.490 0.01330 *
## SlibsM.d:gend.mf:cond.c -3.79017 1.80246 -2.103 0.03629 *
## SlibsL.d:gend.mf:cond.c -6.14123 2.06964 -2.967 0.00324 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 311 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.06263, Adjusted R-squared: 0.005359
## F-statistic: 1.094 on 19 and 311 DF, p-value: 0.3561
# Action 17
summary(lm(act17 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4286 -1.3889 -0.0571 1.6000 4.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9229 0.3880 2.379 0.01785 *
## SlibsSC.d -0.5687 0.4694 -1.212 0.22641
## SlibsC.d -0.6462 0.4595 -1.406 0.16039
## SlibsM.d -0.4398 0.4257 -1.033 0.30227
## SlibsL.d -0.1534 0.4931 -0.311 0.75587
## gend.mf -0.9292 0.7760 -1.197 0.23187
## cond.c 1.6958 0.7760 2.185 0.02945 *
## SlibsSC.d:gend.mf 1.1148 0.9389 1.187 0.23581
## SlibsC.d:gend.mf 0.8897 0.9190 0.968 0.33358
## SlibsM.d:gend.mf 0.9564 0.8515 1.123 0.26205
## SlibsL.d:gend.mf 1.6759 0.9862 1.699 0.09004 .
## SlibsSC.d:cond.c -0.9042 0.9389 -0.963 0.33613
## SlibsC.d:cond.c -2.8032 0.9190 -3.050 0.00244 **
## SlibsM.d:cond.c -2.1360 0.8515 -2.509 0.01252 *
## SlibsL.d:cond.c -1.7777 0.9862 -1.803 0.07221 .
## gend.mf:cond.c 3.4417 1.5520 2.218 0.02715 *
## SlibsSC.d:gend.mf:cond.c -3.9038 1.8778 -2.079 0.03827 *
## SlibsC.d:gend.mf:cond.c -4.6992 1.8380 -2.557 0.01094 *
## SlibsM.d:gend.mf:cond.c -4.0030 1.7030 -2.351 0.01923 *
## SlibsL.d:gend.mf:cond.c -4.4208 1.9724 -2.241 0.02556 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 396 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.0642, Adjusted R-squared: 0.0193
## F-statistic: 1.43 on 19 and 396 DF, p-value: 0.1086
# Action 18
summary(lm(act18 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.2632 0.2372 1.3333 3.3846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.62660 0.38506 1.627 0.10463
## SlibsSC.d -0.40547 0.46318 -0.875 0.38200
## SlibsC.d -0.13953 0.45400 -0.307 0.75878
## SlibsM.d 0.14388 0.42704 0.337 0.73639
## SlibsL.d 0.36032 0.47907 0.752 0.45251
## gend.mf 0.49679 0.77012 0.645 0.51932
## cond.c 0.58013 0.77012 0.753 0.45181
## SlibsSC.d:gend.mf 0.21245 0.92637 0.229 0.81875
## SlibsC.d:gend.mf -0.63760 0.90800 -0.702 0.48305
## SlibsM.d:gend.mf -0.58555 0.85407 -0.686 0.49344
## SlibsL.d:gend.mf -0.32778 0.95814 -0.342 0.73249
## SlibsSC.d:cond.c -0.08657 0.92637 -0.093 0.92560
## SlibsC.d:cond.c -1.05427 0.90800 -1.161 0.24644
## SlibsM.d:cond.c -0.59552 0.85407 -0.697 0.48612
## SlibsL.d:cond.c -0.43367 0.95814 -0.453 0.65112
## gend.mf:cond.c 3.33974 1.54024 2.168 0.03084 *
## SlibsSC.d:gend.mf:cond.c -3.35716 1.85274 -1.812 0.07089 .
## SlibsC.d:gend.mf:cond.c -4.72480 1.81601 -2.602 0.00969 **
## SlibsM.d:gend.mf:cond.c -3.15455 1.70814 -1.847 0.06567 .
## SlibsL.d:gend.mf:cond.c -4.48981 1.91628 -2.343 0.01972 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.05189, Adjusted R-squared: -0.002371
## F-statistic: 0.9563 on 19 and 332 DF, p-value: 0.5132
# Action 19
summary(lm(act19 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6364 -1.0465 0.3693 1.4390 2.8750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08617 0.39139 2.775 0.00593 **
## SlibsSC.d -0.17645 0.48824 -0.361 0.71810
## SlibsC.d 0.03500 0.46199 0.076 0.93967
## SlibsM.d 0.06703 0.43994 0.152 0.87901
## SlibsL.d 0.45827 0.54643 0.839 0.40244
## gend.mf -0.83902 0.78279 -1.072 0.28481
## cond.c 0.20265 0.78279 0.259 0.79593
## SlibsSC.d:gend.mf 1.64457 0.97648 1.684 0.09338 .
## SlibsC.d:gend.mf 0.66016 0.92398 0.714 0.47559
## SlibsM.d:gend.mf 0.53795 0.87987 0.611 0.54149
## SlibsL.d:gend.mf 1.28346 1.09285 1.174 0.24133
## SlibsSC.d:cond.c -0.13321 0.97648 -0.136 0.89160
## SlibsC.d:cond.c -1.20474 0.92398 -1.304 0.19346
## SlibsM.d:cond.c -0.63903 0.87987 -0.726 0.46834
## SlibsL.d:cond.c -0.98043 1.09285 -0.897 0.37050
## gend.mf:cond.c 0.92803 1.56557 0.593 0.55386
## SlibsSC.d:gend.mf:cond.c -2.31692 1.95296 -1.186 0.23659
## SlibsC.d:gend.mf:cond.c -1.90797 1.84796 -1.032 0.30283
## SlibsM.d:gend.mf:cond.c -0.77186 1.75975 -0.439 0.66131
## SlibsL.d:gend.mf:cond.c -1.63914 2.18570 -0.750 0.45399
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.809 on 254 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.05536, Adjusted R-squared: -0.0153
## F-statistic: 0.7834 on 19 and 254 DF, p-value: 0.7262
# Action 20
summary(lm(act20 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7000 -1.1616 0.4211 1.4211 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.70476 0.38682 1.822 0.0695 .
## SlibsSC.d 0.49915 0.46120 1.082 0.2800
## SlibsC.d 0.32008 0.45035 0.711 0.4778
## SlibsM.d 0.56138 0.43018 1.305 0.1929
## SlibsL.d 0.54568 0.49072 1.112 0.2670
## gend.mf -0.57619 0.77364 -0.745 0.4570
## cond.c 0.04286 0.77364 0.055 0.9559
## SlibsSC.d:gend.mf 0.75170 0.92240 0.815 0.4157
## SlibsC.d:gend.mf -0.16580 0.90070 -0.184 0.8541
## SlibsM.d:gend.mf 0.38319 0.86036 0.445 0.6564
## SlibsL.d:gend.mf 0.90865 0.98143 0.926 0.3553
## SlibsSC.d:cond.c -0.58957 0.92240 -0.639 0.5232
## SlibsC.d:cond.c -0.49318 0.90070 -0.548 0.5844
## SlibsM.d:cond.c -0.71452 0.86036 -0.830 0.4069
## SlibsL.d:cond.c -0.91040 0.98143 -0.928 0.3543
## gend.mf:cond.c 2.91429 1.54728 1.883 0.0606 .
## SlibsSC.d:gend.mf:cond.c -2.65418 1.84479 -1.439 0.1513
## SlibsC.d:gend.mf:cond.c -3.39826 1.80140 -1.886 0.0602 .
## SlibsM.d:gend.mf:cond.c -3.39239 1.72072 -1.972 0.0496 *
## SlibsL.d:gend.mf:cond.c -3.51253 1.96286 -1.789 0.0745 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.795 on 302 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.05394, Adjusted R-squared: -0.00558
## F-statistic: 0.9063 on 19 and 302 DF, p-value: 0.5755
# Action 21
summary(lm(act21 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1250 -1.7424 0.0508 1.7059 4.2727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.359615 0.408961 0.879 0.3798
## SlibsSC.d -1.010394 0.492997 -2.049 0.0411 *
## SlibsC.d -0.621275 0.489360 -1.270 0.2050
## SlibsM.d -0.338507 0.449283 -0.753 0.4517
## SlibsL.d 0.106754 0.512993 0.208 0.8353
## gend.mf 0.180769 0.817922 0.221 0.8252
## cond.c 0.680769 0.817922 0.832 0.4058
## SlibsSC.d:gend.mf -0.515575 0.985994 -0.523 0.6013
## SlibsC.d:gend.mf -0.396946 0.978721 -0.406 0.6853
## SlibsM.d:gend.mf 0.169871 0.898567 0.189 0.8502
## SlibsL.d:gend.mf -0.131364 1.025987 -0.128 0.8982
## SlibsSC.d:cond.c -0.003717 0.985994 -0.004 0.9970
## SlibsC.d:cond.c -0.739803 0.978721 -0.756 0.4502
## SlibsM.d:cond.c -0.523834 0.898567 -0.583 0.5603
## SlibsL.d:cond.c -0.956364 1.025987 -0.932 0.3519
## gend.mf:cond.c 2.438462 1.635845 1.491 0.1369
## SlibsSC.d:gend.mf:cond.c -1.974383 1.971989 -1.001 0.3174
## SlibsC.d:gend.mf:cond.c -4.370814 1.957441 -2.233 0.0261 *
## SlibsM.d:gend.mf:cond.c -2.538047 1.797134 -1.412 0.1587
## SlibsL.d:gend.mf:cond.c -4.422985 2.051974 -2.155 0.0318 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 381 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05638, Adjusted R-squared: 0.009323
## F-statistic: 1.198 on 19 and 381 DF, p-value: 0.2555
# Action 22
summary(lm(act22 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2222 -1.4571 -0.0508 1.7429 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0850 0.3729 2.909 0.00383 **
## SlibsSC.d -1.2967 0.4568 -2.839 0.00477 **
## SlibsC.d -0.7975 0.4442 -1.795 0.07340 .
## SlibsM.d -0.6922 0.4152 -1.667 0.09631 .
## SlibsL.d -0.4517 0.4878 -0.926 0.35500
## gend.mf -0.1699 0.7459 -0.228 0.81990
## cond.c -0.5477 0.7459 -0.734 0.46320
## SlibsSC.d:gend.mf 1.0480 0.9135 1.147 0.25201
## SlibsC.d:gend.mf -0.1717 0.8884 -0.193 0.84682
## SlibsM.d:gend.mf 0.6475 0.8304 0.780 0.43601
## SlibsL.d:gend.mf 0.1653 0.9756 0.169 0.86552
## SlibsSC.d:cond.c 0.8111 0.9135 0.888 0.37518
## SlibsC.d:cond.c 0.1727 0.8884 0.194 0.84596
## SlibsM.d:cond.c 0.5498 0.8304 0.662 0.50829
## SlibsL.d:cond.c 0.2256 0.9756 0.231 0.81721
## gend.mf:cond.c -1.3046 1.4917 -0.875 0.38238
## SlibsSC.d:gend.mf:cond.c 1.3233 1.8270 0.724 0.46932
## SlibsC.d:gend.mf:cond.c -0.2788 1.7768 -0.157 0.87542
## SlibsM.d:gend.mf:cond.c 1.7214 1.6608 1.036 0.30063
## SlibsL.d:gend.mf:cond.c -1.2418 1.9511 -0.636 0.52487
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.976 on 382 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.0681, Adjusted R-squared: 0.02175
## F-statistic: 1.469 on 19 and 382 DF, p-value: 0.0928
# Action 23
summary(lm(act23 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -2.000 0.125 1.920 4.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.36136 0.50085 0.722 0.4712
## SlibsSC.d -0.05657 0.61276 -0.092 0.9265
## SlibsC.d -0.59612 0.58472 -1.019 0.3089
## SlibsM.d -0.14023 0.56027 -0.250 0.8025
## SlibsL.d 0.15838 0.62625 0.253 0.8005
## gend.mf -1.22273 1.00170 -1.221 0.2233
## cond.c 1.67727 1.00170 1.674 0.0952 .
## SlibsSC.d:gend.mf 2.46869 1.22552 2.014 0.0450 *
## SlibsC.d:gend.mf 0.83112 1.16944 0.711 0.4779
## SlibsM.d:gend.mf 1.64713 1.12055 1.470 0.1427
## SlibsL.d:gend.mf 0.95110 1.25250 0.759 0.4483
## SlibsSC.d:cond.c -1.62323 1.22552 -1.325 0.1864
## SlibsC.d:cond.c -2.21110 1.16944 -1.891 0.0597 .
## SlibsM.d:cond.c -2.24453 1.12055 -2.003 0.0462 *
## SlibsL.d:cond.c -3.12946 1.25250 -2.499 0.0131 *
## gend.mf:cond.c 1.64545 2.00339 0.821 0.4122
## SlibsSC.d:gend.mf:cond.c -0.26465 2.45103 -0.108 0.9141
## SlibsC.d:gend.mf:cond.c -3.18890 2.33889 -1.363 0.1739
## SlibsM.d:gend.mf:cond.c -2.24426 2.24110 -1.001 0.3175
## SlibsL.d:gend.mf:cond.c -3.70538 2.50500 -1.479 0.1402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.253 on 272 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.07369, Adjusted R-squared: 0.008984
## F-statistic: 1.139 on 19 and 272 DF, p-value: 0.3118
# Action 24
summary(lm(act24 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8750 -0.0429 1.6429 4.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.243056 0.397695 -0.611 0.5414
## SlibsSC.d 0.210975 0.491805 0.429 0.6682
## SlibsC.d -0.194048 0.466426 -0.416 0.6776
## SlibsM.d -0.082903 0.436364 -0.190 0.8494
## SlibsL.d 0.217792 0.517330 0.421 0.6740
## gend.mf -0.597222 0.795391 -0.751 0.4532
## cond.c 0.152778 0.795391 0.192 0.8478
## SlibsSC.d:gend.mf 1.752292 0.983609 1.781 0.0756 .
## SlibsC.d:gend.mf 0.504762 0.932851 0.541 0.5887
## SlibsM.d:gend.mf 0.305957 0.872727 0.351 0.7261
## SlibsL.d:gend.mf 1.047749 1.034659 1.013 0.3118
## SlibsSC.d:cond.c 0.006838 0.983609 0.007 0.9945
## SlibsC.d:cond.c -1.084127 0.932851 -1.162 0.2459
## SlibsM.d:cond.c -1.029370 0.872727 -1.179 0.2389
## SlibsL.d:cond.c -0.123304 1.034659 -0.119 0.9052
## gend.mf:cond.c 0.527778 1.590781 0.332 0.7402
## SlibsSC.d:gend.mf:cond.c -0.847009 1.967219 -0.431 0.6670
## SlibsC.d:gend.mf:cond.c -3.398413 1.865702 -1.822 0.0693 .
## SlibsM.d:gend.mf:cond.c -1.388230 1.745454 -0.795 0.4269
## SlibsL.d:gend.mf:cond.c 0.213275 2.069319 0.103 0.9180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.083 on 395 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.05818, Adjusted R-squared: 0.01287
## F-statistic: 1.284 on 19 and 395 DF, p-value: 0.1894
# Action 25
summary(lm(act25 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6087 -0.8846 0.2222 1.3913 3.4000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.21078 0.37976 3.188 0.00154 **
## SlibsSC.d -1.30477 0.45440 -2.871 0.00429 **
## SlibsC.d -0.69049 0.43662 -1.581 0.11452
## SlibsM.d -0.32414 0.41036 -0.790 0.43003
## SlibsL.d 0.00389 0.46358 0.008 0.99331
## gend.mf -0.25490 0.75953 -0.336 0.73733
## cond.c 1.24510 0.75953 1.639 0.10189
## SlibsSC.d:gend.mf 0.49741 0.90879 0.547 0.58444
## SlibsC.d:gend.mf 0.10319 0.87324 0.118 0.90599
## SlibsM.d:gend.mf 0.27691 0.82072 0.337 0.73599
## SlibsL.d:gend.mf 0.57555 0.92715 0.621 0.53508
## SlibsSC.d:cond.c -0.73895 0.90879 -0.813 0.41661
## SlibsC.d:cond.c -1.81561 0.87324 -2.079 0.03820 *
## SlibsM.d:cond.c -1.44338 0.82072 -1.759 0.07935 .
## SlibsL.d:cond.c -0.69075 0.92715 -0.745 0.45667
## gend.mf:cond.c 1.84314 1.51906 1.213 0.22567
## SlibsSC.d:gend.mf:cond.c -1.14635 1.81759 -0.631 0.52858
## SlibsC.d:gend.mf:cond.c -3.36878 1.74648 -1.929 0.05441 .
## SlibsM.d:gend.mf:cond.c -2.20381 1.64145 -1.343 0.18012
## SlibsL.d:gend.mf:cond.c -2.95183 1.85431 -1.592 0.11216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.837 on 424 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.07813, Adjusted R-squared: 0.03682
## F-statistic: 1.891 on 19 and 424 DF, p-value: 0.0133
# Action 26
summary(lm(act26 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2857 -1.1563 0.5577 1.3947 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8036 0.4554 1.764 0.0791 .
## SlibsSC.d 0.8333 0.5551 1.501 0.1348
## SlibsC.d 0.8324 0.5320 1.565 0.1192
## SlibsM.d 0.7499 0.5131 1.462 0.1454
## SlibsL.d 0.8964 0.6259 1.432 0.1536
## gend.mf 0.8929 0.9108 0.980 0.3281
## cond.c 0.2262 0.9108 0.248 0.8041
## SlibsSC.d:gend.mf -1.0000 1.1102 -0.901 0.3688
## SlibsC.d:gend.mf -1.2399 1.0640 -1.165 0.2453
## SlibsM.d:gend.mf -1.1152 1.0261 -1.087 0.2784
## SlibsL.d:gend.mf 0.5071 1.2519 0.405 0.6858
## SlibsSC.d:cond.c -0.6190 1.1102 -0.558 0.5777
## SlibsC.d:cond.c -0.3649 1.0640 -0.343 0.7320
## SlibsM.d:cond.c -0.2244 1.0261 -0.219 0.8271
## SlibsL.d:cond.c -0.8262 1.2519 -0.660 0.5100
## gend.mf:cond.c 1.8810 1.8217 1.033 0.3030
## SlibsSC.d:gend.mf:cond.c -0.7619 2.2205 -0.343 0.7319
## SlibsC.d:gend.mf:cond.c -4.2536 2.1281 -1.999 0.0469 *
## SlibsM.d:gend.mf:cond.c -2.1152 2.0522 -1.031 0.3039
## SlibsL.d:gend.mf:cond.c -3.0810 2.5037 -1.231 0.2199
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.844 on 206 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.06431, Adjusted R-squared: -0.02199
## F-statistic: 0.7452 on 19 and 206 DF, p-value: 0.7689
# Action 27
summary(lm(act27 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2143 0.1667 1.4167 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.35606 0.35596 3.810 0.000169 ***
## SlibsSC.d -0.87689 0.44361 -1.977 0.048997 *
## SlibsC.d -0.52789 0.43317 -1.219 0.223945
## SlibsM.d -0.73480 0.40620 -1.809 0.071467 .
## SlibsL.d -0.23864 0.47840 -0.499 0.618271
## gend.mf 0.12121 0.71192 0.170 0.864920
## cond.c 0.62121 0.71192 0.873 0.383591
## SlibsSC.d:gend.mf 0.83712 0.88722 0.944 0.346173
## SlibsC.d:gend.mf 0.18276 0.86635 0.211 0.833071
## SlibsM.d:gend.mf 0.28805 0.81240 0.355 0.723164
## SlibsL.d:gend.mf -0.02273 0.95679 -0.024 0.981065
## SlibsSC.d:cond.c -1.24621 0.88722 -1.405 0.161175
## SlibsC.d:cond.c -1.25375 0.86635 -1.447 0.148904
## SlibsM.d:cond.c -1.30996 0.81240 -1.612 0.107924
## SlibsL.d:cond.c -0.96212 0.95679 -1.006 0.315441
## gend.mf:cond.c 0.42424 1.42383 0.298 0.765944
## SlibsSC.d:gend.mf:cond.c -1.67424 1.77443 -0.944 0.346173
## SlibsC.d:gend.mf:cond.c -2.79408 1.73269 -1.613 0.107901
## SlibsM.d:gend.mf:cond.c -0.60033 1.62479 -0.369 0.712034
## SlibsL.d:gend.mf:cond.c 0.25758 1.91358 0.135 0.893016
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 297 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.0834, Adjusted R-squared: 0.02476
## F-statistic: 1.422 on 19 and 297 DF, p-value: 0.1144
# Action 28
summary(lm(act28 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6250 -1.1321 0.2667 1.5522 3.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.993750 0.403019 2.466 0.0141 *
## SlibsSC.d -0.175568 0.475408 -0.369 0.7121
## SlibsC.d 0.293396 0.465317 0.631 0.5288
## SlibsM.d 0.003158 0.442139 0.007 0.9943
## SlibsL.d -0.121607 0.504288 -0.241 0.8096
## gend.mf -0.904167 0.806038 -1.122 0.2627
## cond.c 0.387500 0.806038 0.481 0.6310
## SlibsSC.d:gend.mf 0.840530 0.950815 0.884 0.3773
## SlibsC.d:gend.mf 0.629875 0.930634 0.677 0.4990
## SlibsM.d:gend.mf 1.032573 0.884278 1.168 0.2437
## SlibsL.d:gend.mf 0.388452 1.008576 0.385 0.7004
## SlibsSC.d:cond.c -1.301136 0.950815 -1.368 0.1720
## SlibsC.d:cond.c -0.754385 0.930634 -0.811 0.4181
## SlibsM.d:cond.c -0.515907 0.884278 -0.583 0.5600
## SlibsL.d:cond.c -0.831786 1.008576 -0.825 0.4101
## gend.mf:cond.c 0.058333 1.612075 0.036 0.9712
## SlibsSC.d:gend.mf:cond.c -0.285606 1.901631 -0.150 0.8807
## SlibsC.d:gend.mf:cond.c -0.724564 1.861268 -0.389 0.6973
## SlibsM.d:gend.mf:cond.c -1.112631 1.768555 -0.629 0.5297
## SlibsL.d:gend.mf:cond.c -2.426905 2.017152 -1.203 0.2297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 352 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: -0.006203
## F-statistic: 0.8796 on 19 and 352 DF, p-value: 0.6089
# Action 29
summary(lm(act29 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6923 -1.0447 0.3077 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3522436 0.3729183 3.626 0.000331 ***
## SlibsSC.d -0.2638237 0.4485709 -0.588 0.556818
## SlibsC.d -0.4061968 0.4395428 -0.924 0.356056
## SlibsM.d -0.2423829 0.4114592 -0.589 0.556189
## SlibsL.d -0.1898661 0.4652998 -0.408 0.683487
## gend.mf -0.1544872 0.7458365 -0.207 0.836027
## cond.c 0.2621795 0.7458365 0.352 0.725408
## SlibsSC.d:gend.mf 0.4503746 0.8971417 0.502 0.615978
## SlibsC.d:gend.mf -0.1073544 0.8790855 -0.122 0.902874
## SlibsM.d:gend.mf 0.1047004 0.8229183 0.127 0.898831
## SlibsL.d:gend.mf 0.8297323 0.9305995 0.892 0.373218
## SlibsSC.d:cond.c -0.0009241 0.8971417 -0.001 0.999179
## SlibsC.d:cond.c -0.1266996 0.8790855 -0.144 0.885484
## SlibsM.d:cond.c -0.3307898 0.8229183 -0.402 0.687952
## SlibsL.d:cond.c -0.0743293 0.9305995 -0.080 0.936385
## gend.mf:cond.c 1.5756410 1.4916731 1.056 0.291568
## SlibsSC.d:gend.mf:cond.c -2.2436064 1.7942835 -1.250 0.211987
## SlibsC.d:gend.mf:cond.c -0.8718109 1.7581710 -0.496 0.620305
## SlibsM.d:gend.mf:cond.c -1.3338452 1.6458366 -0.810 0.418243
## SlibsL.d:gend.mf:cond.c -1.6656270 1.8611990 -0.895 0.371448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.791 on 348 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01904, Adjusted R-squared: -0.03452
## F-statistic: 0.3554 on 19 and 348 DF, p-value: 0.995
# Action 30
summary(lm(act30 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (SlibsSC.d + SlibsC.d + SlibsM.d + SlibsL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.545 -1.059 0.400 1.466 3.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.94886 0.38564 2.461 0.0144 *
## SlibsSC.d 0.09508 0.46253 0.206 0.8373
## SlibsC.d -0.06822 0.45439 -0.150 0.8808
## SlibsM.d 0.01995 0.43233 0.046 0.9632
## SlibsL.d 0.31913 0.49071 0.650 0.5159
## gend.mf -0.64773 0.77127 -0.840 0.4016
## cond.c 0.60227 0.77127 0.781 0.4354
## SlibsSC.d:gend.mf 0.13561 0.92505 0.147 0.8835
## SlibsC.d:gend.mf 0.05310 0.90879 0.058 0.9534
## SlibsM.d:gend.mf 0.46123 0.86466 0.533 0.5941
## SlibsL.d:gend.mf 0.94508 0.98142 0.963 0.3363
## SlibsSC.d:cond.c 0.57652 0.92505 0.623 0.5336
## SlibsC.d:cond.c -0.66241 0.90879 -0.729 0.4666
## SlibsM.d:cond.c -0.53877 0.86466 -0.623 0.5336
## SlibsL.d:cond.c -0.92992 0.98142 -0.948 0.3441
## gend.mf:cond.c 2.29545 1.54255 1.488 0.1377
## SlibsSC.d:gend.mf:cond.c -1.13788 1.85011 -0.615 0.5390
## SlibsC.d:gend.mf:cond.c -1.84184 1.81758 -1.013 0.3116
## SlibsM.d:gend.mf:cond.c -1.68943 1.72932 -0.977 0.3293
## SlibsL.d:gend.mf:cond.c -3.97348 1.96285 -2.024 0.0437 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.04439, Adjusted R-squared: -0.0103
## F-statistic: 0.8117 on 19 and 332 DF, p-value: 0.6931
a. Gender x Cond means
# Action 1
aggregate(d$act1[d$ideology == "Strong Liberal"], list(d$gend[d$ideology == "Strong Liberal"], d$cond[d$ideology == "Strong Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.62
## 2 Male climate 0.20
## 3 Female ctrl 1.33
## 4 Male ctrl -2.00
## 5 Other ctrl 2.00
# Action 13
aggregate(d$act13[d$ideology == "Strong Liberal"], list(d$gend[d$ideology == "Strong Liberal"], d$cond[d$ideology == "Strong Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.38
## 2 Male climate 0.83
## 3 Female ctrl 1.13
## 4 Male ctrl -1.80
## 5 Other ctrl -1.00
# Action 16
aggregate(d$act16[d$ideology == "Strong Liberal"], list(d$gend[d$ideology == "Strong Liberal"], d$cond[d$ideology == "Strong Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.50
## 2 Male climate 1.50
## 3 Female ctrl 1.40
## 4 Male ctrl -0.33
## 5 Other ctrl 3.00
# Action 17
aggregate(d$act17[d$ideology == "Strong Liberal"], list(d$gend[d$ideology == "Strong Liberal"], d$cond[d$ideology == "Strong Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate 1.38
## 2 Male climate 2.17
## 3 Female ctrl 1.40
## 4 Male ctrl -1.25
## 5 Other ctrl 1.00
# Action 18
aggregate(d$act18[d$ideology == "Strong Liberal"], list(d$gend[d$ideology == "Strong Liberal"], d$cond[d$ideology == "Strong Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.17
## 2 Male climate 2.00
## 3 Female ctrl 0.92
## 4 Male ctrl -0.25
## 5 Other ctrl 2.00
ii. Liberals
# Action 1
lib.b1 <- lm(act1 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b1)
##
## Call:
## lm(formula = act1 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.646 -1.962 0.038 2.038 3.490
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6462 0.2668 2.422 0.015825 *
## LibsSC.d -1.1077 0.3773 -2.936 0.003495 **
## LibsC.d -1.1362 0.3427 -3.316 0.000989 ***
## LibsM.d -0.6842 0.3103 -2.205 0.027980 *
## LibsSL.d -0.4747 0.4509 -1.053 0.292995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.151 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.0298, Adjusted R-squared: 0.02106
## F-statistic: 3.409 on 4 and 444 DF, p-value: 0.00923
# Action 2
lib.b2 <- lm(act2 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b2)
##
## Call:
## lm(formula = act2 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.2212 0.1077 1.7788 2.1077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5714 0.2786 5.641 4.07e-08 ***
## LibsSC.d -0.6149 0.3853 -1.596 0.1116
## LibsC.d -0.6791 0.3574 -1.900 0.0584 .
## LibsM.d -0.3502 0.3263 -1.073 0.2840
## LibsSL.d -0.5298 0.4620 -1.147 0.2524
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 285 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01519, Adjusted R-squared: 0.001372
## F-statistic: 1.099 on 4 and 285 DF, p-value: 0.3572
# Action 3
lib.b3 <- lm(act3 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b3)
##
## Call:
## lm(formula = act3 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.9837 0.0163 1.4167 3.8852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1912 0.2437 -0.784 0.4332
## LibsSC.d -0.6941 0.3544 -1.958 0.0508 .
## LibsC.d -0.2255 0.3185 -0.708 0.4794
## LibsM.d 0.1749 0.2852 0.613 0.5401
## LibsSL.d 0.5626 0.4181 1.346 0.1791
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 439 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02777, Adjusted R-squared: 0.01891
## F-statistic: 3.134 on 4 and 439 DF, p-value: 0.01467
# Action 4
lib.b4 <- lm(act4 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b4)
##
## Call:
## lm(formula = act4 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.7938 0.2062 2.0051 3.2877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3793 0.2838 1.336 0.1822
## LibsSC.d -0.1832 0.4149 -0.442 0.6590
## LibsC.d -0.6670 0.3802 -1.754 0.0802 .
## LibsM.d -0.5856 0.3313 -1.767 0.0780 .
## LibsSL.d 0.1034 0.4916 0.210 0.8334
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.162 on 366 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01709, Adjusted R-squared: 0.006351
## F-statistic: 1.591 on 4 and 366 DF, p-value: 0.176
# Action 5
lib.b5 <- lm(act5 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b5)
##
## Call:
## lm(formula = act5 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4048 -1.0917 0.2653 1.5952 2.5833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4048 0.2888 4.865 1.88e-06 ***
## LibsSC.d -0.6701 0.3935 -1.703 0.0897 .
## LibsC.d -0.4322 0.3624 -1.192 0.2341
## LibsM.d -0.3130 0.3399 -0.921 0.3578
## LibsSL.d -0.9881 0.4788 -2.064 0.0399 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 292 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.01867, Adjusted R-squared: 0.005229
## F-statistic: 1.389 on 4 and 292 DF, p-value: 0.2378
# Action 6
lib.b6 <- lm(act6 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b6)
##
## Call:
## lm(formula = act6 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4348 -1.3099 0.6706 1.6706 2.1296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4348 0.2673 5.368 1.44e-07 ***
## LibsSC.d -0.5644 0.3637 -1.552 0.122
## LibsC.d -0.1054 0.3318 -0.318 0.751
## LibsM.d -0.1249 0.3076 -0.406 0.685
## LibsSL.d -0.2473 0.4173 -0.593 0.554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 354 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.00896, Adjusted R-squared: -0.002238
## F-statistic: 0.8001 on 4 and 354 DF, p-value: 0.5257
# Action 7
lib.b7 <- lm(act7 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b7)
##
## Call:
## lm(formula = act7 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.8652 0.1348 1.6286 3.3140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0339 0.2720 -0.125 0.901
## LibsSC.d -0.1240 0.3880 -0.320 0.749
## LibsC.d -0.2801 0.3531 -0.793 0.428
## LibsM.d -0.1009 0.3138 -0.322 0.748
## LibsSL.d 0.4053 0.4457 0.909 0.364
##
## Residual standard error: 2.089 on 410 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.006798, Adjusted R-squared: -0.002892
## F-statistic: 0.7016 on 4 and 410 DF, p-value: 0.5912
# Action 8
lib.b8 <- lm(act8 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b8)
##
## Call:
## lm(formula = act8 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.625 -1.855 -0.287 1.713 4.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4762 0.2672 1.782 0.075384 .
## LibsSC.d -1.6211 0.3696 -4.386 1.42e-05 ***
## LibsC.d -1.1892 0.3362 -3.537 0.000445 ***
## LibsM.d -0.9190 0.3062 -3.001 0.002834 **
## LibsSL.d 0.1488 0.4288 0.347 0.728718
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 476 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.06121, Adjusted R-squared: 0.05332
## F-statistic: 7.759 on 4 and 476 DF, p-value: 4.609e-06
# Action 9
lib.b9 <- lm(act9 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b9)
##
## Call:
## lm(formula = act9 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5781 -1.5781 0.2525 1.7167 3.7167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5781 0.2458 2.352 0.019097 *
## LibsSC.d -1.2948 0.3533 -3.665 0.000278 ***
## LibsC.d -0.8307 0.3154 -2.634 0.008736 **
## LibsM.d -0.3781 0.2842 -1.331 0.183999
## LibsSL.d -0.3837 0.4096 -0.937 0.349447
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.966 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03759, Adjusted R-squared: 0.02892
## F-statistic: 4.336 on 4 and 444 DF, p-value: 0.00189
# Action 10
lib.b10 <- lm(act10 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b10)
##
## Call:
## lm(formula = act10 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6769 0.2574 2.630 0.008812 **
## LibsSC.d -1.2946 0.3599 -3.597 0.000356 ***
## LibsC.d -0.9341 0.3275 -2.852 0.004531 **
## LibsM.d -0.5965 0.2964 -2.012 0.044752 *
## LibsSL.d 0.4731 0.4170 1.135 0.257147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
# Action 11
lib.b11 <- lm(act11 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b11)
##
## Call:
## lm(formula = act11 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6585 -0.8154 0.2741 1.3415 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6585 0.2916 5.687 2.99e-08 ***
## LibsSC.d -0.9238 0.3952 -2.338 0.02005 *
## LibsC.d -0.8432 0.3724 -2.264 0.02426 *
## LibsM.d -0.9326 0.3330 -2.801 0.00542 **
## LibsSL.d -0.1169 0.4799 -0.244 0.80776
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 309 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03501, Adjusted R-squared: 0.02252
## F-statistic: 2.803 on 4 and 309 DF, p-value: 0.02604
# Action 12
lib.b12 <- lm(act12 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b12) # yes, higher than 0
##
## Call:
## lm(formula = act12 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.736 -2.158 0.000 2.000 3.842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7358 0.2947 2.497 0.012959 *
## LibsSC.d -1.5780 0.4094 -3.854 0.000136 ***
## LibsC.d -1.3358 0.3715 -3.596 0.000366 ***
## LibsM.d -0.7358 0.3406 -2.160 0.031360 *
## LibsSL.d -0.4025 0.5073 -0.793 0.428037
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.146 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0525, Adjusted R-squared: 0.04253
## F-statistic: 5.264 on 4 and 380 DF, p-value: 0.0003892
# Action 13
lib.b13 <- lm(act13 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b13) # nothing
##
## Call:
## lm(formula = act13 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3438 -1.9149 0.0851 1.6562 3.5781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34375 0.25987 1.323 0.1866
## LibsSC.d -0.92187 0.36751 -2.508 0.0125 *
## LibsC.d -0.56114 0.33839 -1.658 0.0980 .
## LibsM.d -0.42886 0.30087 -1.425 0.1548
## LibsSL.d -0.08661 0.43705 -0.198 0.8430
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.079 on 438 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01713, Adjusted R-squared: 0.008155
## F-statistic: 1.909 on 4 and 438 DF, p-value: 0.108
# Action 14
lib.b14 <- lm(act14 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b14) # yes, higher than 0
##
## Call:
## lm(formula = act14 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9487 -1.4219 -0.0198 1.6780 2.9091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9487 0.3253 2.917 0.00382 **
## LibsSC.d -0.4487 0.4571 -0.982 0.32714
## LibsC.d -0.6267 0.4192 -1.495 0.13607
## LibsM.d -0.5268 0.3715 -1.418 0.15730
## LibsSL.d -0.8578 0.5416 -1.584 0.11438
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.031 on 283 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.01158, Adjusted R-squared: -0.002388
## F-statistic: 0.829 on 4 and 283 DF, p-value: 0.5076
# Action 15
lib.b15 <- lm(act15 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b15) # yes, higher than 0
##
## Call:
## lm(formula = act15 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8889 -2.1024 0.1111 1.8916 3.3559
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8889 0.3053 2.911 0.00381 **
## LibsSC.d -1.2448 0.4054 -3.071 0.00229 **
## LibsC.d -0.7805 0.3792 -2.058 0.04024 *
## LibsM.d -0.7865 0.3442 -2.285 0.02288 *
## LibsSL.d -0.5764 0.4736 -1.217 0.22437
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.048 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.02508, Adjusted R-squared: 0.01482
## F-statistic: 2.444 on 4 and 380 DF, p-value: 0.0462
# Action 16
lib.b16 <- lm(act16 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b16) # yes, higher than 0
##
## Call:
## lm(formula = act16 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0698 -0.9861 0.0357 1.4375 2.4375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.06977 0.27987 3.822 0.000158 ***
## LibsSC.d -0.50727 0.38535 -1.316 0.188973
## LibsC.d -0.08366 0.35371 -0.237 0.813182
## LibsM.d -0.10548 0.31998 -0.330 0.741874
## LibsSL.d -0.03528 0.44099 -0.080 0.936276
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 327 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.007238, Adjusted R-squared: -0.004905
## F-statistic: 0.5961 on 4 and 327 DF, p-value: 0.6657
# Action 17
lib.b17 <- lm(act17 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b17) # yes, higher than 0
##
## Call:
## lm(formula = act17 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2059 -1.4798 -0.1685 1.6230 2.8315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.55000 0.25823 2.130 0.0338 *
## LibsSC.d -0.17295 0.36369 -0.476 0.6347
## LibsC.d -0.38146 0.33412 -1.142 0.2542
## LibsM.d -0.07023 0.29968 -0.234 0.8148
## LibsSL.d 0.65588 0.42937 1.528 0.1274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2 on 412 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: 0.006815
## F-statistic: 1.714 on 4 and 412 DF, p-value: 0.146
# Action 18
lib.b18 <- lm(act18 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b18) # yes, higher than 0
##
## Call:
## lm(formula = act18 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1196 0.1844 1.5135 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.91228 0.24393 3.740 0.000215 ***
## LibsSC.d -0.72360 0.35142 -2.059 0.040228 *
## LibsC.d -0.42579 0.32455 -1.312 0.190403
## LibsM.d -0.09668 0.28906 -0.334 0.738237
## LibsSL.d -0.15366 0.42007 -0.366 0.714736
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01769, Adjusted R-squared: 0.006435
## F-statistic: 1.572 on 4 and 349 DF, p-value: 0.1814
# Action 19
lib.b19 <- lm(act19 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b19) # yes, higher than 0
##
## Call:
## lm(formula = act19 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.438 -1.050 0.093 1.704 2.093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4375 0.3184 4.515 9.49e-06 ***
## LibsSC.d -0.5305 0.4205 -1.262 0.208
## LibsC.d -0.3875 0.3943 -0.983 0.327
## LibsM.d -0.2074 0.3607 -0.575 0.566
## LibsSL.d -0.1412 0.4707 -0.300 0.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 270 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.00789, Adjusted R-squared: -0.006807
## F-statistic: 0.5368 on 4 and 270 DF, p-value: 0.7088
# Action 20
lib.b20 <- lm(act20 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b20) # yes, higher than 0
##
## Call:
## lm(formula = act20 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3566 -1.1957 0.6434 1.6434 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.19565 0.26435 4.523 8.61e-06 ***
## LibsSC.d -0.04471 0.36130 -0.124 0.902
## LibsC.d -0.06522 0.34128 -0.191 0.849
## LibsM.d 0.16094 0.30790 0.523 0.602
## LibsSL.d -0.19565 0.43467 -0.450 0.653
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.793 on 319 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.004413, Adjusted R-squared: -0.008071
## F-statistic: 0.3535 on 4 and 319 DF, p-value: 0.8415
# Action 21
lib.b21 <- lm(act21 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b21) # nothing
##
## Call:
## lm(formula = act21 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4407 -1.9401 0.0599 1.5806 3.5806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.44068 0.26821 1.643 0.1012
## LibsSC.d -1.02132 0.37469 -2.726 0.0067 **
## LibsC.d -0.70897 0.35170 -2.016 0.0445 *
## LibsM.d -0.50056 0.31201 -1.604 0.1094
## LibsSL.d -0.01644 0.44783 -0.037 0.9707
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 398 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02474, Adjusted R-squared: 0.01494
## F-statistic: 2.524 on 4 and 398 DF, p-value: 0.04049
# Action 22
lib.b22 <- lm(act22 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b22) # yes, higher than 0
##
## Call:
## lm(formula = act22 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1351 -1.3415 -0.1351 1.7143 3.3279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5893 0.2639 2.233 0.0261 *
## LibsSC.d -0.9172 0.3655 -2.509 0.0125 *
## LibsC.d -0.2478 0.3423 -0.724 0.4696
## LibsM.d -0.3036 0.3047 -0.996 0.3197
## LibsSL.d 0.5458 0.4184 1.305 0.1928
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.975 on 399 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03383, Adjusted R-squared: 0.02414
## F-statistic: 3.492 on 4 and 399 DF, p-value: 0.008087
# Action 23
lib.b23 <- lm(act23 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b23) # marginally higher than 0
##
## Call:
## lm(formula = act23 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6154 -2.1138 0.1846 2.1846 3.1846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.61538 0.36271 1.697 0.0908 .
## LibsSC.d -0.34709 0.50665 -0.685 0.4938
## LibsC.d -0.80000 0.45879 -1.744 0.0823 .
## LibsM.d -0.50156 0.41625 -1.205 0.2292
## LibsSL.d -0.05538 0.58033 -0.095 0.9240
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.265 on 288 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.01368, Adjusted R-squared: -2.033e-05
## F-statistic: 0.9985 on 4 and 288 DF, p-value: 0.4087
# Action 24
lib.b24 <- lm(act24 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b24) # nothing
##
## Call:
## lm(formula = act24 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9189 -1.8727 0.1273 1.6453 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.13793 0.27643 -0.499 0.618
## LibsSC.d 0.01066 0.39623 0.027 0.979
## LibsC.d -0.36207 0.35297 -1.026 0.306
## LibsM.d -0.09195 0.31920 -0.288 0.773
## LibsSL.d 0.05685 0.44294 0.128 0.898
##
## Residual standard error: 2.105 on 411 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.004608, Adjusted R-squared: -0.005079
## F-statistic: 0.4757 on 4 and 411 DF, p-value: 0.7536
# Action 25
lib.b25 <- lm(act25 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b25) # yes, higher than 0
##
## Call:
## lm(formula = act25 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3429 -0.8925 0.1167 1.5000 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1270 0.2310 4.879 1.49e-06 ***
## LibsSC.d -1.2437 0.3307 -3.760 0.000193 ***
## LibsC.d -0.6270 0.2938 -2.134 0.033383 *
## LibsM.d -0.2345 0.2673 -0.877 0.380715
## LibsSL.d 0.2159 0.3865 0.559 0.576784
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 441 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.049, Adjusted R-squared: 0.04037
## F-statistic: 5.68 on 4 and 441 DF, p-value: 0.0001824
# Action 26
lib.b26 <- lm(act26 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b26) # yes, higher than 0
##
## Call:
## lm(formula = act26 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5686 -1.2581 0.4595 1.4314 2.0526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2581 0.3283 3.832 0.000165 ***
## LibsSC.d 0.2825 0.4450 0.635 0.526245
## LibsC.d 0.3106 0.4162 0.746 0.456391
## LibsM.d 0.3599 0.3812 0.944 0.346080
## LibsSL.d -0.3107 0.5325 -0.583 0.560184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.828 on 222 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01216, Adjusted R-squared: -0.005638
## F-statistic: 0.6832 on 4 and 222 DF, p-value: 0.6042
# Action 27
lib.b27 <- lm(act27 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b27) # yes, higher than 0
##
## Call:
## lm(formula = act27 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3871 -0.9483 0.2812 1.5577 2.5577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1778 0.2799 4.208 3.37e-05 ***
## LibsSC.d -0.7355 0.3823 -1.924 0.0553 .
## LibsC.d -0.4590 0.3653 -1.257 0.2098
## LibsM.d -0.6266 0.3258 -1.924 0.0553 .
## LibsSL.d 0.2093 0.4383 0.478 0.6333
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 314 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02704, Adjusted R-squared: 0.01464
## F-statistic: 2.182 on 4 and 314 DF, p-value: 0.07092
# Action 28
lib.b28 <- lm(act28 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b28) # yes, higher than 0
##
## Call:
## lm(formula = act28 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3214 -0.9728 0.2105 1.6786 2.2105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.00000 0.24604 4.064 5.89e-05 ***
## LibsSC.d -0.21053 0.34488 -0.610 0.542
## LibsC.d 0.32143 0.31649 1.016 0.310
## LibsM.d -0.02721 0.28841 -0.094 0.925
## LibsSL.d 0.19355 0.40979 0.472 0.637
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 369 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.009436, Adjusted R-squared: -0.001302
## F-statistic: 0.8787 on 4 and 369 DF, p-value: 0.4767
# Action 29
lib.b29 <- lm(act29 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b29) # yes, higher than 0
##
## Call:
## lm(formula = act29 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4828 -1.0893 0.0182 1.5172 2.0182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98182 0.23796 4.126 4.58e-05 ***
## LibsSC.d 0.10747 0.33502 0.321 0.749
## LibsC.d 0.04228 0.30683 0.138 0.890
## LibsM.d 0.16104 0.27894 0.577 0.564
## LibsSL.d 0.50094 0.40499 1.237 0.217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.765 on 365 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.005014, Adjusted R-squared: -0.00589
## F-statistic: 0.4598 on 4 and 365 DF, p-value: 0.7652
# Action 30
lib.b30 <- lm(act30 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d, data = d)
summary(lib.b30) # yes, higher than 0
##
## Call:
## lm(formula = act30 ~ LibsSC.d + LibsC.d + LibsM.d + LibsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1765 -1.0435 0.8235 1.8235 1.9875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17647 0.26271 4.478 1.02e-05 ***
## LibsSC.d -0.03612 0.36162 -0.100 0.920
## LibsC.d -0.16397 0.33618 -0.488 0.626
## LibsM.d -0.13299 0.30745 -0.433 0.666
## LibsSL.d -0.03361 0.44128 -0.076 0.939
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.001091, Adjusted R-squared: -0.01036
## F-statistic: 0.09525 on 4 and 349 DF, p-value: 0.9839
Significantly higher than 0: 1, 2, 5, 6, 9, 10, 11, 12, 14, 15, 16,
17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30 Not different from 0: 3, 4,
7, 8, 13, 21, 23, 24 Significantly lower than 0: None
1. Condition Differences?
# Action 1
lib.c.b1 <- lm(act1 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b1) # no
##
## Call:
## lm(formula = act1 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.750 -2.200 0.250 1.765 3.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6477 0.2665 2.431 0.01546 *
## LibsSC.d -1.1334 0.3774 -3.004 0.00282 **
## LibsC.d -1.1266 0.3432 -3.282 0.00111 **
## LibsM.d -0.7048 0.3101 -2.273 0.02353 *
## LibsSL.d -0.5743 0.4606 -1.247 0.21312
## cond.c 0.2045 0.5329 0.384 0.70129
## LibsSC.d:cond.c 0.4240 0.7547 0.562 0.57452
## LibsC.d:cond.c -0.3896 0.6865 -0.568 0.57063
## LibsM.d:cond.c -0.7881 0.6203 -1.271 0.20456
## LibsSL.d:cond.c -0.9668 0.9212 -1.049 0.29454
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.04314, Adjusted R-squared: 0.02353
## F-statistic: 2.199 on 9 and 439 DF, p-value: 0.02116
# Action 2
lib.c.b2 <- lm(act2 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b2) #no
##
## Call:
## lm(formula = act2 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -1.068 0.375 1.615 2.375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5625 0.2825 5.531 7.31e-08 ***
## LibsSC.d -0.5839 0.3917 -1.491 0.1371
## LibsC.d -0.6742 0.3610 -1.868 0.0629 .
## LibsM.d -0.3702 0.3310 -1.119 0.2643
## LibsSL.d -0.5170 0.4664 -1.108 0.2686
## cond.c -0.1250 0.5650 -0.221 0.8251
## LibsSC.d:cond.c -0.1284 0.7834 -0.164 0.8699
## LibsC.d:cond.c -0.4015 0.7220 -0.556 0.5786
## LibsM.d:cond.c -0.2596 0.6619 -0.392 0.6952
## LibsSL.d:cond.c 0.2159 0.9329 0.231 0.8171
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.812 on 280 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -0.006049
## F-statistic: 0.8069 on 9 and 280 DF, p-value: 0.6102
# Action 3
lib.c.b3 <- lm(act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b3) #no
##
## Call:
## lm(formula = act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9375 0.0625 1.6410 3.9394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.11362 0.24645 -0.461 0.6450
## LibsSC.d -0.76679 0.35697 -2.148 0.0323 *
## LibsC.d -0.30702 0.32170 -0.954 0.3404
## LibsM.d 0.09941 0.28764 0.346 0.7298
## LibsSL.d 0.45601 0.43455 1.049 0.2946
## cond.c 1.05482 0.49289 2.140 0.0329 *
## LibsSC.d:cond.c -1.17278 0.71393 -1.643 0.1012
## LibsC.d:cond.c -0.99133 0.64341 -1.541 0.1241
## LibsM.d:cond.c -0.95823 0.57528 -1.666 0.0965 .
## LibsSL.d:cond.c -1.23960 0.86911 -1.426 0.1545
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03846, Adjusted R-squared: 0.01852
## F-statistic: 1.929 on 9 and 434 DF, p-value: 0.04628
# Action 4
lib.c.b4 <- lm(act4 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b4) # no
##
## Call:
## lm(formula = act4 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8400 -1.8941 0.1059 2.0378 3.3488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.43515 0.28756 1.513 0.1311
## LibsSC.d -0.23717 0.41933 -0.566 0.5720
## LibsC.d -0.70957 0.38633 -1.837 0.0671 .
## LibsM.d -0.64809 0.33498 -1.935 0.0538 .
## LibsSL.d 0.02801 0.51207 0.055 0.9564
## cond.c 0.80970 0.57512 1.408 0.1600
## LibsSC.d:cond.c -0.84852 0.83865 -1.012 0.3123
## LibsC.d:cond.c -0.95853 0.77266 -1.241 0.2156
## LibsM.d:cond.c -1.02381 0.66996 -1.528 0.1273
## LibsSL.d:cond.c -0.93601 1.02414 -0.914 0.3614
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.169 on 361 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.0238, Adjusted R-squared: -0.0005384
## F-statistic: 0.9779 on 9 and 361 DF, p-value: 0.4579
# Action 8
lib.c.b8 <- lm(act8 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b8) # yes, cond difference (negative)
##
## Call:
## lm(formula = act8 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5107 0.2678 1.907 0.057116 .
## LibsSC.d -1.6658 0.3708 -4.492 8.87e-06 ***
## LibsC.d -1.1409 0.3380 -3.376 0.000797 ***
## LibsM.d -0.9510 0.3065 -3.103 0.002033 **
## LibsSL.d 0.1976 0.4335 0.456 0.648692
## cond.c 0.6214 0.5356 1.160 0.246529
## LibsSC.d:cond.c -0.4650 0.7416 -0.627 0.530950
## LibsC.d:cond.c -1.6151 0.6759 -2.389 0.017264 *
## LibsM.d:cond.c -0.5116 0.6131 -0.835 0.404412
## LibsSL.d:cond.c 0.2119 0.8670 0.244 0.807017
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
# Action 9
lib.c.b9 <- lm(act9 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b9) # no
##
## Call:
## lm(formula = act9 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.5893 0.0465 1.4286 4.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5774 0.2474 2.334 0.020048 *
## LibsSC.d -1.3681 0.3558 -3.845 0.000139 ***
## LibsC.d -0.8060 0.3175 -2.538 0.011483 *
## LibsM.d -0.3716 0.2857 -1.301 0.193980
## LibsSL.d -0.4524 0.4262 -1.061 0.289126
## cond.c -0.0119 0.4948 -0.024 0.980815
## LibsSC.d:cond.c 1.1228 0.7117 1.578 0.115368
## LibsC.d:cond.c -0.3523 0.6351 -0.555 0.579351
## LibsM.d:cond.c 0.1685 0.5713 0.295 0.768126
## LibsSL.d:cond.c -0.4048 0.8525 -0.475 0.635164
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.964 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.05102, Adjusted R-squared: 0.03157
## F-statistic: 2.623 on 9 and 439 DF, p-value: 0.00582
# Action 10
lib.c.b10 <- lm(act10 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b10) # no
##
## Call:
## lm(formula = act10 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3750 -1.9896 0.0217 1.8350 3.6579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7119 0.2605 2.733 0.006521 **
## LibsSC.d -1.3242 0.3638 -3.639 0.000304 ***
## LibsC.d -0.9431 0.3312 -2.847 0.004604 **
## LibsM.d -0.6346 0.2994 -2.120 0.034574 *
## LibsSL.d 0.4756 0.4249 1.119 0.263546
## cond.c 0.5048 0.5210 0.969 0.333083
## LibsSC.d:cond.c -0.5961 0.7277 -0.819 0.413146
## LibsC.d:cond.c -0.9238 0.6625 -1.394 0.163842
## LibsM.d:cond.c -0.6803 0.5988 -1.136 0.256482
## LibsSL.d:cond.c -0.1298 0.8498 -0.153 0.878642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.08 on 467 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05853, Adjusted R-squared: 0.04038
## F-statistic: 3.226 on 9 and 467 DF, p-value: 0.000826
# Action 11
lib.c.b11 <- lm(act11 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b11) # no
##
## Call:
## lm(formula = act11 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -1.0299 0.3452 1.5429 2.5735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.65476 0.30627 5.403 1.33e-07 ***
## LibsSC.d -0.92393 0.40549 -2.279 0.02339 *
## LibsC.d -0.80952 0.38384 -2.109 0.03576 *
## LibsM.d -0.92660 0.34558 -2.681 0.00773 **
## LibsSL.d -0.16190 0.49199 -0.329 0.74232
## cond.c -0.02381 0.61254 -0.039 0.96902
## LibsSC.d:cond.c 0.40214 0.81099 0.496 0.62035
## LibsC.d:cond.c -0.75238 0.76769 -0.980 0.32784
## LibsM.d:cond.c -0.57957 0.69116 -0.839 0.40238
## LibsSL.d:cond.c -0.56190 0.98398 -0.571 0.56838
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 304 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.0581, Adjusted R-squared: 0.03021
## F-statistic: 2.083 on 9 and 304 DF, p-value: 0.03077
# Action 12
lib.c.b12 <- lm(act12 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b12) # no
##
## Call:
## lm(formula = act12 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1304 -1.8929 -0.1098 1.8696 4.1071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7819 0.2977 2.626 0.008993 **
## LibsSC.d -1.6286 0.4119 -3.954 9.2e-05 ***
## LibsC.d -1.3505 0.3753 -3.598 0.000363 ***
## LibsM.d -0.7862 0.3434 -2.290 0.022599 *
## LibsSL.d -0.3936 0.5215 -0.755 0.450814
## cond.c 0.6971 0.5955 1.171 0.242487
## LibsSC.d:cond.c -0.1762 0.8238 -0.214 0.830788
## LibsC.d:cond.c -1.1677 0.7507 -1.556 0.120662
## LibsM.d:cond.c -0.9253 0.6868 -1.347 0.178699
## LibsSL.d:cond.c -0.2736 1.0430 -0.262 0.793237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.149 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0624, Adjusted R-squared: 0.0399
## F-statistic: 2.773 on 9 and 375 DF, p-value: 0.003732
# Action 13
lib.c.b13 <- lm(act13 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b13) # yes, condition difference
##
## Call:
## lm(formula = act13 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.33922 0.26014 1.304 0.1929
## LibsSC.d -0.88679 0.37086 -2.391 0.0172 *
## LibsC.d -0.50899 0.33930 -1.500 0.1343
## LibsM.d -0.41897 0.30107 -1.392 0.1648
## LibsSL.d -0.10112 0.44280 -0.228 0.8195
## cond.c -0.14510 0.52028 -0.279 0.7805
## LibsSC.d:cond.c -0.18081 0.74172 -0.244 0.8075
## LibsC.d:cond.c -0.73104 0.67860 -1.077 0.2820
## LibsM.d:cond.c 0.48043 0.60214 0.798 0.4254
## LibsSL.d:cond.c -0.04538 0.88559 -0.051 0.9592
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
# Action 14
lib.c.b14 <- lm(act14 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b14) # no
##
## Call:
## lm(formula = act14 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.3731 0.1429 1.6269 3.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9946 0.3321 2.995 0.00299 **
## LibsSC.d -0.5444 0.4656 -1.169 0.24326
## LibsC.d -0.6601 0.4259 -1.550 0.12230
## LibsM.d -0.5703 0.3780 -1.509 0.13252
## LibsSL.d -0.8160 0.5610 -1.455 0.14693
## cond.c 0.5109 0.6642 0.769 0.44247
## LibsSC.d:cond.c 0.1541 0.9312 0.165 0.86868
## LibsC.d:cond.c -0.8049 0.8517 -0.945 0.34551
## LibsM.d:cond.c -0.4086 0.7560 -0.540 0.58932
## LibsSL.d:cond.c 0.1320 1.1220 0.118 0.90644
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.02046, Adjusted R-squared: -0.01125
## F-statistic: 0.6452 on 9 and 278 DF, p-value: 0.7579
# Action 15
lib.c.b15 <- lm(act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b15) # no
##
## Call:
## lm(formula = act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8050 0.3064 2.627 0.00896 **
## LibsSC.d -1.1803 0.4070 -2.900 0.00395 **
## LibsC.d -0.6833 0.3809 -1.794 0.07362 .
## LibsM.d -0.7060 0.3452 -2.045 0.04152 *
## LibsSL.d -0.4795 0.4741 -1.011 0.31248
## cond.c -1.5100 0.6128 -2.464 0.01418 *
## LibsSC.d:cond.c 1.8363 0.8139 2.256 0.02463 *
## LibsC.d:cond.c 1.3091 0.7617 1.719 0.08652 .
## LibsM.d:cond.c 1.4159 0.6904 2.051 0.04097 *
## LibsSL.d:cond.c 1.9257 0.9482 2.031 0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
# Action 16
lib.c.b16 <- lm(act16 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b16) # no
##
## Call:
## lm(formula = act16 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2105 -1.1000 0.2034 1.4500 2.4500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0833 0.2848 3.803 0.000171 ***
## LibsSC.d -0.5226 0.3923 -1.332 0.183762
## LibsC.d -0.1089 0.3584 -0.304 0.761494
## LibsM.d -0.1190 0.3246 -0.367 0.714085
## LibsSL.d -0.1281 0.4591 -0.279 0.780436
## cond.c 0.1667 0.5697 0.293 0.770048
## LibsSC.d:cond.c -0.1452 0.7846 -0.185 0.853266
## LibsC.d:cond.c 0.2528 0.7168 0.353 0.724524
## LibsM.d:cond.c 0.1048 0.6493 0.161 0.871921
## LibsSL.d:cond.c -0.6772 0.9181 -0.738 0.461301
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.843 on 322 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.01422, Adjusted R-squared: -0.01334
## F-statistic: 0.5159 on 9 and 322 DF, p-value: 0.8629
# Action 17
lib.c.b17 <- lm(act17 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b17) # marginal
##
## Call:
## lm(formula = act17 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56061 0.25825 2.171 0.0305 *
## LibsSC.d -0.21753 0.36342 -0.599 0.5498
## LibsC.d -0.31218 0.33599 -0.929 0.3534
## LibsM.d -0.09033 0.29947 -0.302 0.7631
## LibsSL.d 0.72154 0.43238 1.669 0.0959 .
## cond.c 0.21212 0.51649 0.411 0.6815
## LibsSC.d:cond.c 0.61688 0.72684 0.849 0.3965
## LibsC.d:cond.c -1.04860 0.67198 -1.560 0.1194
## LibsM.d:cond.c -0.51070 0.59894 -0.853 0.3943
## LibsSL.d:cond.c 0.65216 0.86475 0.754 0.4512
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
# Action 18
lib.c.b18 <- lm(act18 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b18) # no
##
## Call:
## lm(formula = act18 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.1538 0.2031 1.4211 3.0400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93176 0.24602 3.787 0.00018 ***
## LibsSC.d -0.75533 0.35401 -2.134 0.03358 *
## LibsC.d -0.44784 0.32683 -1.370 0.17150
## LibsM.d -0.11774 0.29157 -0.404 0.68660
## LibsSL.d -0.16156 0.43113 -0.375 0.70809
## cond.c 0.44417 0.49204 0.903 0.36731
## LibsSC.d:cond.c -0.01131 0.70802 -0.016 0.98726
## LibsC.d:cond.c -0.63423 0.65367 -0.970 0.33260
## LibsM.d:cond.c -0.47846 0.58314 -0.820 0.41250
## LibsSL.d:cond.c -0.34821 0.86227 -0.404 0.68659
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.85 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.0227, Adjusted R-squared: -0.002867
## F-statistic: 0.8879 on 9 and 344 DF, p-value: 0.5362
# Action 19
lib.c.b19 <- lm(act19 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b19) # marginal
##
## Call:
## lm(formula = act19 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.40476 0.32028 4.386 1.67e-05 ***
## LibsSC.d -0.50430 0.42777 -1.179 0.239
## LibsC.d -0.26587 0.39834 -0.667 0.505
## LibsM.d -0.15618 0.36243 -0.431 0.667
## LibsSL.d -0.11081 0.47161 -0.235 0.814
## cond.c -0.52381 0.64056 -0.818 0.414
## LibsSC.d:cond.c 0.57474 0.85554 0.672 0.502
## LibsC.d:cond.c -0.36508 0.79668 -0.458 0.647
## LibsM.d:cond.c 0.05943 0.72486 0.082 0.935
## LibsSL.d:cond.c 0.39744 0.94322 0.421 0.674
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
# Action 20
lib.c.b20 <- lm(act20 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b20) # no
##
## Call:
## lm(formula = act20 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.589 -1.054 0.411 1.411 2.308
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.16476 0.26428 4.407 1.44e-05 ***
## LibsSC.d 0.02437 0.36203 0.067 0.946
## LibsC.d -0.01991 0.34102 -0.058 0.953
## LibsM.d 0.15654 0.30821 0.508 0.612
## LibsSL.d -0.17575 0.43370 -0.405 0.686
## cond.c -0.71048 0.52855 -1.344 0.180
## LibsSC.d:cond.c 0.13222 0.72407 0.183 0.855
## LibsC.d:cond.c 0.31267 0.68204 0.458 0.647
## LibsM.d:cond.c 0.17501 0.61642 0.284 0.777
## LibsSL.d:cond.c 0.11707 0.86740 0.135 0.893
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.786 on 314 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.028, Adjusted R-squared: 0.0001354
## F-statistic: 1.005 on 9 and 314 DF, p-value: 0.4359
# Action 21
lib.c.b21 <- lm(act21 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b21) # no
##
## Call:
## lm(formula = act21 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5556 -1.8723 0.1609 1.9286 3.9286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.449653 0.270007 1.665 0.09664 .
## LibsSC.d -1.060997 0.377403 -2.811 0.00518 **
## LibsC.d -0.742054 0.355137 -2.089 0.03731 *
## LibsM.d -0.505112 0.313879 -1.609 0.10836
## LibsSL.d -0.021875 0.450987 -0.049 0.96134
## cond.c 0.211806 0.540014 0.392 0.69511
## LibsSC.d:cond.c 0.422648 0.754806 0.560 0.57584
## LibsC.d:cond.c 0.117678 0.710273 0.166 0.86849
## LibsM.d:cond.c -0.000886 0.627759 -0.001 0.99887
## LibsSL.d:cond.c -0.134028 0.901974 -0.149 0.88195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.067 on 393 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.03105, Adjusted R-squared: 0.008857
## F-statistic: 1.399 on 9 and 393 DF, p-value: 0.1863
# Action 23
lib.c.b23 <- lm(act23 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b23) # no
##
## Call:
## lm(formula = act23 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.222 -2.250 0.125 1.870 3.297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5027 0.3685 1.364 0.1735
## LibsSC.d -0.2349 0.5107 -0.460 0.6460
## LibsC.d -0.6692 0.4649 -1.439 0.1511
## LibsM.d -0.3973 0.4213 -0.943 0.3465
## LibsSL.d 0.2021 0.5985 0.338 0.7358
## cond.c -1.2554 0.7369 -1.704 0.0896 .
## LibsSC.d:cond.c 1.2911 1.0214 1.264 0.2072
## LibsC.d:cond.c 0.9939 0.9298 1.069 0.2861
## LibsM.d:cond.c 0.8412 0.8426 0.998 0.3190
## LibsSL.d:cond.c 2.2902 1.1970 1.913 0.0567 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.264 on 283 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.03197, Adjusted R-squared: 0.001189
## F-statistic: 1.039 on 9 and 283 DF, p-value: 0.4092
# Action 24
lib.c.b24 <- lm(act24 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b24) # no
##
## Call:
## lm(formula = act24 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15441 0.28066 -0.550 0.583
## LibsSC.d 0.02269 0.40087 0.057 0.955
## LibsC.d -0.31440 0.35841 -0.877 0.381
## LibsM.d -0.09413 0.32301 -0.291 0.771
## LibsSL.d 0.06502 0.45059 0.144 0.885
## cond.c -0.19118 0.56133 -0.341 0.734
## LibsSC.d:cond.c 0.26107 0.80174 0.326 0.745
## LibsC.d:cond.c -0.16750 0.71682 -0.234 0.815
## LibsM.d:cond.c -0.45808 0.64601 -0.709 0.479
## LibsSL.d:cond.c 0.10330 0.90117 0.115 0.909
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
# Action 25
lib.c.b25 <- lm(act25 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b25) # no
##
## Call:
## lm(formula = act25 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -0.9307 0.1529 1.3778 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.13357 0.23083 4.911 1.28e-06 ***
## LibsSC.d -1.26993 0.33133 -3.833 0.000145 ***
## LibsC.d -0.62070 0.29435 -2.109 0.035540 *
## LibsM.d -0.24469 0.26732 -0.915 0.360505
## LibsSL.d 0.28310 0.39135 0.723 0.469834
## cond.c 0.82964 0.46165 1.797 0.073012 .
## LibsSC.d:cond.c -0.43570 0.66265 -0.658 0.511203
## LibsC.d:cond.c -1.04835 0.58871 -1.781 0.075646 .
## LibsM.d:cond.c -0.91327 0.53463 -1.708 0.088307 .
## LibsSL.d:cond.c -0.09154 0.78271 -0.117 0.906949
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 436 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.06134, Adjusted R-squared: 0.04197
## F-statistic: 3.166 on 9 and 436 DF, p-value: 0.001022
# Action 28
lib.c.b28 <- lm(act28 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b28) # no
##
## Call:
## lm(formula = act28 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.018342 0.249588 4.080 5.53e-05 ***
## LibsSC.d -0.190179 0.348205 -0.546 0.585
## LibsC.d 0.303086 0.319358 0.949 0.343
## LibsM.d -0.039803 0.291655 -0.136 0.892
## LibsSL.d 0.200956 0.419089 0.480 0.632
## cond.c 0.224185 0.499176 0.449 0.654
## LibsSC.d:cond.c -1.106319 0.696410 -1.589 0.113
## LibsC.d:cond.c -0.486090 0.638717 -0.761 0.447
## LibsM.d:cond.c -0.036336 0.583310 -0.062 0.950
## LibsSL.d:cond.c 0.003885 0.838178 0.005 0.996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
# Action 30
lib.c.b30 <- lm(act30 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * cond.c, data = d)
summary(lib.c.b30) # no
##
## Call:
## lm(formula = act30 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.18260 0.26509 4.461 1.11e-05 ***
## LibsSC.d -0.11010 0.36457 -0.302 0.763
## LibsC.d -0.15861 0.33863 -0.468 0.640
## LibsM.d -0.13848 0.30945 -0.448 0.655
## LibsSL.d -0.02635 0.44551 -0.059 0.953
## cond.c 0.08934 0.53018 0.169 0.866
## LibsSC.d:cond.c 1.01566 0.72914 1.393 0.165
## LibsC.d:cond.c -0.31914 0.67727 -0.471 0.638
## LibsM.d:cond.c -0.17758 0.61890 -0.287 0.774
## LibsSL.d:cond.c 0.09816 0.89101 0.110 0.912
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
Climate > Control: 3 Control > Climate: 15
a. Means for condition diffs
describeBy(d$act3[d$ideology=="Liberal"], d$cond[d$ideology=="Liberal"])
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 0.41 2.2 0 0.48 2.97 -3 3 6 -0.08 -1.55 0.41
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 39 -0.64 1.97 0 -0.76 2.97 -3 3 6 0.2 -1.23 0.31
summary(lm(d$act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * ctrl.d, data = d)) # Opposed in control condition
##
## Call:
## lm(formula = d$act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9375 0.0625 1.6410 3.9394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6410 0.3219 -1.991 0.0471 *
## LibsSC.d -0.1804 0.4979 -0.362 0.7173
## LibsC.d 0.1886 0.4470 0.422 0.6732
## LibsM.d 0.5785 0.3817 1.516 0.1303
## LibsSL.d 1.0758 0.5285 2.036 0.0424 *
## ctrl.d 1.0548 0.4929 2.140 0.0329 *
## LibsSC.d:ctrl.d -1.1728 0.7139 -1.643 0.1012
## LibsC.d:ctrl.d -0.9913 0.6434 -1.541 0.1241
## LibsM.d:ctrl.d -0.9582 0.5753 -1.666 0.0965 .
## LibsSL.d:ctrl.d -1.2396 0.8691 -1.426 0.1545
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03846, Adjusted R-squared: 0.01852
## F-statistic: 1.929 on 9 and 434 DF, p-value: 0.04628
summary(lm(d$act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * clim.d, data = d)) # Neutral in climate condition
##
## Call:
## lm(formula = d$act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9375 0.0625 1.6410 3.9394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4138 0.3733 1.109 0.26824
## LibsSC.d -1.3532 0.5116 -2.645 0.00847 **
## LibsC.d -0.8027 0.4628 -1.734 0.08354 .
## LibsM.d -0.3797 0.4304 -0.882 0.37816
## LibsSL.d -0.1638 0.6900 -0.237 0.81246
## clim.d -1.0548 0.4929 -2.140 0.03291 *
## LibsSC.d:clim.d 1.1728 0.7139 1.643 0.10117
## LibsC.d:clim.d 0.9913 0.6434 1.541 0.12411
## LibsM.d:clim.d 0.9582 0.5753 1.666 0.09650 .
## LibsSL.d:clim.d 1.2396 0.8691 1.426 0.15450
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03846, Adjusted R-squared: 0.01852
## F-statistic: 1.929 on 9 and 434 DF, p-value: 0.04628
describeBy(d$act15[d$ideology=="Liberal"], d$cond[d$ideology=="Liberal"])
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 20 0.05 2.37 -0.5 0.06 3.71 -3 3 6 -0.01 -1.77 0.53
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 1.56 1.69 2 1.81 1.48 -3 3 6 -1.13 0.43 0.34
summary(lm(d$act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * ctrl.d, data = d)) # Supported in control condition
##
## Call:
## lm(formula = d$act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5600 0.4085 3.819 0.000157 ***
## LibsSC.d -2.0985 0.5722 -3.668 0.000280 ***
## LibsC.d -1.3378 0.5318 -2.516 0.012300 *
## LibsM.d -1.4139 0.4624 -3.058 0.002388 **
## LibsSL.d -1.4424 0.6421 -2.246 0.025274 *
## ctrl.d -1.5100 0.6128 -2.464 0.014184 *
## LibsSC.d:ctrl.d 1.8363 0.8139 2.256 0.024633 *
## LibsC.d:ctrl.d 1.3091 0.7617 1.719 0.086517 .
## LibsM.d:ctrl.d 1.4159 0.6904 2.051 0.040967 *
## LibsSL.d:ctrl.d 1.9257 0.9482 2.031 0.042977 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
summary(lm(d$act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) * clim.d, data = d)) # Neutral in climate condition
##
## Call:
## lm(formula = d$act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.050000 0.456754 0.109 0.9129
## LibsSC.d -0.262121 0.578846 -0.453 0.6509
## LibsC.d -0.028723 0.545344 -0.053 0.9580
## LibsM.d 0.001948 0.512652 0.004 0.9970
## LibsSL.d 0.483333 0.697703 0.693 0.4889
## clim.d 1.510000 0.612799 2.464 0.0142 *
## LibsSC.d:clim.d -1.836340 0.813905 -2.256 0.0246 *
## LibsC.d:clim.d -1.309054 0.761709 -1.719 0.0865 .
## LibsM.d:clim.d -1.415881 0.690357 -2.051 0.0410 *
## LibsSL.d:clim.d -1.925686 0.948224 -2.031 0.0430 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
2. Gender effects?
# Action 1
lib.g.b1 <- lm(act1 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b1)
##
## Call:
## lm(formula = act1 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8261 0.2263 2.1538 4.1538
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6067 0.3143 1.930 0.05420 .
## LibsSC.d -1.0031 0.4189 -2.395 0.01704 *
## LibsC.d -1.3120 0.3975 -3.301 0.00104 **
## LibsM.d -0.4698 0.3631 -1.294 0.19642
## LibsSL.d -0.7806 0.5019 -1.555 0.12062
## gend.mf -0.1467 0.6285 -0.233 0.81560
## LibsSC.d:gend.mf 0.5918 0.8377 0.706 0.48029
## LibsC.d:gend.mf -0.7504 0.7950 -0.944 0.34571
## LibsM.d:gend.mf 0.8729 0.7262 1.202 0.23002
## LibsSL.d:gend.mf -1.5055 1.0038 -1.500 0.13439
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.135 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.05646, Adjusted R-squared: 0.03703
## F-statistic: 2.906 on 9 and 437 DF, p-value: 0.002374
# Action 2
lib.g.b2 <- lm(act2 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b2)
##
## Call:
## lm(formula = act2 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4375 -1.2184 0.5263 1.5625 2.6087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7188 0.3266 5.262 2.85e-07 ***
## LibsSC.d -0.6856 0.4238 -1.618 0.107
## LibsC.d -0.9398 0.4017 -2.339 0.020 *
## LibsM.d -0.5296 0.3854 -1.374 0.171
## LibsSL.d -0.7771 0.5123 -1.517 0.130
## gend.mf 0.5625 0.6533 0.861 0.390
## LibsSC.d:gend.mf 0.3186 0.8475 0.376 0.707
## LibsC.d:gend.mf -1.3379 0.8034 -1.665 0.097 .
## LibsM.d:gend.mf -0.6209 0.7708 -0.805 0.421
## LibsSL.d:gend.mf -0.9458 1.0247 -0.923 0.357
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.803 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.03738, Adjusted R-squared: 0.006217
## F-statistic: 1.199 on 9 and 278 DF, p-value: 0.2951
# Action 3
lib.g.b3 <- lm(act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b3)
##
## Call:
## lm(formula = act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.8390 -0.0368 1.4167 4.1579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1122 0.2773 -0.405 0.686
## LibsSC.d -0.6841 0.3847 -1.778 0.076 .
## LibsC.d -0.3016 0.3597 -0.839 0.402
## LibsM.d 0.0455 0.3257 0.140 0.889
## LibsSL.d 0.3539 0.4703 0.753 0.452
## gend.mf 0.3356 0.5547 0.605 0.546
## LibsSC.d:gend.mf 0.3876 0.7694 0.504 0.615
## LibsC.d:gend.mf -0.3227 0.7194 -0.449 0.654
## LibsM.d:gend.mf -0.5425 0.6514 -0.833 0.405
## LibsSL.d:gend.mf -1.0189 0.9405 -1.083 0.279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.03535, Adjusted R-squared: 0.01525
## F-statistic: 1.759 on 9 and 432 DF, p-value: 0.07405
# Action 4
lib.g.b4 <- lm(act4 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b4)
##
## Call:
## lm(formula = act4 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.944 -1.904 0.200 2.056 3.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4554 0.3187 1.429 0.1540
## LibsSC.d -0.2419 0.4414 -0.548 0.5841
## LibsC.d -0.8844 0.4246 -2.083 0.0380 *
## LibsM.d -0.6730 0.3816 -1.764 0.0787 .
## LibsSL.d -0.1331 0.5336 -0.250 0.8031
## gend.mf 0.3393 0.6375 0.532 0.5949
## LibsSC.d:gend.mf 0.0163 0.8827 0.018 0.9853
## LibsC.d:gend.mf -1.0050 0.8492 -1.184 0.2374
## LibsM.d:gend.mf -0.3746 0.7632 -0.491 0.6239
## LibsSL.d:gend.mf -1.5837 1.0671 -1.484 0.1387
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.17 on 359 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02849, Adjusted R-squared: 0.004137
## F-statistic: 1.17 on 9 and 359 DF, p-value: 0.3132
# Action 5
lib.g.b5 <- lm(act5 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b5)
##
## Call:
## lm(formula = act5 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3000 -1.2128 0.4615 1.7000 2.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4833 0.3210 4.621 5.78e-06 ***
## LibsSC.d -0.7634 0.4188 -1.823 0.0694 .
## LibsC.d -0.6077 0.3947 -1.540 0.1247
## LibsM.d -0.3969 0.3829 -1.037 0.3008
## LibsSL.d -1.1026 0.5092 -2.165 0.0312 *
## gend.mf 0.3667 0.6419 0.571 0.5683
## LibsSC.d:gend.mf -0.8499 0.8376 -1.015 0.3111
## LibsC.d:gend.mf -1.0410 0.7894 -1.319 0.1883
## LibsM.d:gend.mf -0.3173 0.7659 -0.414 0.6790
## LibsSL.d:gend.mf -0.5282 1.0183 -0.519 0.6044
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 285 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: -0.0005149
## F-statistic: 0.9832 on 9 and 285 DF, p-value: 0.454
# Action 6
lib.g.b6 <- lm(act6 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b6)
##
## Call:
## lm(formula = act6 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5455 -1.2424 0.5667 1.5667 2.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5828 0.2969 5.331 1.77e-07 ***
## LibsSC.d -0.7581 0.3902 -1.943 0.0528 .
## LibsC.d -0.3261 0.3671 -0.888 0.3750
## LibsM.d -0.2245 0.3484 -0.644 0.5197
## LibsSL.d -0.6434 0.4657 -1.381 0.1680
## gend.mf 0.6807 0.5938 1.146 0.2525
## LibsSC.d:gend.mf -1.0919 0.7803 -1.399 0.1626
## LibsC.d:gend.mf -1.0340 0.7342 -1.408 0.1599
## LibsM.d:gend.mf -0.4596 0.6968 -0.660 0.5100
## LibsSL.d:gend.mf -1.8928 0.9314 -2.032 0.0429 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 347 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -1.033e-06
## F-statistic: 1 on 9 and 347 DF, p-value: 0.4397
# Action 7
lib.g.b7 <- lm(act7 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b7)
##
## Call:
## lm(formula = act7 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8433 0.1567 1.6364 3.6364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04318 0.31356 0.138 0.891
## LibsSC.d -0.15487 0.42395 -0.365 0.715
## LibsC.d -0.46293 0.40681 -1.138 0.256
## LibsM.d -0.14480 0.36346 -0.398 0.691
## LibsSL.d 0.07460 0.51431 0.145 0.885
## gend.mf 0.31364 0.62711 0.500 0.617
## LibsSC.d:gend.mf 0.09156 0.84790 0.108 0.914
## LibsC.d:gend.mf -0.74687 0.81362 -0.918 0.359
## LibsM.d:gend.mf -0.20343 0.72692 -0.280 0.780
## LibsSL.d:gend.mf -1.43808 1.02862 -1.398 0.163
##
## Residual standard error: 2.097 on 403 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: -0.006717
## F-statistic: 0.6946 on 9 and 403 DF, p-value: 0.714
# Action 8
lib.g.b8 <- lm(act8 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b8)
##
## Call:
## lm(formula = act8 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9286 -1.9091 -0.2143 1.6875 4.5319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56122 0.32120 1.747 0.081243 .
## LibsSC.d -1.48627 0.42206 -3.521 0.000471 ***
## LibsC.d -1.29783 0.39665 -3.272 0.001147 **
## LibsM.d -0.94462 0.36662 -2.577 0.010284 *
## LibsSL.d -0.14239 0.49539 -0.287 0.773907
## gend.mf 0.30612 0.64240 0.477 0.633917
## LibsSC.d:gend.mf 0.90761 0.84412 1.075 0.282829
## LibsC.d:gend.mf -0.40434 0.79330 -0.510 0.610509
## LibsM.d:gend.mf -0.09252 0.73325 -0.126 0.899642
## LibsSL.d:gend.mf -1.32560 0.99079 -1.338 0.181569
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 469 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.07584, Adjusted R-squared: 0.05811
## F-statistic: 4.276 on 9 and 469 DF, p-value: 2.361e-05
# Action 9
lib.g.b9 <- lm(act9 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b9)
##
## Call:
## lm(formula = act9 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5882 -1.5882 0.1481 1.5417 3.8261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.58135 0.27883 2.085 0.037654 *
## LibsSC.d -1.31872 0.38234 -3.449 0.000617 ***
## LibsC.d -0.80126 0.35662 -2.247 0.025151 *
## LibsM.d -0.41399 0.32567 -1.271 0.204329
## LibsSL.d -0.62491 0.45435 -1.375 0.169709
## gend.mf 0.01377 0.55767 0.025 0.980316
## LibsSC.d:gend.mf -0.19121 0.76468 -0.250 0.802668
## LibsC.d:gend.mf 0.12975 0.71324 0.182 0.855732
## LibsM.d:gend.mf -0.08182 0.65133 -0.126 0.900088
## LibsSL.d:gend.mf -1.01756 0.90869 -1.120 0.263414
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.97 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.04187, Adjusted R-squared: 0.02214
## F-statistic: 2.122 on 9 and 437 DF, p-value: 0.02658
# Action 10
lib.g.b10 <- lm(act10 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b10)
##
## Call:
## lm(formula = act10 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5862 -2.0719 0.1948 1.5714 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9330 0.2978 3.133 0.001840 **
## LibsSC.d -1.4741 0.3987 -3.697 0.000244 ***
## LibsC.d -1.2447 0.3752 -3.317 0.000980 ***
## LibsM.d -0.8427 0.3449 -2.444 0.014914 *
## LibsSL.d -0.1899 0.4823 -0.394 0.693876
## gend.mf 1.0089 0.5956 1.694 0.090959 .
## LibsSC.d:gend.mf -0.5355 0.7975 -0.672 0.502227
## LibsC.d:gend.mf -1.2427 0.7505 -1.656 0.098412 .
## LibsM.d:gend.mf -0.9721 0.6898 -1.409 0.159396
## LibsSL.d:gend.mf -2.6951 0.9645 -2.794 0.005415 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 466 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07046, Adjusted R-squared: 0.05251
## F-statistic: 3.925 on 9 and 466 DF, p-value: 7.905e-05
# Action 11
lib.g.b11 <- lm(act11 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b11)
##
## Call:
## lm(formula = act11 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5625 -1.0000 0.2834 1.4375 2.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7294 0.3136 5.514 7.54e-08 ***
## LibsSC.d -0.9365 0.4128 -2.269 0.02400 *
## LibsC.d -1.0021 0.3980 -2.518 0.01232 *
## LibsM.d -1.0128 0.3635 -2.786 0.00567 **
## LibsSL.d -0.2339 0.5270 -0.444 0.65753
## gend.mf 0.3874 0.6273 0.618 0.53735
## LibsSC.d:gend.mf 0.7541 0.8256 0.913 0.36180
## LibsC.d:gend.mf -0.9328 0.7959 -1.172 0.24213
## LibsM.d:gend.mf -0.4491 0.7270 -0.618 0.53721
## LibsSL.d:gend.mf -0.5213 1.0540 -0.495 0.62124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 302 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.05336, Adjusted R-squared: 0.02515
## F-statistic: 1.891 on 9 and 302 DF, p-value: 0.05276
# Action 12
lib.g.b12 <- lm(act12 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b12)
##
## Call:
## lm(formula = act12 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5625 -1.8571 -0.1345 1.8655 4.3043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1240 0.3493 3.218 0.00141 **
## LibsSC.d -1.8772 0.4537 -4.137 4.35e-05 ***
## LibsC.d -1.9553 0.4338 -4.507 8.80e-06 ***
## LibsM.d -1.2804 0.4017 -3.188 0.00156 **
## LibsSL.d -0.9427 0.5533 -1.704 0.08922 .
## gend.mf 1.4187 0.6986 2.031 0.04300 *
## LibsSC.d:gend.mf -0.6395 0.9075 -0.705 0.48145
## LibsC.d:gend.mf -2.3648 0.8676 -2.726 0.00672 **
## LibsM.d:gend.mf -2.0005 0.8034 -2.490 0.01320 *
## LibsSL.d:gend.mf -2.1812 1.1065 -1.971 0.04944 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.129 on 373 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.08175, Adjusted R-squared: 0.0596
## F-statistic: 3.69 on 9 and 373 DF, p-value: 0.0001907
aggregate(d$act12[d$ideology == "Liberal"], list(d$gend[d$ideology == "Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female 0.41
## 2 Male 1.83
# Action 13
lib.g.b13 <- lm(act13 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b13)
##
## Call:
## lm(formula = act13 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.8095 0.1884 1.9558 3.3636
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4771 0.3115 1.532 0.1263
## LibsSC.d -0.7769 0.4129 -1.882 0.0606 .
## LibsC.d -0.7235 0.3981 -1.817 0.0699 .
## LibsM.d -0.6290 0.3571 -1.761 0.0789 .
## LibsSL.d -0.3546 0.4895 -0.724 0.4692
## gend.mf 0.4743 0.6229 0.761 0.4468
## LibsSC.d:gend.mf 1.3071 0.8258 1.583 0.1142
## LibsC.d:gend.mf -0.5902 0.7963 -0.741 0.4590
## LibsM.d:gend.mf -0.7358 0.7143 -1.030 0.3035
## LibsSL.d:gend.mf -1.4466 0.9790 -1.478 0.1402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.04764, Adjusted R-squared: 0.0278
## F-statistic: 2.401 on 9 and 432 DF, p-value: 0.01156
# Action 14
lib.g.b14 <- lm(act14 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b14)
##
## Call:
## lm(formula = act14 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8235 -1.2778 0.2195 1.5455 3.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1023 0.3588 3.072 0.00234 **
## LibsSC.d -0.5601 0.4824 -1.161 0.24665
## LibsC.d -1.0731 0.4583 -2.342 0.01990 *
## LibsM.d -0.7144 0.4138 -1.727 0.08533 .
## LibsSL.d -1.2451 0.5887 -2.115 0.03532 *
## gend.mf 0.7045 0.7176 0.982 0.32703
## LibsSC.d:gend.mf -0.1419 0.9648 -0.147 0.88319
## LibsC.d:gend.mf -2.2073 0.9165 -2.408 0.01668 *
## LibsM.d:gend.mf -0.8552 0.8275 -1.033 0.30229
## LibsSL.d:gend.mf -2.1331 1.1774 -1.812 0.07111 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.017 on 276 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.04977, Adjusted R-squared: 0.01878
## F-statistic: 1.606 on 9 and 276 DF, p-value: 0.1132
# Action 15
lib.g.b15 <- lm(act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b15)
##
## Call:
## lm(formula = act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6562 -1.7674 0.4444 1.6917 3.5714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0589 0.3354 3.157 0.00172 **
## LibsSC.d -1.3654 0.4308 -3.170 0.00165 **
## LibsC.d -1.0553 0.4118 -2.562 0.01079 *
## LibsM.d -1.1269 0.3799 -2.967 0.00320 **
## LibsSL.d -0.8256 0.5012 -1.647 0.10036
## gend.mf 0.8053 0.6709 1.200 0.23075
## LibsSC.d:gend.mf -0.2755 0.8616 -0.320 0.74930
## LibsC.d:gend.mf -1.4052 0.8237 -1.706 0.08885 .
## LibsM.d:gend.mf -1.5581 0.7597 -2.051 0.04098 *
## LibsSL.d:gend.mf -1.4386 1.0024 -1.435 0.15207
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 374 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.04838, Adjusted R-squared: 0.02548
## F-statistic: 2.113 on 9 and 374 DF, p-value: 0.0277
# Action 16
lib.g.b16 <- lm(act16 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b16)
##
## Call:
## lm(formula = act16 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3636 -1.1400 0.1589 1.6364 2.7586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97177 0.31142 3.120 0.00197 **
## LibsSC.d -0.32477 0.41240 -0.788 0.43156
## LibsC.d -0.08359 0.38974 -0.214 0.83031
## LibsM.d 0.13060 0.36090 0.362 0.71767
## LibsSL.d -0.02733 0.48411 -0.056 0.95502
## gend.mf -0.44355 0.62284 -0.712 0.47689
## LibsSC.d:gend.mf 1.25480 0.82479 1.521 0.12916
## LibsC.d:gend.mf -0.06009 0.77948 -0.077 0.93860
## LibsM.d:gend.mf 0.96606 0.72180 1.338 0.18171
## LibsSL.d:gend.mf 0.33244 0.96822 0.343 0.73156
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 321 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.02518, Adjusted R-squared: -0.002148
## F-statistic: 0.9214 on 9 and 321 DF, p-value: 0.5066
# Action 17
lib.g.b17 <- lm(act17 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b17)
##
## Call:
## lm(formula = act17 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.391 -1.477 -0.033 1.630 3.077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7562 0.3065 2.468 0.0140 *
## LibsSC.d -0.3678 0.4053 -0.907 0.3648
## LibsC.d -0.6598 0.3856 -1.711 0.0879 .
## LibsM.d -0.2736 0.3537 -0.773 0.4397
## LibsSL.d 0.3394 0.4884 0.695 0.4875
## gend.mf 0.7733 0.6129 1.262 0.2078
## LibsSC.d:gend.mf -0.6806 0.8106 -0.840 0.4016
## LibsC.d:gend.mf -1.1201 0.7712 -1.452 0.1472
## LibsM.d:gend.mf -0.7618 0.7074 -1.077 0.2822
## LibsSL.d:gend.mf -1.3646 0.9769 -1.397 0.1632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.008 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.02291, Adjusted R-squared: 0.001247
## F-statistic: 1.058 on 9 and 406 DF, p-value: 0.3934
# Action 18
lib.g.b18 <- lm(act18 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b18)
##
## Call:
## lm(formula = act18 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.1369 0.1776 1.4528 3.1000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9659 0.2845 3.396 0.000765 ***
## LibsSC.d -0.7333 0.3828 -1.916 0.056250 .
## LibsC.d -0.5257 0.3711 -1.417 0.157538
## LibsM.d -0.1911 0.3388 -0.564 0.573118
## LibsSL.d -0.1765 0.4699 -0.376 0.707504
## gend.mf 0.2110 0.5689 0.371 0.711000
## LibsSC.d:gend.mf 0.4543 0.7656 0.593 0.553377
## LibsC.d:gend.mf -0.4248 0.7422 -0.572 0.567482
## LibsM.d:gend.mf -0.3061 0.6776 -0.452 0.651735
## LibsSL.d:gend.mf 0.2101 0.9399 0.224 0.823258
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.02394, Adjusted R-squared: -0.001748
## F-statistic: 0.9319 on 9 and 342 DF, p-value: 0.4973
# Action 19
lib.g.b19 <- lm(act19 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b19)
##
## Call:
## lm(formula = act19 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1622 0.3462 1.6250 2.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5000 0.3687 4.068 6.26e-05 ***
## LibsSC.d -0.5260 0.4640 -1.134 0.258
## LibsC.d -0.4841 0.4398 -1.101 0.272
## LibsM.d -0.3690 0.4181 -0.883 0.378
## LibsSL.d -0.3618 0.5299 -0.683 0.495
## gend.mf 0.2500 0.7374 0.339 0.735
## LibsSC.d:gend.mf 0.3903 0.9280 0.421 0.674
## LibsC.d:gend.mf -0.5426 0.8796 -0.617 0.538
## LibsM.d:gend.mf -0.5833 0.8361 -0.698 0.486
## LibsSL.d:gend.mf -1.0263 1.0599 -0.968 0.334
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.806 on 264 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.0208, Adjusted R-squared: -0.01258
## F-statistic: 0.6232 on 9 and 264 DF, p-value: 0.7769
# Action 20
lib.g.b20 <- lm(act20 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b20)
##
## Call:
## lm(formula = act20 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.398 -1.200 0.602 1.602 2.391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.26716 0.30219 4.193 3.59e-05 ***
## LibsSC.d -0.10408 0.39115 -0.266 0.790
## LibsC.d -0.26716 0.37966 -0.704 0.482
## LibsM.d 0.03182 0.35579 0.089 0.929
## LibsSL.d -0.37500 0.47850 -0.784 0.434
## gend.mf 0.29902 0.60439 0.495 0.621
## LibsSC.d:gend.mf -0.04184 0.78230 -0.053 0.957
## LibsC.d:gend.mf -1.08163 0.75933 -1.424 0.155
## LibsM.d:gend.mf -0.49698 0.71158 -0.698 0.485
## LibsSL.d:gend.mf -0.75000 0.95700 -0.784 0.434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.8 on 312 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.01743, Adjusted R-squared: -0.01091
## F-statistic: 0.615 on 9 and 312 DF, p-value: 0.7842
# Action 21
lib.g.b21 <- lm(act21 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b21)
##
## Call:
## lm(formula = act21 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.556 -1.840 0.160 1.696 3.818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47121 0.30919 1.524 0.12832
## LibsSC.d -1.10530 0.41346 -2.673 0.00783 **
## LibsC.d -0.83184 0.39825 -2.089 0.03737 *
## LibsM.d -0.45365 0.36089 -1.257 0.20949
## LibsSL.d -0.04126 0.51081 -0.081 0.93566
## gend.mf 0.12424 0.61839 0.201 0.84087
## LibsSC.d:gend.mf -0.49242 0.82692 -0.595 0.55186
## LibsC.d:gend.mf -0.56964 0.79649 -0.715 0.47492
## LibsM.d:gend.mf 0.23088 0.72178 0.320 0.74923
## LibsSL.d:gend.mf 0.12697 1.02162 0.124 0.90116
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.068 on 391 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.0295, Adjusted R-squared: 0.007162
## F-statistic: 1.321 on 9 and 391 DF, p-value: 0.2241
# Action 22
lib.g.b22 <- lm(act22 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b22)
##
## Call:
## lm(formula = act22 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.4912 -0.1538 1.6410 3.6410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6252 0.3123 2.002 0.0460 *
## LibsSC.d -0.8321 0.4083 -2.038 0.0422 *
## LibsC.d -0.3796 0.3918 -0.969 0.3332
## LibsM.d -0.2280 0.3615 -0.631 0.5285
## LibsSL.d 0.4517 0.4820 0.937 0.3492
## gend.mf 0.1342 0.6245 0.215 0.8300
## LibsSC.d:gend.mf 0.7341 0.8166 0.899 0.3692
## LibsC.d:gend.mf -0.6254 0.7836 -0.798 0.4253
## LibsM.d:gend.mf 0.3346 0.7230 0.463 0.6437
## LibsSL.d:gend.mf -0.2880 0.9639 -0.299 0.7653
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.973 on 392 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.04639, Adjusted R-squared: 0.02449
## F-statistic: 2.119 on 9 and 392 DF, p-value: 0.02709
# Action 23
lib.g.b23 <- lm(act23 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b23)
##
## Call:
## lm(formula = act23 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9474 -2.0103 0.1875 2.0227 3.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5875 0.3719 1.580 0.1153
## LibsSC.d -0.2729 0.5133 -0.532 0.5954
## LibsC.d -0.8608 0.4776 -1.802 0.0726 .
## LibsM.d -0.3323 0.4478 -0.742 0.4586
## LibsSL.d -0.3063 0.6146 -0.498 0.6186
## gend.mf -0.2417 0.7438 -0.325 0.7455
## LibsSC.d:gend.mf 1.5072 1.0267 1.468 0.1432
## LibsC.d:gend.mf -0.2594 0.9552 -0.272 0.7861
## LibsM.d:gend.mf 0.7314 0.8957 0.817 0.4149
## LibsSL.d:gend.mf -0.8208 1.2291 -0.668 0.5048
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.26 on 282 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03359, Adjusted R-squared: 0.002749
## F-statistic: 1.089 on 9 and 282 DF, p-value: 0.3707
# Action 24
lib.g.b24 <- lm(act24 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b24)
##
## Call:
## lm(formula = act24 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5455 -1.8425 0.1575 1.8214 3.8214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04221 0.32187 -0.131 0.896
## LibsSC.d 0.02706 0.43239 0.063 0.950
## LibsC.d -0.54819 0.40011 -1.370 0.171
## LibsM.d -0.28653 0.36903 -0.776 0.438
## LibsSL.d -0.17076 0.50436 -0.339 0.735
## gend.mf 0.37013 0.64374 0.575 0.566
## LibsSC.d:gend.mf 0.75108 0.86477 0.869 0.386
## LibsC.d:gend.mf -0.83218 0.80022 -1.040 0.299
## LibsM.d:gend.mf -0.71265 0.73806 -0.966 0.335
## LibsSL.d:gend.mf -0.94420 1.00873 -0.936 0.350
##
## Residual standard error: 2.098 on 405 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.02029, Adjusted R-squared: -0.001484
## F-statistic: 0.9318 on 9 and 405 DF, p-value: 0.4971
# Action 25
lib.g.b25 <- lm(act25 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b25)
##
## Call:
## lm(formula = act25 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -0.8936 0.1642 1.4389 3.2051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2088 0.2666 4.535 7.47e-06 ***
## LibsSC.d -1.2875 0.3649 -3.528 0.000463 ***
## LibsC.d -0.7977 0.3373 -2.365 0.018475 *
## LibsM.d -0.3236 0.3086 -1.048 0.295014
## LibsSL.d 0.1535 0.4463 0.344 0.731164
## gend.mf 0.3325 0.5331 0.624 0.533214
## LibsSC.d:gend.mf -0.0797 0.7299 -0.109 0.913098
## LibsC.d:gend.mf -0.7102 0.6746 -1.053 0.293008
## LibsM.d:gend.mf -0.3156 0.6172 -0.511 0.609336
## LibsSL.d:gend.mf -0.1680 0.8927 -0.188 0.850803
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.05138, Adjusted R-squared: 0.03171
## F-statistic: 2.612 on 9 and 434 DF, p-value: 0.006027
# Action 26
lib.g.b26 <- lm(act26 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b26)
##
## Call:
## lm(formula = act26 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0000 0.5278 1.3433 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57143 0.39392 3.989 9.08e-05 ***
## LibsSC.d -0.02731 0.49667 -0.055 0.956
## LibsC.d -0.04365 0.47683 -0.092 0.927
## LibsM.d -0.02878 0.45581 -0.063 0.950
## LibsSL.d -0.59921 0.57680 -1.039 0.300
## gend.mf 1.14286 0.78783 1.451 0.148
## LibsSC.d:gend.mf -1.05462 0.99334 -1.062 0.290
## LibsC.d:gend.mf -1.42063 0.95367 -1.490 0.138
## LibsM.d:gend.mf -1.37100 0.91162 -1.504 0.134
## LibsSL.d:gend.mf -0.19841 1.15360 -0.172 0.864
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 216 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.02923, Adjusted R-squared: -0.01122
## F-statistic: 0.7225 on 9 and 216 DF, p-value: 0.688
# Action 27
lib.g.b27 <- lm(act27 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b27)
##
## Call:
## lm(formula = act27 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4545 -1.1667 0.2174 1.5521 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17424 0.31661 3.709 0.000247 ***
## LibsSC.d -0.69508 0.41049 -1.693 0.091419 .
## LibsC.d -0.44147 0.40014 -1.103 0.270764
## LibsM.d -0.55028 0.37261 -1.477 0.140744
## LibsSL.d 0.18461 0.47631 0.388 0.698592
## gend.mf -0.01515 0.63323 -0.024 0.980926
## LibsSC.d:gend.mf 0.97348 0.82099 1.186 0.236639
## LibsC.d:gend.mf 0.11483 0.80028 0.143 0.885997
## LibsM.d:gend.mf 0.36723 0.74522 0.493 0.622515
## LibsSL.d:gend.mf 0.20654 0.95261 0.217 0.828498
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 307 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.03928, Adjusted R-squared: 0.01112
## F-statistic: 1.395 on 9 and 307 DF, p-value: 0.1895
# Action 28
lib.g.b28 <- lm(act28 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b28)
##
## Call:
## lm(formula = act28 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4262 -0.9511 0.1944 1.5738 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.90988 0.29925 3.041 0.00253 **
## LibsSC.d -0.12615 0.39102 -0.323 0.74717
## LibsC.d 0.32497 0.37397 0.869 0.38544
## LibsM.d 0.09575 0.34993 0.274 0.78453
## LibsSL.d 0.07148 0.49609 0.144 0.88551
## gend.mf -0.31977 0.59851 -0.534 0.59348
## LibsSC.d:gend.mf 0.27612 0.78205 0.353 0.72424
## LibsC.d:gend.mf -0.06298 0.74795 -0.084 0.93294
## LibsM.d:gend.mf 0.49032 0.69985 0.701 0.48400
## LibsSL.d:gend.mf -0.50011 0.99218 -0.504 0.61453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 362 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.01604, Adjusted R-squared: -0.008426
## F-statistic: 0.6556 on 9 and 362 DF, p-value: 0.749
# Action 29
lib.g.b29 <- lm(act29 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b29)
##
## Call:
## lm(formula = act29 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1003 0.1951 1.5000 2.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15244 0.27455 4.198 3.41e-05 ***
## LibsSC.d -0.03339 0.36785 -0.091 0.928
## LibsC.d -0.16021 0.34855 -0.460 0.646
## LibsM.d -0.03751 0.32394 -0.116 0.908
## LibsSL.d 0.27739 0.45187 0.614 0.540
## gend.mf 0.69512 0.54909 1.266 0.206
## LibsSC.d:gend.mf -0.45703 0.73569 -0.621 0.535
## LibsC.d:gend.mf -0.84625 0.69710 -1.214 0.226
## LibsM.d:gend.mf -0.75355 0.64788 -1.163 0.246
## LibsSL.d:gend.mf -0.88810 0.90374 -0.983 0.326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.774 on 358 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01019, Adjusted R-squared: -0.0147
## F-statistic: 0.4093 on 9 and 358 DF, p-value: 0.93
# Action 30
lib.g.b30 <- lm(act30 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf, data = d)
summary(lib.g.b30)
##
## Call:
## lm(formula = act30 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3529 -1.0654 0.5928 1.6471 2.3913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2702 0.3024 4.201 3.4e-05 ***
## LibsSC.d -0.1807 0.3949 -0.458 0.648
## LibsC.d -0.3782 0.3814 -0.992 0.322
## LibsM.d -0.2875 0.3595 -0.800 0.424
## LibsSL.d -0.1938 0.4818 -0.402 0.688
## gend.mf 0.3826 0.6047 0.633 0.527
## LibsSC.d:gend.mf -0.9094 0.7899 -1.151 0.250
## LibsC.d:gend.mf -0.9493 0.7628 -1.245 0.214
## LibsM.d:gend.mf -0.5480 0.7190 -0.762 0.446
## LibsSL.d:gend.mf -0.9355 0.9635 -0.971 0.332
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.882 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.01188, Adjusted R-squared: -0.01412
## F-statistic: 0.4569 on 9 and 342 DF, p-value: 0.9027
a. Gender x condition
Action 22
# Action 1
summary(lm(act1 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.960 0.080 2.000 5.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59446 0.31323 1.898 0.05839 .
## LibsSC.d -0.99661 0.41794 -2.385 0.01754 *
## LibsC.d -1.26860 0.40166 -3.158 0.00170 **
## LibsM.d -0.48556 0.36207 -1.341 0.18061
## LibsSL.d -0.86738 0.50556 -1.716 0.08694 .
## gend.mf -0.17107 0.62645 -0.273 0.78492
## cond.c -0.12607 0.62645 -0.201 0.84060
## LibsSC.d:gend.mf 0.67233 0.83589 0.804 0.42165
## LibsC.d:gend.mf -0.66366 0.80332 -0.826 0.40919
## LibsM.d:gend.mf 0.87326 0.72414 1.206 0.22851
## LibsSL.d:gend.mf -1.08310 1.01111 -1.071 0.28469
## LibsSC.d:cond.c 0.87733 0.83589 1.050 0.29450
## LibsC.d:cond.c -0.07618 0.80332 -0.095 0.92450
## LibsM.d:cond.c -0.57612 0.72414 -0.796 0.42671
## LibsSL.d:cond.c 0.24690 1.01111 0.244 0.80720
## gend.mf:cond.c -1.21214 1.25291 -0.967 0.33386
## LibsSC.d:gend.mf:cond.c 1.77022 1.67177 1.059 0.29025
## LibsC.d:gend.mf:cond.c 0.80618 1.60664 0.502 0.61608
## LibsM.d:gend.mf:cond.c 0.77652 1.44828 0.536 0.59212
## LibsSL.d:gend.mf:cond.c 5.37048 2.02222 2.656 0.00821 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.124 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.0873, Adjusted R-squared: 0.04669
## F-statistic: 2.15 on 19 and 427 DF, p-value: 0.003504
# Action 2
summary(lm(act2 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6000 -1.0000 0.3485 1.5192 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.670833 0.333849 5.005 1.01e-06 ***
## LibsSC.d -0.621117 0.431620 -1.439 0.1513
## LibsC.d -0.874621 0.407564 -2.146 0.0328 *
## LibsM.d -0.510165 0.391941 -1.302 0.1942
## LibsSL.d -0.862500 0.525189 -1.642 0.1017
## gend.mf 0.575000 0.667698 0.861 0.3899
## cond.c -0.008333 0.667698 -0.012 0.9901
## LibsSC.d:gend.mf 0.211932 0.863241 0.246 0.8063
## LibsC.d:gend.mf -1.318939 0.815128 -1.618 0.1068
## LibsM.d:gend.mf -0.563004 0.783881 -0.718 0.4732
## LibsSL.d:gend.mf -1.125000 1.050378 -1.071 0.2851
## LibsSC.d:cond.c -0.142235 0.863241 -0.165 0.8693
## LibsC.d:cond.c -0.717424 0.815128 -0.880 0.3796
## LibsM.d:cond.c -0.151099 0.783881 -0.193 0.8473
## LibsSL.d:cond.c 0.625000 1.050378 0.595 0.5523
## gend.mf:cond.c 0.850000 1.335397 0.637 0.5250
## LibsSC.d:gend.mf:cond.c 0.223864 1.726481 0.130 0.8969
## LibsC.d:gend.mf:cond.c -2.428788 1.630255 -1.490 0.1374
## LibsM.d:gend.mf:cond.c 0.135531 1.567763 0.086 0.9312
## LibsSL.d:gend.mf:cond.c 1.383333 2.100757 0.658 0.5108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 268 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.07459, Adjusted R-squared: 0.008984
## F-statistic: 1.137 on 19 and 268 DF, p-value: 0.3138
# Action 3
summary(lm(act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7059 -1.8261 0.0278 1.7143 3.9412
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.062500 0.283185 -0.221 0.8254
## LibsSC.d -0.727718 0.389443 -1.869 0.0624 .
## LibsC.d -0.263889 0.370705 -0.712 0.4769
## LibsM.d -0.002246 0.330741 -0.007 0.9946
## LibsSL.d 0.260399 0.483118 0.539 0.5902
## gend.mf 0.267857 0.566369 0.473 0.6365
## cond.c 0.767857 0.566369 1.356 0.1759
## LibsSC.d:gend.mf 0.426216 0.778886 0.547 0.5845
## LibsC.d:gend.mf -0.059524 0.741410 -0.080 0.9360
## LibsM.d:gend.mf -0.478946 0.661482 -0.724 0.4694
## LibsSL.d:gend.mf -0.863655 0.966235 -0.894 0.3719
## LibsSC.d:cond.c -0.770754 0.778886 -0.990 0.3230
## LibsC.d:cond.c -1.087302 0.741410 -1.467 0.1432
## LibsM.d:cond.c -0.702904 0.661482 -1.063 0.2886
## LibsSL.d:cond.c -0.677941 0.966235 -0.702 0.4833
## gend.mf:cond.c -1.250000 1.132739 -1.104 0.2704
## LibsSC.d:gend.mf:cond.c 2.028520 1.557772 1.302 0.1936
## LibsC.d:gend.mf:cond.c -0.333333 1.482820 -0.225 0.8222
## LibsM.d:gend.mf:cond.c 1.105601 1.322965 0.836 0.4038
## LibsSL.d:gend.mf:cond.c 2.270168 1.932470 1.175 0.2408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.05725, Adjusted R-squared: 0.01481
## F-statistic: 1.349 on 19 and 422 DF, p-value: 0.1485
# Action 4
summary(lm(act4 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2000 -1.8551 0.1449 2.0909 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.514760 0.328771 1.566 0.1183
## LibsSC.d -0.314893 0.452349 -0.696 0.4868
## LibsC.d -0.873312 0.437869 -1.994 0.0469 *
## LibsM.d -0.727331 0.391029 -1.860 0.0637 .
## LibsSL.d -0.153221 0.556580 -0.275 0.7833
## gend.mf 0.370481 0.657542 0.563 0.5735
## cond.c 0.759954 0.657542 1.156 0.2486
## LibsSC.d:gend.mf 0.002514 0.904698 0.003 0.9978
## LibsC.d:gend.mf -0.836069 0.875737 -0.955 0.3404
## LibsM.d:gend.mf -0.382838 0.782059 -0.490 0.6248
## LibsSL.d:gend.mf -1.693557 1.113160 -1.521 0.1291
## LibsSC.d:cond.c -0.769313 0.904698 -0.850 0.3957
## LibsC.d:cond.c -1.283876 0.875737 -1.466 0.1435
## LibsM.d:cond.c -1.102669 0.782059 -1.410 0.1594
## LibsSL.d:cond.c -0.683031 1.113160 -0.614 0.5399
## gend.mf:cond.c -0.319908 1.315083 -0.243 0.8079
## LibsSC.d:gend.mf:cond.c -0.115920 1.809396 -0.064 0.9490
## LibsC.d:gend.mf:cond.c -1.497632 1.751474 -0.855 0.3931
## LibsM.d:gend.mf:cond.c -0.119662 1.564118 -0.077 0.9391
## LibsSL.d:gend.mf:cond.c -0.233938 2.226320 -0.105 0.9164
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.183 on 349 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.04372, Adjusted R-squared: -0.008345
## F-statistic: 0.8397 on 19 and 349 DF, p-value: 0.6588
# Action 5
summary(lm(act5 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4800 -1.2500 0.1622 1.5200 3.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4714 0.3258 4.516 9.35e-06 ***
## LibsSC.d -0.7418 0.4272 -1.736 0.0836 .
## LibsC.d -0.5114 0.4035 -1.267 0.2061
## LibsM.d -0.3972 0.3874 -1.025 0.3061
## LibsSL.d -1.2006 0.5279 -2.274 0.0237 *
## gend.mf 0.4858 0.6516 0.746 0.4566
## cond.c -0.8219 0.6516 -1.261 0.2083
## LibsSC.d:gend.mf -0.9677 0.8544 -1.133 0.2583
## LibsC.d:gend.mf -0.9548 0.8070 -1.183 0.2377
## LibsM.d:gend.mf -0.4253 0.7748 -0.549 0.5835
## LibsSL.d:gend.mf -0.6108 1.0558 -0.579 0.5634
## LibsSC.d:cond.c 0.5539 0.8544 0.648 0.5173
## LibsC.d:cond.c 0.4995 0.8070 0.619 0.5364
## LibsM.d:cond.c 0.4345 0.7748 0.561 0.5754
## LibsSL.d:cond.c 0.9469 1.0558 0.897 0.3706
## gend.mf:cond.c 0.5010 1.3032 0.384 0.7010
## LibsSC.d:gend.mf:cond.c -0.9194 1.7087 -0.538 0.5910
## LibsC.d:gend.mf:cond.c -2.2876 1.6139 -1.417 0.1575
## LibsM.d:gend.mf:cond.c -0.4514 1.5496 -0.291 0.7710
## LibsSL.d:gend.mf:cond.c 1.0824 2.1115 0.513 0.6086
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.884 on 275 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.0598, Adjusted R-squared: -0.005162
## F-statistic: 0.9205 on 19 and 275 DF, p-value: 0.5577
# Action 6
summary(lm(act6 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.0816 0.5333 1.5294 2.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56924 0.29972 5.236 2.9e-07 ***
## LibsSC.d -0.72561 0.39382 -1.842 0.0663 .
## LibsC.d -0.25622 0.37174 -0.689 0.4911
## LibsM.d -0.21868 0.35145 -0.622 0.5342
## LibsSL.d -0.63888 0.47304 -1.351 0.1777
## gend.mf 0.62343 0.59945 1.040 0.2991
## cond.c -0.44799 0.59945 -0.747 0.4554
## LibsSC.d:gend.mf -1.10159 0.78764 -1.399 0.1629
## LibsC.d:gend.mf -0.84946 0.74349 -1.143 0.2540
## LibsM.d:gend.mf -0.38729 0.70290 -0.551 0.5820
## LibsSL.d:gend.mf -1.83415 0.94608 -1.939 0.0534 .
## LibsSC.d:cond.c 0.40668 0.78764 0.516 0.6060
## LibsC.d:cond.c 0.06713 0.74349 0.090 0.9281
## LibsM.d:cond.c 0.29518 0.70290 0.420 0.6748
## LibsSL.d:cond.c 0.48728 0.94608 0.515 0.6069
## gend.mf:cond.c -1.29449 1.19890 -1.080 0.2810
## LibsSC.d:gend.mf:cond.c 2.59531 1.57527 1.648 0.1004
## LibsC.d:gend.mf:cond.c -0.34378 1.48698 -0.231 0.8173
## LibsM.d:gend.mf:cond.c 1.59227 1.40579 1.133 0.2582
## LibsSL.d:gend.mf:cond.c 1.51591 1.89216 0.801 0.4236
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 337 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.04582, Adjusted R-squared: -0.00798
## F-statistic: 0.8517 on 19 and 337 DF, p-value: 0.6439
# Action 7
summary(lm(act7 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0625 -1.8571 0.0625 1.7143 3.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.08056 0.31621 0.255 0.7990
## LibsSC.d -0.18230 0.42468 -0.429 0.6680
## LibsC.d -0.41701 0.41247 -1.011 0.3126
## LibsM.d -0.17638 0.36506 -0.483 0.6293
## LibsSL.d -0.10660 0.53132 -0.201 0.8411
## gend.mf 0.22778 0.63242 0.360 0.7189
## cond.c 0.85556 0.63242 1.353 0.1769
## LibsSC.d:gend.mf 0.15754 0.84936 0.185 0.8529
## LibsC.d:gend.mf -0.44774 0.82494 -0.543 0.5876
## LibsM.d:gend.mf -0.11406 0.73013 -0.156 0.8759
## LibsSL.d:gend.mf -1.34236 1.06263 -1.263 0.2073
## LibsSC.d:cond.c -0.72383 0.84936 -0.852 0.3946
## LibsC.d:cond.c -1.17845 0.82494 -1.429 0.1539
## LibsM.d:cond.c -0.44070 0.73013 -0.604 0.5465
## LibsSL.d:cond.c -0.97014 1.06263 -0.913 0.3618
## gend.mf:cond.c -1.82222 1.26483 -1.441 0.1505
## LibsSC.d:gend.mf:cond.c 3.01331 1.69873 1.774 0.0769 .
## LibsC.d:gend.mf:cond.c -0.31769 1.64988 -0.193 0.8474
## LibsM.d:gend.mf:cond.c 2.29122 1.46026 1.569 0.1174
## LibsSL.d:gend.mf:cond.c 3.71806 2.12526 1.749 0.0810 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.081 on 393 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.05477, Adjusted R-squared: 0.009077
## F-statistic: 1.199 on 19 and 393 DF, p-value: 0.2548
# Action 8
summary(lm(act8 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4000 -1.6786 -0.1429 1.5466 4.8421
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.58333 0.31923 1.827 0.068306 .
## LibsSC.d -1.53331 0.42014 -3.650 0.000293 ***
## LibsC.d -1.04595 0.40134 -2.606 0.009454 **
## LibsM.d -0.96938 0.36425 -2.661 0.008058 **
## LibsSL.d -0.15000 0.49610 -0.302 0.762518
## gend.mf 0.26190 0.63847 0.410 0.681845
## cond.c 0.59524 0.63847 0.932 0.351677
## LibsSC.d:gend.mf 1.00168 0.84027 1.192 0.233843
## LibsC.d:gend.mf 0.14871 0.80268 0.185 0.853097
## LibsM.d:gend.mf -0.05323 0.72851 -0.073 0.941788
## LibsSL.d:gend.mf -1.46190 0.99221 -1.473 0.141333
## LibsSC.d:cond.c -0.47126 0.84027 -0.561 0.575177
## LibsC.d:cond.c -2.27048 0.80268 -2.829 0.004880 **
## LibsM.d:cond.c -0.35778 0.72851 -0.491 0.623581
## LibsSL.d:cond.c 0.60476 0.99221 0.610 0.542488
## gend.mf:cond.c -0.04762 1.27694 -0.037 0.970269
## LibsSC.d:gend.mf:cond.c -0.74578 1.68055 -0.444 0.657414
## LibsC.d:gend.mf:cond.c -2.52003 1.60536 -1.570 0.117160
## LibsM.d:gend.mf:cond.c 0.53284 1.45701 0.366 0.714749
## LibsSL.d:gend.mf:cond.c 0.98095 1.98442 0.494 0.621311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.102 on 459 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1107, Adjusted R-squared: 0.07388
## F-statistic: 3.007 on 19 and 459 DF, p-value: 2.47e-05
# Action 9
summary(lm(act9 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8000 -1.5455 0.0455 1.5000 4.4545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56310 0.28220 1.995 0.046633 *
## LibsSC.d -1.36272 0.38596 -3.531 0.000459 ***
## LibsC.d -0.62721 0.36534 -1.717 0.086747 .
## LibsM.d -0.39603 0.32859 -1.205 0.228784
## LibsSL.d -0.62976 0.47138 -1.336 0.182264
## gend.mf -0.04048 0.56439 -0.072 0.942861
## cond.c -0.17381 0.56439 -0.308 0.758263
## LibsSC.d:gend.mf -0.06483 0.77191 -0.084 0.933110
## LibsC.d:gend.mf 0.50203 0.73068 0.687 0.492409
## LibsM.d:gend.mf -0.03476 0.65719 -0.053 0.957837
## LibsSL.d:gend.mf -0.92619 0.94276 -0.982 0.326450
## LibsSC.d:cond.c 1.29578 0.77191 1.679 0.093949 .
## LibsC.d:cond.c -0.71259 0.73068 -0.975 0.329998
## LibsM.d:cond.c 0.37840 0.65719 0.576 0.565063
## LibsSL.d:cond.c 0.14048 0.94276 0.149 0.881620
## gend.mf:cond.c -0.68095 1.12878 -0.603 0.546654
## LibsSC.d:gend.mf:cond.c 0.84610 1.54382 0.548 0.583938
## LibsC.d:gend.mf:cond.c -1.32404 1.46137 -0.906 0.365434
## LibsM.d:gend.mf:cond.c 0.97138 1.31437 0.739 0.460286
## LibsSL.d:gend.mf:cond.c 0.94762 1.88553 0.503 0.615523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.06597, Adjusted R-squared: 0.02441
## F-statistic: 1.587 on 19 and 427 DF, p-value: 0.05552
# Action 10
summary(lm(act10 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.8630 0.1739 1.7370 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.96573 0.29854 3.235 0.001305 **
## LibsSC.d -1.50338 0.39978 -3.761 0.000192 ***
## LibsC.d -1.16312 0.38010 -3.060 0.002343 **
## LibsM.d -0.88001 0.34536 -2.548 0.011159 *
## LibsSL.d -0.23543 0.48449 -0.486 0.627249
## gend.mf 0.94353 0.59707 1.580 0.114740
## cond.c 0.16853 0.59707 0.282 0.777867
## LibsSC.d:gend.mf -0.47430 0.79956 -0.593 0.553343
## LibsC.d:gend.mf -0.94875 0.76019 -1.248 0.212657
## LibsM.d:gend.mf -0.89760 0.69072 -1.299 0.194429
## LibsSL.d:gend.mf -2.60414 0.96898 -2.687 0.007462 **
## LibsSC.d:cond.c -0.23426 0.79956 -0.293 0.769664
## LibsC.d:cond.c -0.96887 0.76019 -1.275 0.203132
## LibsM.d:cond.c -0.08567 0.69072 -0.124 0.901348
## LibsSL.d:cond.c 1.02540 0.96898 1.058 0.290512
## gend.mf:cond.c -1.08707 1.19415 -0.910 0.363129
## LibsSC.d:gend.mf:cond.c 1.09731 1.59912 0.686 0.492937
## LibsC.d:gend.mf:cond.c -0.51225 1.52038 -0.337 0.736330
## LibsM.d:gend.mf:cond.c 2.05177 1.38145 1.485 0.138173
## LibsSL.d:gend.mf:cond.c 3.89919 1.93797 2.012 0.044807 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 456 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.0938, Adjusted R-squared: 0.05604
## F-statistic: 2.484 on 19 and 456 DF, p-value: 0.0005392
# Action 11
summary(lm(act11 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9000 -1.0292 0.3902 1.5200 3.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.77202 0.32336 5.480 9.2e-08 ***
## LibsSC.d -0.98169 0.41930 -2.341 0.01989 *
## LibsC.d -0.99793 0.40534 -2.462 0.01440 *
## LibsM.d -1.05950 0.37144 -2.852 0.00465 **
## LibsSL.d -0.33869 0.53665 -0.631 0.52846
## gend.mf 0.19405 0.64672 0.300 0.76435
## cond.c -0.37738 0.64672 -0.584 0.55999
## LibsSC.d:gend.mf 0.95256 0.83860 1.136 0.25694
## LibsC.d:gend.mf -0.65890 0.81068 -0.813 0.41700
## LibsM.d:gend.mf -0.26942 0.74287 -0.363 0.71712
## LibsSL.d:gend.mf -0.22738 1.07330 -0.212 0.83237
## LibsSC.d:cond.c 0.79022 0.83860 0.942 0.34682
## LibsC.d:cond.c -0.67443 0.81068 -0.832 0.40612
## LibsM.d:cond.c -0.27354 0.74287 -0.368 0.71297
## LibsSL.d:cond.c 0.01071 1.07330 0.010 0.99204
## gend.mf:cond.c -2.05476 1.29344 -1.589 0.11323
## LibsSC.d:gend.mf:cond.c 2.32000 1.67720 1.383 0.16764
## LibsC.d:gend.mf:cond.c 0.32505 1.62135 0.200 0.84124
## LibsM.d:gend.mf:cond.c 1.83373 1.48575 1.234 0.21812
## LibsSL.d:gend.mf:cond.c 3.12143 2.14660 1.454 0.14699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.858 on 292 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.09531, Adjusted R-squared: 0.03644
## F-statistic: 1.619 on 19 and 292 DF, p-value: 0.05071
# Action 12
summary(lm(act12 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.000 -1.875 0.125 1.635 4.235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1538 0.3487 3.309 0.001029 **
## LibsSC.d -1.9083 0.4523 -4.219 3.1e-05 ***
## LibsC.d -1.7250 0.4426 -3.898 0.000116 ***
## LibsM.d -1.3175 0.4006 -3.288 0.001106 **
## LibsSL.d -0.9129 0.5614 -1.626 0.104796
## gend.mf 1.3591 0.6973 1.949 0.052067 .
## cond.c 0.5159 0.6973 0.740 0.459854
## LibsSC.d:gend.mf -0.5773 0.9046 -0.638 0.523760
## LibsC.d:gend.mf -1.7702 0.8851 -2.000 0.046253 *
## LibsM.d:gend.mf -1.9265 0.8013 -2.404 0.016706 *
## LibsSL.d:gend.mf -2.2409 1.1228 -1.996 0.046702 *
## LibsSC.d:cond.c 0.1194 0.9046 0.132 0.895067
## LibsC.d:cond.c -1.6985 0.8851 -1.919 0.055779 .
## LibsM.d:cond.c -0.4715 0.8013 -0.588 0.556610
## LibsSL.d:cond.c 0.2023 1.1228 0.180 0.857150
## gend.mf:cond.c -0.3652 1.3946 -0.262 0.793581
## LibsSC.d:gend.mf:cond.c 1.2764 1.8091 0.706 0.480947
## LibsC.d:gend.mf:cond.c -2.6625 1.7703 -1.504 0.133457
## LibsM.d:gend.mf:cond.c 1.4342 1.6026 0.895 0.371403
## LibsSL.d:gend.mf:cond.c 0.5288 2.2456 0.235 0.813955
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.117 on 363 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.06946
## F-statistic: 2.501 on 19 and 363 DF, p-value: 0.0005499
# Action 13
summary(lm(act13 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1333 -1.8000 0.1852 1.8235 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.50160 0.31192 1.608 0.1086
## LibsSC.d -0.80244 0.41474 -1.935 0.0537 .
## LibsC.d -0.58999 0.40329 -1.463 0.1442
## LibsM.d -0.64946 0.35698 -1.819 0.0696 .
## LibsSL.d -0.55369 0.49335 -1.122 0.2624
## gend.mf 0.53846 0.62383 0.863 0.3885
## cond.c 0.20513 0.62383 0.329 0.7425
## LibsSC.d:gend.mf 1.24504 0.82948 1.501 0.1341
## LibsC.d:gend.mf -0.36169 0.80659 -0.448 0.6541
## LibsM.d:gend.mf -0.80795 0.71395 -1.132 0.2584
## LibsSL.d:gend.mf -1.40096 0.98671 -1.420 0.1564
## LibsSC.d:cond.c -0.33408 0.82948 -0.403 0.6873
## LibsC.d:cond.c -1.47280 0.80659 -1.826 0.0686 .
## LibsM.d:cond.c 0.09315 0.71395 0.130 0.8963
## LibsSL.d:cond.c 0.35737 0.98671 0.362 0.7174
## gend.mf:cond.c 1.17308 1.24767 0.940 0.3476
## LibsSC.d:gend.mf:cond.c -1.46062 1.65895 -0.880 0.3791
## LibsC.d:gend.mf:cond.c -2.63772 1.61318 -1.635 0.1028
## LibsM.d:gend.mf:cond.c -1.33486 1.42790 -0.935 0.3504
## LibsSL.d:gend.mf:cond.c 2.96859 1.97342 1.504 0.1333
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.08224, Adjusted R-squared: 0.04091
## F-statistic: 1.99 on 19 and 422 DF, p-value: 0.008085
# Action 14
summary(lm(act14 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1818 -1.2411 0.3129 1.5849 3.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.138102 0.365312 3.115 0.00204 **
## LibsSC.d -0.636453 0.491871 -1.294 0.19681
## LibsC.d -1.093963 0.465777 -2.349 0.01957 *
## LibsM.d -0.752582 0.421068 -1.787 0.07503 .
## LibsSL.d -1.346435 0.612090 -2.200 0.02869 *
## gend.mf 0.623797 0.730624 0.854 0.39399
## cond.c 0.305615 0.730624 0.418 0.67607
## LibsSC.d:gend.mf -0.012808 0.983741 -0.013 0.98962
## LibsC.d:gend.mf -2.112074 0.931554 -2.267 0.02418 *
## LibsM.d:gend.mf -0.791661 0.842137 -0.940 0.34804
## LibsSL.d:gend.mf -2.290463 1.224180 -1.871 0.06244 .
## LibsSC.d:cond.c 0.283396 0.983741 0.288 0.77351
## LibsC.d:cond.c -0.612074 0.931554 -0.657 0.51172
## LibsM.d:cond.c -0.163956 0.842137 -0.195 0.84578
## LibsSL.d:cond.c 1.111052 1.224180 0.908 0.36492
## gend.mf:cond.c -0.811230 1.461249 -0.555 0.57925
## LibsSC.d:gend.mf:cond.c 0.004637 1.967483 0.002 0.99812
## LibsC.d:gend.mf:cond.c 0.624149 1.863107 0.335 0.73789
## LibsM.d:gend.mf:cond.c 0.877118 1.684274 0.521 0.60296
## LibsSL.d:gend.mf:cond.c 3.144563 2.448360 1.284 0.20014
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.033 on 266 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.06875, Adjusted R-squared: 0.002233
## F-statistic: 1.034 on 19 and 266 DF, p-value: 0.4224
# Action 15
summary(lm(act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5294 -1.7357 0.3167 1.4947 4.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0053 0.3392 2.964 0.00324 **
## LibsSC.d -1.3475 0.4336 -3.108 0.00203 **
## LibsC.d -0.9079 0.4171 -2.177 0.03013 *
## LibsM.d -1.0846 0.3826 -2.835 0.00484 **
## LibsSL.d -0.8663 0.5058 -1.713 0.08761 .
## gend.mf 0.8145 0.6784 1.201 0.23069
## cond.c -1.1439 0.6784 -1.686 0.09262 .
## LibsSC.d:gend.mf -0.2133 0.8672 -0.246 0.80588
## LibsC.d:gend.mf -1.1915 0.8341 -1.428 0.15402
## LibsM.d:gend.mf -1.5569 0.7652 -2.035 0.04262 *
## LibsSL.d:gend.mf -1.5782 1.0116 -1.560 0.11961
## LibsSC.d:cond.c 1.4593 0.8672 1.683 0.09328 .
## LibsC.d:cond.c 0.6001 0.8341 0.719 0.47232
## LibsM.d:cond.c 1.2796 0.7652 1.672 0.09535 .
## LibsSL.d:cond.c 1.9552 1.0116 1.933 0.05404 .
## gend.mf:cond.c 1.4377 1.3568 1.060 0.28999
## LibsSC.d:gend.mf:cond.c -2.2354 1.7345 -1.289 0.19829
## LibsC.d:gend.mf:cond.c -3.5150 1.6683 -2.107 0.03581 *
## LibsM.d:gend.mf:cond.c -0.6025 1.5305 -0.394 0.69406
## LibsSL.d:gend.mf:cond.c 0.7682 2.0232 0.380 0.70438
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.021 on 364 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.09033, Adjusted R-squared: 0.04285
## F-statistic: 1.902 on 19 and 364 DF, p-value: 0.013
# Action 16
summary(lm(act16 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -0.9811 0.2963 1.4800 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02303 0.31257 3.273 0.00118 **
## LibsSC.d -0.38919 0.41490 -0.938 0.34895
## LibsC.d -0.12397 0.39179 -0.316 0.75190
## LibsM.d 0.07833 0.36158 0.217 0.82864
## LibsSL.d -0.50636 0.51741 -0.979 0.32852
## gend.mf -0.54605 0.62513 -0.873 0.38307
## cond.c -0.29605 0.62513 -0.474 0.63613
## LibsSC.d:gend.mf 1.38949 0.82979 1.675 0.09504 .
## LibsC.d:gend.mf 0.06417 0.78358 0.082 0.93478
## LibsM.d:gend.mf 1.06393 0.72316 1.471 0.14224
## LibsSL.d:gend.mf 0.67939 1.03482 0.657 0.51197
## LibsSC.d:cond.c 0.36171 0.82979 0.436 0.66321
## LibsC.d:cond.c 0.55639 0.78358 0.710 0.47819
## LibsM.d:cond.c 0.54506 0.72316 0.754 0.45158
## LibsSL.d:cond.c 0.26272 1.03482 0.254 0.79976
## gend.mf:cond.c -2.40789 1.25027 -1.926 0.05503 .
## LibsSC.d:gend.mf:cond.c 2.05436 1.65958 1.238 0.21670
## LibsC.d:gend.mf:cond.c 1.40858 1.56715 0.899 0.36945
## LibsM.d:gend.mf:cond.c 2.35105 1.44631 1.626 0.10506
## LibsSL.d:gend.mf:cond.c 6.14123 2.06964 2.967 0.00324 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 311 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.06263, Adjusted R-squared: 0.005359
## F-statistic: 1.094 on 19 and 311 DF, p-value: 0.3561
# Action 17
summary(lm(act17 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4286 -1.3889 -0.0571 1.6000 4.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.76951 0.30430 2.529 0.0118 *
## LibsSC.d -0.41534 0.40303 -1.031 0.3034
## LibsC.d -0.49282 0.39139 -1.259 0.2087
## LibsM.d -0.28635 0.35115 -0.815 0.4153
## LibsSL.d 0.15341 0.49309 0.311 0.7559
## gend.mf 0.74670 0.60859 1.227 0.2206
## cond.c -0.08187 0.60859 -0.135 0.8931
## LibsSC.d:gend.mf -0.56110 0.80606 -0.696 0.4868
## LibsC.d:gend.mf -0.78619 0.78278 -1.004 0.3158
## LibsM.d:gend.mf -0.71951 0.70231 -1.024 0.3062
## LibsSL.d:gend.mf -1.67587 0.98618 -1.699 0.0900 .
## LibsSC.d:cond.c 0.87353 0.80606 1.084 0.2792
## LibsC.d:cond.c -1.02547 0.78278 -1.310 0.1909
## LibsM.d:cond.c -0.35825 0.70231 -0.510 0.6103
## LibsSL.d:cond.c 1.77770 0.98618 1.803 0.0722 .
## gend.mf:cond.c -0.97912 1.21719 -0.804 0.4216
## LibsSC.d:gend.mf:cond.c 0.51700 1.61211 0.321 0.7486
## LibsC.d:gend.mf:cond.c -0.27842 1.56556 -0.178 0.8589
## LibsM.d:gend.mf:cond.c 0.41781 1.40462 0.297 0.7663
## LibsSL.d:gend.mf:cond.c 4.42079 1.97237 2.241 0.0256 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 396 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.0642, Adjusted R-squared: 0.0193
## F-statistic: 1.43 on 19 and 396 DF, p-value: 0.1086
# Action 18
summary(lm(act18 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.2632 0.2372 1.3333 3.3846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9869 0.2850 3.463 0.000605 ***
## LibsSC.d -0.7658 0.3841 -1.994 0.046981 *
## LibsC.d -0.4999 0.3729 -1.340 0.181062
## LibsM.d -0.2164 0.3396 -0.637 0.524340
## LibsSL.d -0.3603 0.4791 -0.752 0.452512
## gend.mf 0.1690 0.5700 0.296 0.767035
## cond.c 0.1465 0.5700 0.257 0.797393
## LibsSC.d:gend.mf 0.5402 0.7681 0.703 0.482360
## LibsC.d:gend.mf -0.3098 0.7459 -0.415 0.678133
## LibsM.d:gend.mf -0.2578 0.6792 -0.380 0.704535
## LibsSL.d:gend.mf 0.3278 0.9581 0.342 0.732493
## LibsSC.d:cond.c 0.3471 0.7681 0.452 0.651656
## LibsC.d:cond.c -0.6206 0.7459 -0.832 0.405985
## LibsM.d:cond.c -0.1618 0.6792 -0.238 0.811798
## LibsSL.d:cond.c 0.4337 0.9581 0.453 0.651122
## gend.mf:cond.c -1.1501 1.1401 -1.009 0.313828
## LibsSC.d:gend.mf:cond.c 1.1326 1.5363 0.737 0.461473
## LibsC.d:gend.mf:cond.c -0.2350 1.4918 -0.158 0.874923
## LibsM.d:gend.mf:cond.c 1.3353 1.3584 0.983 0.326336
## LibsSL.d:gend.mf:cond.c 4.4898 1.9163 2.343 0.019720 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.05189, Adjusted R-squared: -0.002371
## F-statistic: 0.9563 on 19 and 332 DF, p-value: 0.5132
# Action 19
summary(lm(act19 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6364 -1.0465 0.3693 1.4390 2.8750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5444 0.3813 4.050 6.8e-05 ***
## LibsSC.d -0.6347 0.4802 -1.322 0.187
## LibsC.d -0.4233 0.4535 -0.933 0.352
## LibsM.d -0.3912 0.4310 -0.908 0.365
## LibsSL.d -0.4583 0.5464 -0.839 0.402
## gend.mf 0.4444 0.7626 0.583 0.561
## cond.c -0.7778 0.7626 -1.020 0.309
## LibsSC.d:gend.mf 0.3611 0.9604 0.376 0.707
## LibsC.d:gend.mf -0.6233 0.9069 -0.687 0.493
## LibsM.d:gend.mf -0.7455 0.8620 -0.865 0.388
## LibsSL.d:gend.mf -1.2835 1.0929 -1.174 0.241
## LibsSC.d:cond.c 0.8472 0.9604 0.882 0.379
## LibsC.d:cond.c -0.2243 0.9069 -0.247 0.805
## LibsM.d:cond.c 0.3414 0.8620 0.396 0.692
## LibsSL.d:cond.c 0.9804 1.0929 0.897 0.370
## gend.mf:cond.c -0.7111 1.5252 -0.466 0.641
## LibsSC.d:gend.mf:cond.c -0.6778 1.9208 -0.353 0.724
## LibsC.d:gend.mf:cond.c -0.2688 1.8139 -0.148 0.882
## LibsM.d:gend.mf:cond.c 0.8673 1.7239 0.503 0.615
## LibsSL.d:gend.mf:cond.c 1.6391 2.1857 0.750 0.454
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.809 on 254 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.05536, Adjusted R-squared: -0.0153
## F-statistic: 0.7834 on 19 and 254 DF, p-value: 0.7262
# Action 20
summary(lm(act20 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7000 -1.1616 0.4211 1.4211 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.25044 0.30195 4.141 4.49e-05 ***
## LibsSC.d -0.04652 0.39274 -0.118 0.9058
## LibsC.d -0.22560 0.37994 -0.594 0.5531
## LibsM.d 0.01571 0.35580 0.044 0.9648
## LibsSL.d -0.54568 0.49072 -1.112 0.2670
## gend.mf 0.33246 0.60389 0.551 0.5824
## cond.c -0.86754 0.60389 -1.437 0.1519
## LibsSC.d:gend.mf -0.15695 0.78548 -0.200 0.8418
## LibsC.d:gend.mf -1.07444 0.75989 -1.414 0.1584
## LibsM.d:gend.mf -0.52546 0.71160 -0.738 0.4608
## LibsSL.d:gend.mf -0.90865 0.98143 -0.926 0.3553
## LibsSC.d:cond.c 0.32083 0.78548 0.408 0.6832
## LibsC.d:cond.c 0.41722 0.75989 0.549 0.5834
## LibsM.d:cond.c 0.19588 0.71160 0.275 0.7833
## LibsSL.d:cond.c 0.91040 0.98143 0.928 0.3543
## gend.mf:cond.c -0.59825 1.20779 -0.495 0.6207
## LibsSC.d:gend.mf:cond.c 0.85835 1.57096 0.546 0.5852
## LibsC.d:gend.mf:cond.c 0.11427 1.51977 0.075 0.9401
## LibsM.d:gend.mf:cond.c 0.12014 1.42321 0.084 0.9328
## LibsSL.d:gend.mf:cond.c 3.51253 1.96286 1.789 0.0745 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.795 on 302 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.05394, Adjusted R-squared: -0.00558
## F-statistic: 0.9063 on 19 and 302 DF, p-value: 0.5755
# Action 21
summary(lm(act21 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1250 -1.7424 0.0508 1.7059 4.2727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.46637 0.30970 1.506 0.13293
## LibsSC.d -1.11715 0.41438 -2.696 0.00733 **
## LibsC.d -0.72803 0.41005 -1.775 0.07662 .
## LibsM.d -0.44526 0.36127 -1.232 0.21853
## LibsSL.d -0.10675 0.51299 -0.208 0.83526
## gend.mf 0.04940 0.61940 0.080 0.93647
## cond.c -0.27560 0.61940 -0.445 0.65661
## LibsSC.d:gend.mf -0.38421 0.82876 -0.464 0.64320
## LibsC.d:gend.mf -0.26558 0.82009 -0.324 0.74623
## LibsM.d:gend.mf 0.30124 0.72255 0.417 0.67698
## LibsSL.d:gend.mf 0.13136 1.02599 0.128 0.89819
## LibsSC.d:cond.c 0.95265 0.82876 1.149 0.25108
## LibsC.d:cond.c 0.21656 0.82009 0.264 0.79187
## LibsM.d:cond.c 0.43253 0.72255 0.599 0.54978
## LibsSL.d:cond.c 0.95636 1.02599 0.932 0.35185
## gend.mf:cond.c -1.98452 1.23879 -1.602 0.10999
## LibsSC.d:gend.mf:cond.c 2.44860 1.65752 1.477 0.14043
## LibsC.d:gend.mf:cond.c 0.05217 1.64018 0.032 0.97464
## LibsM.d:gend.mf:cond.c 1.88494 1.44510 1.304 0.19290
## LibsSL.d:gend.mf:cond.c 4.42299 2.05197 2.155 0.03175 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 381 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05638, Adjusted R-squared: 0.009323
## F-statistic: 1.198 on 19 and 381 DF, p-value: 0.2555
# Action 22
summary(lm(act22 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2222 -1.4571 -0.0508 1.7429 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.633254 0.314407 2.014 0.0447 *
## LibsSC.d -0.845014 0.410364 -2.059 0.0402 *
## LibsC.d -0.345754 0.396341 -0.872 0.3836
## LibsM.d -0.240467 0.363540 -0.661 0.5087
## LibsSL.d 0.451713 0.487784 0.926 0.3550
## gend.mf -0.004603 0.628814 -0.007 0.9942
## cond.c -0.322063 0.628814 -0.512 0.6088
## LibsSC.d:gend.mf 0.882670 0.820729 1.075 0.2828
## LibsC.d:gend.mf -0.337063 0.792683 -0.425 0.6709
## LibsM.d:gend.mf 0.482187 0.727081 0.663 0.5076
## LibsSL.d:gend.mf -0.165331 0.975568 -0.169 0.8655
## LibsSC.d:cond.c 0.585411 0.820729 0.713 0.4761
## LibsC.d:cond.c -0.052937 0.792683 -0.067 0.9468
## LibsM.d:cond.c 0.324179 0.727081 0.446 0.6559
## LibsSL.d:cond.c -0.225649 0.975568 -0.231 0.8172
## gend.mf:cond.c -2.546349 1.257628 -2.025 0.0436 *
## LibsSC.d:gend.mf:cond.c 2.565108 1.641457 1.563 0.1190
## LibsC.d:gend.mf:cond.c 0.963016 1.585365 0.607 0.5439
## LibsM.d:gend.mf:cond.c 2.963171 1.454161 2.038 0.0423 *
## LibsSL.d:gend.mf:cond.c 1.241774 1.951137 0.636 0.5249
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.976 on 382 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.0681, Adjusted R-squared: 0.02175
## F-statistic: 1.469 on 19 and 382 DF, p-value: 0.0928
aggregate(d$act22[d$ideology == "Liberal"], list(d$gend[d$ideology == "Liberal"], d$cond[d$ideology == "Liberal"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate 1.11
## 2 Male climate -0.17
## 3 Female ctrl 0.16
## 4 Male ctrl 1.43
# Action 23
summary(lm(act23 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -2.000 0.125 1.920 4.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5197 0.3760 1.382 0.1680
## LibsSC.d -0.2149 0.5157 -0.417 0.6772
## LibsC.d -0.7545 0.4821 -1.565 0.1187
## LibsM.d -0.2986 0.4521 -0.660 0.5095
## LibsSL.d -0.1584 0.6263 -0.253 0.8005
## gend.mf -0.2716 0.7519 -0.361 0.7182
## cond.c -1.4522 0.7519 -1.931 0.0545 .
## LibsSC.d:gend.mf 1.5176 1.0314 1.471 0.1424
## LibsC.d:gend.mf -0.1200 0.9641 -0.124 0.9011
## LibsM.d:gend.mf 0.6960 0.9042 0.770 0.4421
## LibsSL.d:gend.mf -0.9511 1.2525 -0.759 0.4483
## LibsSC.d:cond.c 1.5062 1.0314 1.460 0.1454
## LibsC.d:cond.c 0.9184 0.9641 0.953 0.3417
## LibsM.d:cond.c 0.8849 0.9042 0.979 0.3286
## LibsSL.d:cond.c 3.1295 1.2525 2.499 0.0131 *
## gend.mf:cond.c -2.0599 1.5038 -1.370 0.1719
## LibsSC.d:gend.mf:cond.c 3.4407 2.0629 1.668 0.0965 .
## LibsC.d:gend.mf:cond.c 0.5165 1.9283 0.268 0.7890
## LibsM.d:gend.mf:cond.c 1.4611 1.8084 0.808 0.4198
## LibsSL.d:gend.mf:cond.c 3.7054 2.5050 1.479 0.1402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.253 on 272 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.07369, Adjusted R-squared: 0.008984
## F-statistic: 1.139 on 19 and 272 DF, p-value: 0.3118
# Action 24
summary(lm(act24 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8750 -0.0429 1.6429 4.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.025263 0.330860 -0.076 0.9392
## LibsSC.d -0.006817 0.439521 -0.016 0.9876
## LibsC.d -0.411840 0.410925 -1.002 0.3168
## LibsM.d -0.300695 0.376457 -0.799 0.4249
## LibsSL.d -0.217792 0.517330 -0.421 0.6740
## gend.mf 0.450526 0.661720 0.681 0.4964
## cond.c 0.029474 0.661720 0.045 0.9645
## LibsSC.d:gend.mf 0.704544 0.879042 0.801 0.4233
## LibsC.d:gend.mf -0.542987 0.821851 -0.661 0.5092
## LibsM.d:gend.mf -0.741791 0.752914 -0.985 0.3251
## LibsSL.d:gend.mf -1.047749 1.034659 -1.013 0.3118
## LibsSC.d:cond.c 0.130142 0.879042 0.148 0.8824
## LibsC.d:cond.c -0.960823 0.821851 -1.169 0.2431
## LibsM.d:cond.c -0.906066 0.752914 -1.203 0.2295
## LibsSL.d:cond.c 0.123304 1.034659 0.119 0.9052
## gend.mf:cond.c 0.741053 1.323440 0.560 0.5758
## LibsSC.d:gend.mf:cond.c -1.060283 1.758084 -0.603 0.5468
## LibsC.d:gend.mf:cond.c -3.611688 1.643702 -2.197 0.0286 *
## LibsM.d:gend.mf:cond.c -1.601505 1.505829 -1.064 0.2882
## LibsSL.d:gend.mf:cond.c -0.213275 2.069319 -0.103 0.9180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.083 on 395 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.05818, Adjusted R-squared: 0.01287
## F-statistic: 1.284 on 19 and 395 DF, p-value: 0.1894
# Action 25
summary(lm(act25 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6087 -0.8846 0.2222 1.3913 3.4000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.21467 0.26586 4.569 6.44e-06 ***
## LibsSC.d -1.30866 0.36461 -3.589 0.00037 ***
## LibsC.d -0.69437 0.34220 -2.029 0.04307 *
## LibsM.d -0.32803 0.30799 -1.065 0.28745
## LibsSL.d -0.00389 0.46358 -0.008 0.99331
## gend.mf 0.32065 0.53173 0.603 0.54680
## cond.c 0.55435 0.53173 1.043 0.29775
## LibsSC.d:gend.mf -0.07814 0.72922 -0.107 0.91472
## LibsC.d:gend.mf -0.47236 0.68440 -0.690 0.49045
## LibsM.d:gend.mf -0.29865 0.61599 -0.485 0.62805
## LibsSL.d:gend.mf -0.57555 0.92715 -0.621 0.53508
## LibsSC.d:cond.c -0.04820 0.72922 -0.066 0.94733
## LibsC.d:cond.c -1.12486 0.68440 -1.644 0.10100
## LibsM.d:cond.c -0.75263 0.61599 -1.222 0.22245
## LibsSL.d:cond.c 0.69075 0.92715 0.745 0.45667
## gend.mf:cond.c -1.10870 1.06345 -1.043 0.29775
## LibsSC.d:gend.mf:cond.c 1.80549 1.45843 1.238 0.21641
## LibsC.d:gend.mf:cond.c -0.41695 1.36879 -0.305 0.76081
## LibsM.d:gend.mf:cond.c 0.74802 1.23197 0.607 0.54406
## LibsSL.d:gend.mf:cond.c 2.95183 1.85431 1.592 0.11216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.837 on 424 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.07813, Adjusted R-squared: 0.03682
## F-statistic: 1.891 on 19 and 424 DF, p-value: 0.0133
# Action 26
summary(lm(act26 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2857 -1.1563 0.5577 1.3947 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.70000 0.42940 3.959 0.000104 ***
## LibsSC.d -0.06310 0.53399 -0.118 0.906057
## LibsC.d -0.06399 0.50992 -0.125 0.900260
## LibsM.d -0.14650 0.49011 -0.299 0.765314
## LibsSL.d -0.89643 0.62594 -1.432 0.153619
## gend.mf 1.40000 0.85881 1.630 0.104593
## cond.c -0.60000 0.85881 -0.699 0.485562
## LibsSC.d:gend.mf -1.50714 1.06797 -1.411 0.159688
## LibsC.d:gend.mf -1.74702 1.01983 -1.713 0.088208 .
## LibsM.d:gend.mf -1.62239 0.98022 -1.655 0.099420 .
## LibsSL.d:gend.mf -0.50714 1.25187 -0.405 0.685819
## LibsSC.d:cond.c 0.20714 1.06797 0.194 0.846399
## LibsC.d:cond.c 0.46131 1.01983 0.452 0.651502
## LibsM.d:cond.c 0.60175 0.98022 0.614 0.539966
## LibsSL.d:cond.c 0.82619 1.25187 0.660 0.510014
## gend.mf:cond.c -1.20000 1.71761 -0.699 0.485562
## LibsSC.d:gend.mf:cond.c 2.31905 2.13594 1.086 0.278869
## LibsC.d:gend.mf:cond.c -1.17262 2.03967 -0.575 0.565982
## LibsM.d:gend.mf:cond.c 0.96574 1.96044 0.493 0.622809
## LibsSL.d:gend.mf:cond.c 3.08095 2.50375 1.231 0.219899
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.844 on 206 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.06431, Adjusted R-squared: -0.02199
## F-statistic: 0.7452 on 19 and 206 DF, p-value: 0.7689
# Action 27
summary(lm(act27 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2143 0.1667 1.4167 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11742 0.31962 3.496 0.000544 ***
## LibsSC.d -0.63826 0.41502 -1.538 0.125134
## LibsC.d -0.28925 0.40384 -0.716 0.474404
## LibsM.d -0.49616 0.37476 -1.324 0.186540
## LibsSL.d 0.23864 0.47840 0.499 0.618271
## gend.mf 0.09848 0.63924 0.154 0.877662
## cond.c -0.34091 0.63924 -0.533 0.594221
## LibsSC.d:gend.mf 0.85985 0.83003 1.036 0.301080
## LibsC.d:gend.mf 0.20548 0.80769 0.254 0.799355
## LibsM.d:gend.mf 0.31078 0.74952 0.415 0.678709
## LibsSL.d:gend.mf 0.02273 0.95679 0.024 0.981065
## LibsSC.d:cond.c -0.28409 0.83003 -0.342 0.732393
## LibsC.d:cond.c -0.29163 0.80769 -0.361 0.718304
## LibsM.d:cond.c -0.34783 0.74952 -0.464 0.642934
## LibsSL.d:cond.c 0.96212 0.95679 1.006 0.315441
## gend.mf:cond.c 0.68182 1.27848 0.533 0.594221
## LibsSC.d:gend.mf:cond.c -1.93182 1.66006 -1.164 0.245478
## LibsC.d:gend.mf:cond.c -3.05166 1.61537 -1.889 0.059847 .
## LibsM.d:gend.mf:cond.c -0.85790 1.49905 -0.572 0.567553
## LibsSL.d:gend.mf:cond.c -0.25758 1.91358 -0.135 0.893016
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 297 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.0834, Adjusted R-squared: 0.02476
## F-statistic: 1.422 on 19 and 297 DF, p-value: 0.1144
# Action 28
summary(lm(act28 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6250 -1.1321 0.2667 1.5522 3.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.87214 0.30312 2.877 0.00426 **
## LibsSC.d -0.05396 0.39430 -0.137 0.89122
## LibsC.d 0.41500 0.38207 1.086 0.27814
## LibsM.d 0.12476 0.35348 0.353 0.72433
## LibsSL.d 0.12161 0.50429 0.241 0.80958
## gend.mf -0.51571 0.60624 -0.851 0.39553
## cond.c -0.44429 0.60624 -0.733 0.46414
## LibsSC.d:gend.mf 0.45208 0.78860 0.573 0.56683
## LibsC.d:gend.mf 0.24142 0.76414 0.316 0.75224
## LibsM.d:gend.mf 0.64412 0.70695 0.911 0.36285
## LibsSL.d:gend.mf -0.38845 1.00858 -0.385 0.70036
## LibsSC.d:cond.c -0.46935 0.78860 -0.595 0.55211
## LibsC.d:cond.c 0.07740 0.76414 0.101 0.91938
## LibsM.d:cond.c 0.31588 0.70695 0.447 0.65528
## LibsSL.d:cond.c 0.83179 1.00858 0.825 0.41009
## gend.mf:cond.c -2.36857 1.21248 -1.953 0.05155 .
## LibsSC.d:gend.mf:cond.c 2.14130 1.57719 1.358 0.17544
## LibsC.d:gend.mf:cond.c 1.70234 1.52828 1.114 0.26609
## LibsM.d:gend.mf:cond.c 1.31427 1.41390 0.930 0.35325
## LibsSL.d:gend.mf:cond.c 2.42690 2.01715 1.203 0.22973
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 352 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: -0.006203
## F-statistic: 0.8796 on 19 and 352 DF, p-value: 0.6089
# Action 29
summary(lm(act29 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6923 -1.0447 0.3077 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.16238 0.27827 4.177 3.74e-05 ***
## LibsSC.d -0.07396 0.37361 -0.198 0.843
## LibsC.d -0.21633 0.36272 -0.596 0.551
## LibsM.d -0.05252 0.32813 -0.160 0.873
## LibsSL.d 0.18987 0.46530 0.408 0.683
## gend.mf 0.67525 0.55655 1.213 0.226
## cond.c 0.18785 0.55655 0.338 0.736
## LibsSC.d:gend.mf -0.37936 0.74722 -0.508 0.612
## LibsC.d:gend.mf -0.93709 0.72544 -1.292 0.197
## LibsM.d:gend.mf -0.72503 0.65625 -1.105 0.270
## LibsSL.d:gend.mf -0.82973 0.93060 -0.892 0.373
## LibsSC.d:cond.c 0.07341 0.74722 0.098 0.922
## LibsC.d:cond.c -0.05237 0.72544 -0.072 0.942
## LibsM.d:cond.c -0.25646 0.65625 -0.391 0.696
## LibsSL.d:cond.c 0.07433 0.93060 0.080 0.936
## gend.mf:cond.c -0.08999 1.11309 -0.081 0.936
## LibsSC.d:gend.mf:cond.c -0.57798 1.49444 -0.387 0.699
## LibsC.d:gend.mf:cond.c 0.79382 1.45088 0.547 0.585
## LibsM.d:gend.mf:cond.c 0.33178 1.31250 0.253 0.801
## LibsSL.d:gend.mf:cond.c 1.66563 1.86120 0.895 0.371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.791 on 348 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01904, Adjusted R-squared: -0.03452
## F-statistic: 0.3554 on 19 and 348 DF, p-value: 0.995
# Action 30
summary(lm(act30 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (LibsSC.d + LibsC.d + LibsM.d + LibsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.545 -1.059 0.400 1.466 3.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2680 0.3035 4.179 3.75e-05 ***
## LibsSC.d -0.2241 0.3966 -0.565 0.5725
## LibsC.d -0.3873 0.3871 -1.001 0.3177
## LibsM.d -0.2992 0.3609 -0.829 0.4078
## LibsSL.d -0.3191 0.4907 -0.650 0.5159
## gend.mf 0.2973 0.6069 0.490 0.6245
## cond.c -0.3277 0.6069 -0.540 0.5896
## LibsSC.d:gend.mf -0.8095 0.7932 -1.020 0.3082
## LibsC.d:gend.mf -0.8920 0.7742 -1.152 0.2501
## LibsM.d:gend.mf -0.4838 0.7219 -0.670 0.5032
## LibsSL.d:gend.mf -0.9451 0.9814 -0.963 0.3363
## LibsSC.d:cond.c 1.5064 0.7932 1.899 0.0584 .
## LibsC.d:cond.c 0.2675 0.7742 0.346 0.7299
## LibsM.d:cond.c 0.3912 0.7219 0.542 0.5883
## LibsSL.d:cond.c 0.9299 0.9814 0.948 0.3441
## gend.mf:cond.c -1.6780 1.2138 -1.382 0.1678
## LibsSC.d:gend.mf:cond.c 2.8356 1.5864 1.787 0.0748 .
## LibsC.d:gend.mf:cond.c 2.1316 1.5484 1.377 0.1695
## LibsM.d:gend.mf:cond.c 2.2841 1.4437 1.582 0.1146
## LibsSL.d:gend.mf:cond.c 3.9735 1.9628 2.024 0.0437 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.04439, Adjusted R-squared: -0.0103
## F-statistic: 0.8117 on 19 and 332 DF, p-value: 0.6931
iii. Moderates
# Action 1
mod.b1 <- lm(act1 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b1) # yes, higher than 0
##
## Call:
## lm(formula = act1 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.646 -1.962 0.038 2.038 3.490
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03804 0.15855 -0.240 0.8105
## ModsSC.d -0.42349 0.31032 -1.365 0.1730
## ModsC.d -0.45196 0.26720 -1.691 0.0914 .
## ModsL.d 0.68420 0.31032 2.205 0.0280 *
## ModsSL.d 0.20947 0.39660 0.528 0.5976
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.151 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.0298, Adjusted R-squared: 0.02106
## F-statistic: 3.409 on 4 and 444 DF, p-value: 0.00923
# Action 2
mod.b2 <- lm(act2 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b2) # yes, higher than 0
##
## Call:
## lm(formula = act2 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.2212 0.1077 1.7788 2.1077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2212 0.1698 7.191 5.68e-12 ***
## ModsSC.d -0.2647 0.3157 -0.838 0.403
## ModsC.d -0.3289 0.2810 -1.170 0.243
## ModsL.d 0.3502 0.3263 1.073 0.284
## ModsSL.d -0.1796 0.4058 -0.443 0.658
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 285 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01519, Adjusted R-squared: 0.001372
## F-statistic: 1.099 on 4 and 285 DF, p-value: 0.3572
# Action 3
mod.b3 <- lm(act3 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b3) # nothing
##
## Call:
## lm(formula = act3 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.9837 0.0163 1.4167 3.8852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0163 0.1482 -0.110 0.91242
## ModsSC.d -0.8689 0.2969 -2.926 0.00361 **
## ModsC.d -0.4004 0.2530 -1.582 0.11431
## ModsL.d -0.1749 0.2852 -0.613 0.54012
## ModsSL.d 0.3877 0.3706 1.046 0.29605
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 439 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02777, Adjusted R-squared: 0.01891
## F-statistic: 3.134 on 4 and 439 DF, p-value: 0.01467
# Action 4
mod.b4 <- lm(act4 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b4) # nothing
##
## Call:
## lm(formula = act4 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.7937 0.2063 2.0051 3.2877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.20625 0.17089 -1.207 0.228
## ModsSC.d 0.40233 0.34759 1.157 0.248
## ModsC.d -0.08142 0.30530 -0.267 0.790
## ModsL.d 0.58556 0.33130 1.767 0.078 .
## ModsSL.d 0.68901 0.43626 1.579 0.115
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.162 on 366 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01709, Adjusted R-squared: 0.006351
## F-statistic: 1.591 on 4 and 366 DF, p-value: 0.176
# Action 5
mod.b5 <- lm(act5 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b5) # yes, higher than 0
##
## Call:
## lm(formula = act5 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4048 -1.0917 0.2653 1.5952 2.5833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0917 0.1792 6.091 3.53e-09 ***
## ModsSC.d -0.3570 0.3219 -1.109 0.268
## ModsC.d -0.1191 0.2830 -0.421 0.674
## ModsL.d 0.3130 0.3399 0.921 0.358
## ModsSL.d -0.6751 0.4219 -1.600 0.111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 292 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.01867, Adjusted R-squared: 0.005229
## F-statistic: 1.389 on 4 and 292 DF, p-value: 0.2378
# Action 6
mod.b6 <- lm(act6 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b6) # yes, higher than 0
##
## Call:
## lm(formula = act6 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4348 -1.3099 0.6706 1.6706 2.1296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.30986 0.15213 8.610 2.44e-16 ***
## ModsSC.d -0.43949 0.28984 -1.516 0.130
## ModsC.d 0.01955 0.24861 0.079 0.937
## ModsL.d 0.12492 0.30755 0.406 0.685
## ModsSL.d -0.12236 0.35475 -0.345 0.730
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 354 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.00896, Adjusted R-squared: -0.002238
## F-statistic: 0.8001 on 4 and 354 DF, p-value: 0.5257
# Action 7
mod.b7 <- lm(act7 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b7) # nothing
##
## Call:
## lm(formula = act7 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.8652 0.1348 1.6286 3.3140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.13483 0.15657 -0.861 0.390
## ModsSC.d -0.02306 0.31790 -0.073 0.942
## ModsC.d -0.17912 0.27432 -0.653 0.514
## ModsL.d 0.10093 0.31380 0.322 0.748
## ModsSL.d 0.50626 0.38624 1.311 0.191
##
## Residual standard error: 2.089 on 410 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.006798, Adjusted R-squared: -0.002892
## F-statistic: 0.7016 on 4 and 410 DF, p-value: 0.5912
# Action 8
mod.b8 <- lm(act8 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b8) # marginally higher than 0
##
## Call:
## lm(formula = act8 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.625 -1.855 -0.287 1.713 4.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4428 0.1496 -2.960 0.00323 **
## ModsSC.d -0.7021 0.2959 -2.373 0.01806 *
## ModsC.d -0.2702 0.2531 -1.068 0.28621
## ModsL.d 0.9190 0.3062 3.001 0.00283 **
## ModsSL.d 1.0678 0.3672 2.908 0.00381 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 476 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.06121, Adjusted R-squared: 0.05332
## F-statistic: 7.759 on 4 and 476 DF, p-value: 4.609e-06
# Action 9
mod.b9 <- lm(act9 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b9) # yes, higher than 0
##
## Call:
## lm(formula = act9 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5781 -1.5781 0.2525 1.7167 3.7167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.200000 0.142645 1.402 0.16159
## ModsSC.d -0.916667 0.291172 -3.148 0.00175 **
## ModsC.d -0.452525 0.243718 -1.857 0.06401 .
## ModsL.d 0.378125 0.284173 1.331 0.18400
## ModsSL.d -0.005556 0.357404 -0.016 0.98760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.966 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03759, Adjusted R-squared: 0.02892
## F-statistic: 4.336 on 4 and 444 DF, p-value: 0.00189
# Action 10
mod.b10 <- lm(act10 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b10) # yes, higher than 0
##
## Call:
## lm(formula = act10 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0804 0.1471 0.547 0.58490
## ModsSC.d -0.6980 0.2915 -2.395 0.01701 *
## ModsC.d -0.3375 0.2503 -1.349 0.17809
## ModsL.d 0.5965 0.2964 2.012 0.04475 *
## ModsSL.d 1.0696 0.3595 2.975 0.00308 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
# Action 11
mod.b11 <- lm(act11 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b11) # yes, higher than 0
##
## Call:
## lm(formula = act11 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6585 -0.8154 0.2741 1.3415 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.725926 0.160708 4.517 8.93e-06 ***
## ModsSC.d 0.008768 0.311421 0.028 0.97756
## ModsC.d 0.089459 0.281900 0.317 0.75120
## ModsL.d 0.932611 0.332967 2.801 0.00542 **
## ModsSL.d 0.815741 0.413647 1.972 0.04949 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 309 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03501, Adjusted R-squared: 0.02252
## F-statistic: 2.803 on 4 and 309 DF, p-value: 0.02604
# Action 12
mod.b12 <- lm(act12 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b12) # yes, higher than 0
##
## Call:
## lm(formula = act12 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.736 -2.158 0.000 2.000 3.842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.712e-15 1.707e-01 0.000 1.0000
## ModsSC.d -8.421e-01 3.315e-01 -2.540 0.0115 *
## ModsC.d -6.000e-01 2.834e-01 -2.117 0.0349 *
## ModsL.d 7.358e-01 3.406e-01 2.160 0.0314 *
## ModsSL.d 3.333e-01 4.468e-01 0.746 0.4561
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.146 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0525, Adjusted R-squared: 0.04253
## F-statistic: 5.264 on 4 and 380 DF, p-value: 0.0003892
# Action 13
mod.b13 <- lm(act13 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b13) # nothing
##
## Call:
## lm(formula = act13 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3438 -1.9149 0.0851 1.6563 3.5781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08511 0.15162 -0.561 0.575
## ModsSC.d -0.49302 0.30087 -1.639 0.102
## ModsC.d -0.13228 0.26451 -0.500 0.617
## ModsL.d 0.42886 0.30087 1.425 0.155
## ModsSL.d 0.34225 0.38272 0.894 0.372
##
## Residual standard error: 2.079 on 438 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01713, Adjusted R-squared: 0.008155
## F-statistic: 1.909 on 4 and 438 DF, p-value: 0.108
# Action 14
mod.b14 <- lm(act14 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b14) # yes, higher than 0
##
## Call:
## lm(formula = act14 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9487 -1.4219 -0.0198 1.6780 2.9091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42188 0.17955 2.350 0.0195 *
## ModsSC.d 0.07812 0.36797 0.212 0.8320
## ModsC.d -0.09984 0.31966 -0.312 0.7550
## ModsL.d 0.52684 0.37155 1.418 0.1573
## ModsSL.d -0.33097 0.46884 -0.706 0.4808
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.031 on 283 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.01158, Adjusted R-squared: -0.002388
## F-statistic: 0.829 on 4 and 283 DF, p-value: 0.5076
# Action 15
mod.b15 <- lm(act15 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b15) # yes, higher than 0
##
## Call:
## lm(formula = act15 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8889 -2.1024 0.1111 1.8916 3.3559
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.102410 0.158970 0.644 0.5198
## ModsSC.d -0.458342 0.310442 -1.476 0.1407
## ModsC.d 0.006024 0.275344 0.022 0.9826
## ModsL.d 0.786479 0.344232 2.285 0.0229 *
## ModsSL.d 0.210090 0.395433 0.531 0.5955
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.048 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.02508, Adjusted R-squared: 0.01482
## F-statistic: 2.444 on 4 and 380 DF, p-value: 0.0462
# Action 16
mod.b16 <- lm(act16 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b16) # yes, higher than 0
##
## Call:
## lm(formula = act16 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0698 -0.9861 0.0357 1.4375 2.4375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.96429 0.15511 6.217 1.55e-09 ***
## ModsSC.d -0.40179 0.30696 -1.309 0.191
## ModsC.d 0.02183 0.26615 0.082 0.935
## ModsL.d 0.10548 0.31998 0.330 0.742
## ModsSL.d 0.07020 0.37443 0.187 0.851
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 327 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.007238, Adjusted R-squared: -0.004905
## F-statistic: 0.5961 on 4 and 327 DF, p-value: 0.6657
# Action 17
mod.b17 <- lm(act17 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b17) # yes, higher than 0
##
## Call:
## lm(formula = act17 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2059 -1.4798 -0.1685 1.6230 2.8315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47977 0.15208 3.155 0.00172 **
## ModsSC.d -0.10272 0.29785 -0.345 0.73037
## ModsC.d -0.31123 0.26092 -1.193 0.23363
## ModsL.d 0.07023 0.29968 0.234 0.81483
## ModsSL.d 0.72611 0.37524 1.935 0.05366 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2 on 412 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: 0.006815
## F-statistic: 1.714 on 4 and 412 DF, p-value: 0.146
# Action 18
mod.b18 <- lm(act18 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b18) # yes, higher than 0
##
## Call:
## lm(formula = act18 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1196 0.1844 1.5135 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.81560 0.15509 5.259 2.53e-07 ***
## ModsSC.d -0.62692 0.29673 -2.113 0.0353 *
## ModsC.d -0.32912 0.26436 -1.245 0.2140
## ModsL.d 0.09668 0.28906 0.334 0.7382
## ModsSL.d -0.05698 0.37551 -0.152 0.8795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01769, Adjusted R-squared: 0.006435
## F-statistic: 1.572 on 4 and 349 DF, p-value: 0.1814
# Action 19
mod.b19 <- lm(act19 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b19) # yes, higher than 0
##
## Call:
## lm(formula = act19 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.438 -1.050 0.093 1.704 2.093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.23009 0.16945 7.259 4.15e-12 ***
## ModsSC.d -0.32311 0.32274 -1.001 0.318
## ModsC.d -0.18009 0.28773 -0.626 0.532
## ModsL.d 0.20741 0.36069 0.575 0.566
## ModsSL.d 0.06621 0.38585 0.172 0.864
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 270 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.00789, Adjusted R-squared: -0.006807
## F-statistic: 0.5368 on 4 and 270 DF, p-value: 0.7088
# Action 20
mod.b20 <- lm(act20 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b20) # yes, higher than 0
##
## Call:
## lm(formula = act20 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3566 -1.1957 0.6434 1.6434 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3566 0.1579 8.594 3.82e-16 ***
## ModsSC.d -0.2056 0.2925 -0.703 0.483
## ModsC.d -0.2262 0.2674 -0.846 0.398
## ModsL.d -0.1609 0.3079 -0.523 0.602
## ModsSL.d -0.3566 0.3794 -0.940 0.348
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.793 on 319 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.004413, Adjusted R-squared: -0.008071
## F-statistic: 0.3535 on 4 and 319 DF, p-value: 0.8415
# Action 21
mod.b21 <- lm(act21 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b21) # nothing
##
## Call:
## lm(formula = act21 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4407 -1.9401 0.0599 1.5806 3.5806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05988 0.15942 -0.376 0.707
## ModsSC.d -0.52076 0.30638 -1.700 0.090 .
## ModsC.d -0.20841 0.27780 -0.750 0.454
## ModsL.d 0.50056 0.31201 1.604 0.109
## ModsSL.d 0.48412 0.39246 1.234 0.218
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 398 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02474, Adjusted R-squared: 0.01494
## F-statistic: 2.524 on 4 and 398 DF, p-value: 0.04049
# Action 22
mod.b22 <- lm(act22 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b22) # yes, higher than 0
##
## Call:
## lm(formula = act22 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1351 -1.3415 -0.1351 1.7143 3.3279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28571 0.15236 1.875 0.0615 .
## ModsSC.d -0.61358 0.29520 -2.079 0.0383 *
## ModsC.d 0.05575 0.26603 0.210 0.8341
## ModsL.d 0.30357 0.30472 0.996 0.3197
## ModsSL.d 0.84942 0.35863 2.369 0.0183 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.975 on 399 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03383, Adjusted R-squared: 0.02414
## F-statistic: 3.492 on 4 and 399 DF, p-value: 0.008087
# Action 23
mod.b23 <- lm(act23 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b23) # marginally higher than 0
##
## Call:
## lm(formula = act23 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6154 -2.1138 0.1846 2.1846 3.1846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1138 0.2042 0.557 0.578
## ModsSC.d 0.1545 0.4085 0.378 0.706
## ModsC.d -0.2984 0.3473 -0.859 0.391
## ModsL.d 0.5016 0.4163 1.205 0.229
## ModsSL.d 0.4462 0.4969 0.898 0.370
##
## Residual standard error: 2.265 on 288 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.01368, Adjusted R-squared: -2.033e-05
## F-statistic: 0.9985 on 4 and 288 DF, p-value: 0.4087
# Action 24
mod.b24 <- lm(act24 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b24) # nothing
##
## Call:
## lm(formula = act24 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9189 -1.8727 0.1273 1.6453 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.22989 0.15960 -1.440 0.151
## ModsSC.d 0.10261 0.32566 0.315 0.753
## ModsC.d -0.27011 0.27138 -0.995 0.320
## ModsL.d 0.09195 0.31920 0.288 0.773
## ModsSL.d 0.14880 0.38112 0.390 0.696
##
## Residual standard error: 2.105 on 411 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.004608, Adjusted R-squared: -0.005079
## F-statistic: 0.4757 on 4 and 411 DF, p-value: 0.7536
# Action 25
mod.b25 <- lm(act25 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b25) # yes, higher than 0
##
## Call:
## lm(formula = act25 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3429 -0.8925 0.1167 1.5000 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8925 0.1344 6.639 9.31e-11 ***
## ModsSC.d -1.0091 0.2722 -3.707 0.000236 ***
## ModsC.d -0.3925 0.2259 -1.737 0.083010 .
## ModsL.d 0.2345 0.2673 0.877 0.380715
## ModsSL.d 0.4504 0.3378 1.333 0.183136
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 441 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.049, Adjusted R-squared: 0.04037
## F-statistic: 5.68 on 4 and 441 DF, p-value: 0.0001824
# Action 26
mod.b26 <- lm(act26 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b26) # yes, higher than 0
##
## Call:
## lm(formula = act26 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5686 -1.2581 0.4595 1.4314 2.0526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.61798 0.19374 8.351 7.29e-15 ***
## ModsSC.d -0.07744 0.35752 -0.217 0.829
## ModsC.d -0.04935 0.32099 -0.154 0.878
## ModsL.d -0.35991 0.38117 -0.944 0.346
## ModsSL.d -0.67061 0.46190 -1.452 0.148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.828 on 222 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01216, Adjusted R-squared: -0.005638
## F-statistic: 0.6832 on 4 and 222 DF, p-value: 0.6042
# Action 27
mod.b27 <- lm(act27 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b27) # yes, higher than 0
##
## Call:
## lm(formula = act27 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3871 -0.9483 0.2813 1.5577 2.5577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5512 0.1666 3.308 0.00105 **
## ModsSC.d -0.1089 0.3091 -0.352 0.72494
## ModsC.d 0.1676 0.2878 0.582 0.56088
## ModsL.d 0.6266 0.3258 1.924 0.05532 .
## ModsSL.d 0.8359 0.3762 2.222 0.02698 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 314 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02704, Adjusted R-squared: 0.01464
## F-statistic: 2.182 on 4 and 314 DF, p-value: 0.07092
# Action 28
mod.b28 <- lm(act28 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b28) # yes, higher than 0
##
## Call:
## lm(formula = act28 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3214 -0.9728 0.2105 1.6786 2.2105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97279 0.15049 6.464 3.23e-10 ***
## ModsSC.d -0.18332 0.28471 -0.644 0.520
## ModsC.d 0.34864 0.24957 1.397 0.163
## ModsL.d 0.02721 0.28841 0.094 0.925
## ModsSL.d 0.22076 0.36062 0.612 0.541
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 369 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.009436, Adjusted R-squared: -0.001302
## F-statistic: 0.8787 on 4 and 369 DF, p-value: 0.4767
# Action 29
mod.b29 <- lm(act29 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b29) # yes, higher than 0
##
## Call:
## lm(formula = act29 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4828 -1.0893 0.0182 1.5172 2.0182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.14286 0.14555 7.852 4.61e-14 ***
## ModsSC.d -0.05357 0.27713 -0.193 0.847
## ModsC.d -0.11876 0.24230 -0.490 0.624
## ModsL.d -0.16104 0.27894 -0.577 0.564
## ModsSL.d 0.33990 0.35858 0.948 0.344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.765 on 365 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.005014, Adjusted R-squared: -0.00589
## F-statistic: 0.4598 on 4 and 365 DF, p-value: 0.7652
# Action 30
mod.b30 <- lm(act30 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d, data = d)
summary(mod.b30) # yes, higher than 0
##
## Call:
## lm(formula = act30 ~ ModsSC.d + ModsC.d + ModsL.d + ModsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1765 -1.0435 0.8235 1.8235 1.9875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04348 0.15971 6.534 2.27e-10 ***
## ModsSC.d 0.09687 0.29540 0.328 0.743
## ModsC.d -0.03098 0.26364 -0.118 0.907
## ModsL.d 0.13299 0.30745 0.433 0.666
## ModsSL.d 0.09938 0.38887 0.256 0.798
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.001091, Adjusted R-squared: -0.01036
## F-statistic: 0.09525 on 4 and 349 DF, p-value: 0.9839
Significantly higher than 0: 2, 5, 6, 11, 14, 16, 17, 18, 19, 20, 25,
26, 27, 28, 29, 30 Not different from 0: 1, 3, 4, 7, 9, 10, 12, 13, 15,
21, 22, 23, 24 Significantly lower than 0: 8
1. Condition Differences?
# Action 1
mod.c.b1 <- lm(act1 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b1) # no
##
## Call:
## lm(formula = act1 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.750 -2.200 0.250 1.765 3.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05707 0.15869 -0.360 0.7193
## ModsSC.d -0.42864 0.31078 -1.379 0.1685
## ModsC.d -0.42182 0.26832 -1.572 0.1166
## ModsL.d 0.70480 0.31013 2.273 0.0235 *
## ModsSL.d 0.13050 0.40785 0.320 0.7491
## cond.c -0.58353 0.31738 -1.839 0.0666 .
## ModsSC.d:cond.c 1.21210 0.62157 1.950 0.0518 .
## ModsC.d:cond.c 0.39847 0.53663 0.743 0.4582
## ModsL.d:cond.c 0.78808 0.62026 1.271 0.2046
## ModsSL.d:cond.c -0.17871 0.81569 -0.219 0.8267
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.04314, Adjusted R-squared: 0.02353
## F-statistic: 2.199 on 9 and 439 DF, p-value: 0.02116
# Action 2
mod.c.b2 <- lm(act2 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b2) #no
##
## Call:
## lm(formula = act2 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -1.068 0.375 1.615 2.375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1923 0.1724 6.915 3.17e-11 ***
## ModsSC.d -0.2138 0.3215 -0.665 0.507
## ModsC.d -0.3041 0.2833 -1.073 0.284
## ModsL.d 0.3702 0.3310 1.119 0.264
## ModsSL.d -0.1469 0.4093 -0.359 0.720
## cond.c -0.3846 0.3448 -1.115 0.266
## ModsSC.d:cond.c 0.1312 0.6429 0.204 0.838
## ModsC.d:cond.c -0.1419 0.5666 -0.250 0.802
## ModsL.d:cond.c 0.2596 0.6619 0.392 0.695
## ModsSL.d:cond.c 0.4755 0.8185 0.581 0.562
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.812 on 280 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -0.006049
## F-statistic: 0.8069 on 9 and 280 DF, p-value: 0.6102
# Action 3
mod.c.b3 <- lm(act3 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b3) #no
##
## Call:
## lm(formula = act3 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9375 0.0625 1.6410 3.9394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01420 0.14833 -0.096 0.92375
## ModsSC.d -0.86621 0.29781 -2.909 0.00382 **
## ModsC.d -0.40643 0.25448 -1.597 0.11097
## ModsL.d -0.09941 0.28764 -0.346 0.72980
## ModsSL.d 0.35660 0.38743 0.920 0.35787
## cond.c 0.09659 0.29666 0.326 0.74489
## ModsSC.d:cond.c -0.21456 0.59562 -0.360 0.71886
## ModsC.d:cond.c -0.03310 0.50896 -0.065 0.94818
## ModsL.d:cond.c 0.95823 0.57528 1.666 0.09650 .
## ModsSL.d:cond.c -0.28137 0.77486 -0.363 0.71669
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03846, Adjusted R-squared: 0.01852
## F-statistic: 1.929 on 9 and 434 DF, p-value: 0.04628
# Action 4
mod.c.b4 <- lm(act4 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b4) # no
##
## Call:
## lm(formula = act4 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8400 -1.8941 0.1059 2.0378 3.3488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21294 0.17181 -1.239 0.2160
## ModsSC.d 0.41092 0.35024 1.173 0.2415
## ModsC.d -0.06148 0.30997 -0.198 0.8429
## ModsL.d 0.64809 0.33498 1.935 0.0538 .
## ModsSL.d 0.67610 0.45721 1.479 0.1401
## cond.c -0.21412 0.34363 -0.623 0.5336
## ModsSC.d:cond.c 0.17530 0.70047 0.250 0.8025
## ModsC.d:cond.c 0.06528 0.61993 0.105 0.9162
## ModsL.d:cond.c 1.02381 0.66996 1.528 0.1273
## ModsSL.d:cond.c 0.08780 0.91443 0.096 0.9236
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.169 on 361 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.0238, Adjusted R-squared: -0.0005384
## F-statistic: 0.9779 on 9 and 361 DF, p-value: 0.4579
# Action 8
mod.c.b8 <- lm(act8 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b8) # yes, cond difference (negative)
##
## Call:
## lm(formula = act8 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.44033 0.14915 -2.952 0.00331 **
## ModsSC.d -0.71480 0.29671 -2.409 0.01637 *
## ModsC.d -0.18983 0.25445 -0.746 0.45600
## ModsL.d 0.95104 0.30653 3.103 0.00203 **
## ModsSL.d 1.14866 0.37209 3.087 0.00214 **
## cond.c 0.10982 0.29829 0.368 0.71292
## ModsSC.d:cond.c 0.04659 0.59341 0.079 0.93746
## ModsC.d:cond.c -1.10347 0.50889 -2.168 0.03063 *
## ModsL.d:cond.c 0.51161 0.61306 0.835 0.40441
## ModsSL.d:cond.c 0.72351 0.74418 0.972 0.33143
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
# Action 9
mod.c.b9 <- lm(act9 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b9) # no
##
## Call:
## lm(formula = act9 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.5893 0.0465 1.4286 4.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20577 0.14284 1.441 0.150415
## ModsSC.d -0.99649 0.29296 -3.402 0.000732 ***
## ModsC.d -0.43438 0.24501 -1.773 0.076936 .
## ModsL.d 0.37161 0.28566 1.301 0.193980
## ModsSL.d -0.08077 0.37535 -0.215 0.829720
## cond.c 0.15664 0.28568 0.548 0.583757
## ModsSC.d:cond.c 0.95422 0.58591 1.629 0.104116
## ModsC.d:cond.c -0.52084 0.49002 -1.063 0.288414
## ModsL.d:cond.c -0.16854 0.57132 -0.295 0.768126
## ModsSL.d:cond.c -0.57331 0.75070 -0.764 0.445458
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.964 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.05102, Adjusted R-squared: 0.03157
## F-statistic: 2.623 on 9 and 439 DF, p-value: 0.00582
# Action 10
mod.c.b10 <- lm(act10 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b10) # no
##
## Call:
## lm(formula = act10 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3750 -1.9896 0.0217 1.8350 3.6579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07732 0.14754 0.524 0.6005
## ModsSC.d -0.68960 0.29375 -2.348 0.0193 *
## ModsC.d -0.30852 0.25222 -1.223 0.2219
## ModsL.d 0.63456 0.29939 2.120 0.0346 *
## ModsSL.d 1.11018 0.36666 3.028 0.0026 **
## cond.c -0.17547 0.29508 -0.595 0.5524
## ModsSC.d:cond.c 0.08424 0.58750 0.143 0.8860
## ModsC.d:cond.c -0.24347 0.50444 -0.483 0.6296
## ModsL.d:cond.c 0.68029 0.59878 1.136 0.2565
## ModsSL.d:cond.c 0.55047 0.73332 0.751 0.4532
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.08 on 467 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05853, Adjusted R-squared: 0.04038
## F-statistic: 3.226 on 9 and 467 DF, p-value: 0.000826
# Action 11
mod.c.b11 <- lm(act11 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b11) # no
##
## Call:
## lm(formula = act11 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -1.0299 0.3452 1.5429 2.5735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.728161 0.160078 4.549 7.81e-06 ***
## ModsSC.d 0.002673 0.310242 0.009 0.99313
## ModsC.d 0.117077 0.281354 0.416 0.67762
## ModsL.d 0.926601 0.345581 2.681 0.00773 **
## ModsSL.d 0.764696 0.416985 1.834 0.06765 .
## cond.c -0.603380 0.320157 -1.885 0.06043 .
## ModsSC.d:cond.c 0.981713 0.620485 1.582 0.11465
## ModsC.d:cond.c -0.172810 0.562708 -0.307 0.75897
## ModsL.d:cond.c 0.579571 0.691161 0.839 0.40238
## ModsSL.d:cond.c 0.017666 0.833969 0.021 0.98311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 304 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.0581, Adjusted R-squared: 0.03021
## F-statistic: 2.083 on 9 and 304 DF, p-value: 0.03077
# Action 12
mod.c.b12 <- lm(act12 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b12) # no
##
## Call:
## lm(formula = act12 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1304 -1.8929 -0.1098 1.8696 4.1071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.004332 0.171058 -0.025 0.9798
## ModsSC.d -0.842342 0.332082 -2.537 0.0116 *
## ModsC.d -0.564295 0.285455 -1.977 0.0488 *
## ModsL.d 0.786217 0.343384 2.290 0.0226 *
## ModsSL.d 0.392568 0.461048 0.851 0.3951
## cond.c -0.228177 0.342117 -0.667 0.5052
## ModsSC.d:cond.c 0.749113 0.664163 1.128 0.2601
## ModsC.d:cond.c -0.242411 0.570910 -0.425 0.6714
## ModsL.d:cond.c 0.925279 0.686767 1.347 0.1787
## ModsSL.d:cond.c 0.651707 0.922097 0.707 0.4802
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.149 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0624, Adjusted R-squared: 0.0399
## F-statistic: 2.773 on 9 and 375 DF, p-value: 0.003732
# Action 13
mod.c.b13 <- lm(act13 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b13) # yes, condition difference
##
## Call:
## lm(formula = act13 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07976 0.15156 -0.526 0.5990
## ModsSC.d -0.46782 0.30469 -1.535 0.1254
## ModsC.d -0.09002 0.26538 -0.339 0.7346
## ModsL.d 0.41897 0.30107 1.392 0.1648
## ModsSL.d 0.31785 0.38906 0.817 0.4144
## cond.c 0.33533 0.30312 1.106 0.2692
## ModsSC.d:cond.c -0.66125 0.60938 -1.085 0.2785
## ModsC.d:cond.c -1.21147 0.53075 -2.283 0.0229 *
## ModsL.d:cond.c -0.48043 0.60214 -0.798 0.4254
## ModsSL.d:cond.c -0.52581 0.77812 -0.676 0.4996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
# Action 14
mod.c.b14 <- lm(act14 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b14) # no
##
## Call:
## lm(formula = act14 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.3731 0.1429 1.6269 3.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42427 0.18054 2.350 0.0195 *
## ModsSC.d 0.02586 0.37292 0.069 0.9448
## ModsC.d -0.08978 0.32197 -0.279 0.7806
## ModsL.d 0.57029 0.37801 1.509 0.1325
## ModsSL.d -0.24570 0.48686 -0.505 0.6142
## cond.c 0.10228 0.36108 0.283 0.7772
## ModsSC.d:cond.c 0.56269 0.74583 0.754 0.4512
## ModsC.d:cond.c -0.39626 0.64394 -0.615 0.5388
## ModsL.d:cond.c 0.40859 0.75603 0.540 0.5893
## ModsSL.d:cond.c 0.54058 0.97372 0.555 0.5792
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.02046, Adjusted R-squared: -0.01125
## F-statistic: 0.6452 on 9 and 278 DF, p-value: 0.7579
# Action 15
mod.c.b15 <- lm(act15 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b15) # no
##
## Call:
## lm(formula = act15 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09901 0.15896 0.623 0.5338
## ModsSC.d -0.47430 0.31144 -1.523 0.1286
## ModsC.d 0.02274 0.27647 0.082 0.9345
## ModsL.d 0.70599 0.34518 2.045 0.0415 *
## ModsSL.d 0.22648 0.39518 0.573 0.5669
## cond.c -0.09412 0.31791 -0.296 0.7674
## ModsSC.d:cond.c 0.42046 0.62289 0.675 0.5001
## ModsC.d:cond.c -0.10683 0.55294 -0.193 0.8469
## ModsL.d:cond.c -1.41588 0.69036 -2.051 0.0410 *
## ModsSL.d:cond.c 0.50981 0.79036 0.645 0.5193
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
# Action 16
mod.c.b16 <- lm(act16 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b16) # no
##
## Call:
## lm(formula = act16 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2105 -1.1000 0.2034 1.4500 2.4500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.964286 0.155756 6.191 1.82e-09 ***
## ModsSC.d -0.403571 0.311512 -1.296 0.196
## ModsC.d 0.010172 0.267541 0.038 0.970
## ModsL.d 0.119048 0.324647 0.367 0.714
## ModsSL.d -0.009023 0.392248 -0.023 0.982
## cond.c 0.271429 0.311512 0.871 0.384
## ModsSC.d:cond.c -0.250000 0.623024 -0.401 0.688
## ModsC.d:cond.c 0.148076 0.535081 0.277 0.782
## ModsL.d:cond.c -0.104762 0.649294 -0.161 0.872
## ModsSL.d:cond.c -0.781955 0.784497 -0.997 0.320
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.843 on 322 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.01422, Adjusted R-squared: -0.01334
## F-statistic: 0.5159 on 9 and 322 DF, p-value: 0.8629
# Action 17
mod.c.b17 <- lm(act17 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b17) # marginal
##
## Call:
## lm(formula = act17 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47028 0.15163 3.101 0.00206 **
## ModsSC.d -0.12720 0.29728 -0.428 0.66895
## ModsC.d -0.22185 0.26304 -0.843 0.39949
## ModsL.d 0.09033 0.29947 0.302 0.76309
## ModsSL.d 0.81187 0.37848 2.145 0.03254 *
## cond.c -0.29858 0.30326 -0.985 0.32542
## ModsSC.d:cond.c 1.12758 0.59455 1.897 0.05860 .
## ModsC.d:cond.c -0.53790 0.52607 -1.022 0.30716
## ModsL.d:cond.c 0.51070 0.59894 0.853 0.39435
## ModsSL.d:cond.c 1.16286 0.75697 1.536 0.12526
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
# Action 18
mod.c.b18 <- lm(act18 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b18) # no
##
## Call:
## lm(formula = act18 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.1538 0.2031 1.4211 3.0400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.81402 0.15648 5.202 3.39e-07 ***
## ModsSC.d -0.63759 0.29881 -2.134 0.0336 *
## ModsC.d -0.33010 0.26605 -1.241 0.2155
## ModsL.d 0.11774 0.29157 0.404 0.6866
## ModsSL.d -0.04382 0.38709 -0.113 0.9099
## cond.c -0.03429 0.31297 -0.110 0.9128
## ModsSC.d:cond.c 0.46715 0.59762 0.782 0.4349
## ModsC.d:cond.c -0.15576 0.53210 -0.293 0.7699
## ModsL.d:cond.c 0.47846 0.58314 0.820 0.4125
## ModsSL.d:cond.c 0.13025 0.77418 0.168 0.8665
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.85 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.0227, Adjusted R-squared: -0.002867
## F-statistic: 0.8879 on 9 and 344 DF, p-value: 0.5362
# Action 19
mod.c.b19 <- lm(act19 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b19) # marginal
##
## Call:
## lm(formula = act19 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.24858 0.16964 7.360 2.31e-12 ***
## ModsSC.d -0.34812 0.33043 -1.054 0.293
## ModsC.d -0.10969 0.29133 -0.377 0.707
## ModsL.d 0.15618 0.36243 0.431 0.667
## ModsSL.d 0.04537 0.38551 0.118 0.906
## cond.c -0.46438 0.33928 -1.369 0.172
## ModsSC.d:cond.c 0.51530 0.66086 0.780 0.436
## ModsC.d:cond.c -0.42451 0.58267 -0.729 0.467
## ModsL.d:cond.c -0.05943 0.72486 -0.082 0.935
## ModsSL.d:cond.c 0.33800 0.77102 0.438 0.661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
# Action 20
mod.c.b20 <- lm(act20 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b20) # no
##
## Call:
## lm(formula = act20 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.589 -1.054 0.411 1.411 2.308
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.32131 0.15860 8.331 2.52e-15 ***
## ModsSC.d -0.13218 0.29391 -0.450 0.6532
## ModsC.d -0.17646 0.26759 -0.659 0.5101
## ModsL.d -0.15654 0.30821 -0.508 0.6119
## ModsSL.d -0.33230 0.37869 -0.877 0.3809
## cond.c -0.53547 0.31720 -1.688 0.0924 .
## ModsSC.d:cond.c -0.04279 0.58781 -0.073 0.9420
## ModsC.d:cond.c 0.13767 0.53519 0.257 0.7972
## ModsL.d:cond.c -0.17501 0.61642 -0.284 0.7767
## ModsSL.d:cond.c -0.05794 0.75738 -0.076 0.9391
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.786 on 314 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.028, Adjusted R-squared: 0.0001354
## F-statistic: 1.005 on 9 and 314 DF, p-value: 0.4359
# Action 21
mod.c.b21 <- lm(act21 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b21) # no
##
## Call:
## lm(formula = act21 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5556 -1.8723 0.1609 1.9286 3.9286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.055460 0.160051 -0.347 0.7291
## ModsSC.d -0.555885 0.308457 -1.802 0.0723 .
## ModsC.d -0.236941 0.280775 -0.844 0.3992
## ModsL.d 0.505112 0.313879 1.609 0.1084
## ModsSL.d 0.483237 0.395097 1.223 0.2220
## cond.c 0.210920 0.320103 0.659 0.5103
## ModsSC.d:cond.c 0.423534 0.616913 0.687 0.4928
## ModsC.d:cond.c 0.118564 0.561550 0.211 0.8329
## ModsL.d:cond.c 0.000886 0.627759 0.001 0.9989
## ModsSL.d:cond.c -0.133142 0.790195 -0.168 0.8663
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.067 on 393 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.03105, Adjusted R-squared: 0.008857
## F-statistic: 1.399 on 9 and 393 DF, p-value: 0.1863
# Action 23
mod.c.b23 <- lm(act23 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b23) # no
##
## Call:
## lm(formula = act23 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.222 -2.250 0.125 1.870 3.297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1054 0.2043 0.516 0.606
## ModsSC.d 0.1625 0.4084 0.398 0.691
## ModsC.d -0.2719 0.3494 -0.778 0.437
## ModsL.d 0.3973 0.4213 0.943 0.346
## ModsSL.d 0.5995 0.5140 1.166 0.244
## cond.c -0.4142 0.4086 -1.014 0.312
## ModsSC.d:cond.c 0.4499 0.8168 0.551 0.582
## ModsC.d:cond.c 0.1526 0.6989 0.218 0.827
## ModsL.d:cond.c -0.8412 0.8426 -0.998 0.319
## ModsSL.d:cond.c 1.4489 1.0279 1.410 0.160
##
## Residual standard error: 2.264 on 283 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.03197, Adjusted R-squared: 0.001189
## F-statistic: 1.039 on 9 and 283 DF, p-value: 0.4092
# Action 24
mod.c.b24 <- lm(act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b24) # no
##
## Call:
## lm(formula = act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.24854 0.15988 -1.555 0.121
## ModsSC.d 0.11682 0.32785 0.356 0.722
## ModsC.d -0.22027 0.27431 -0.803 0.422
## ModsL.d 0.09413 0.32301 0.291 0.771
## ModsSL.d 0.15915 0.38706 0.411 0.681
## cond.c -0.64926 0.31976 -2.030 0.043 *
## ModsSC.d:cond.c 0.71915 0.65570 1.097 0.273
## ModsC.d:cond.c 0.29058 0.54863 0.530 0.597
## ModsL.d:cond.c 0.45808 0.64601 0.709 0.479
## ModsSL.d:cond.c 0.56138 0.77413 0.725 0.469
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
# Action 25
mod.c.b25 <- lm(act25 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b25) # no
##
## Call:
## lm(formula = act25 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -0.9307 0.1529 1.3778 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.88888 0.13482 6.593 1.25e-10 ***
## ModsSC.d -1.02524 0.27326 -3.752 0.000199 ***
## ModsC.d -0.37601 0.22702 -1.656 0.098387 .
## ModsL.d 0.24469 0.26732 0.915 0.360505
## ModsSL.d 0.52779 0.34359 1.536 0.125237
## cond.c -0.08363 0.26964 -0.310 0.756582
## ModsSC.d:cond.c 0.47757 0.54653 0.874 0.382690
## ModsC.d:cond.c -0.13508 0.45405 -0.298 0.766225
## ModsL.d:cond.c 0.91327 0.53463 1.708 0.088307 .
## ModsSL.d:cond.c 0.82173 0.68718 1.196 0.232424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 436 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.06134, Adjusted R-squared: 0.04197
## F-statistic: 3.166 on 9 and 436 DF, p-value: 0.001022
# Action 28
mod.c.b28 <- lm(act28 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b28) # no
##
## Call:
## lm(formula = act28 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97854 0.15089 6.485 2.9e-10 ***
## ModsSC.d -0.15038 0.28587 -0.526 0.5992
## ModsC.d 0.34289 0.24993 1.372 0.1709
## ModsL.d 0.03980 0.29166 0.136 0.8915
## ModsSL.d 0.24076 0.36893 0.653 0.5144
## cond.c 0.18785 0.30179 0.622 0.5340
## ModsSC.d:cond.c -1.06998 0.57174 -1.871 0.0621 .
## ModsC.d:cond.c -0.44975 0.49986 -0.900 0.3688
## ModsL.d:cond.c 0.03634 0.58331 0.062 0.9504
## ModsSL.d:cond.c 0.04022 0.73786 0.055 0.9566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
# Action 30
mod.c.b30 <- lm(act30 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * cond.c, data = d)
summary(mod.c.b30) # no
##
## Call:
## lm(formula = act30 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04412 0.15965 6.540 2.22e-10 ***
## ModsSC.d 0.02838 0.29686 0.096 0.9239
## ModsC.d -0.02013 0.26436 -0.076 0.9394
## ModsL.d 0.13848 0.30945 0.448 0.6548
## ModsSL.d 0.11213 0.39203 0.286 0.7750
## cond.c -0.08824 0.31929 -0.276 0.7824
## ModsSC.d:cond.c 1.19324 0.59371 2.010 0.0452 *
## ModsC.d:cond.c -0.14156 0.52872 -0.268 0.7891
## ModsL.d:cond.c 0.17758 0.61890 0.287 0.7743
## ModsSL.d:cond.c 0.27574 0.78407 0.352 0.7253
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
Climate > Control: Control > Climate: 24
a. Means for condition diffs
describeBy(d$act24[d$ideology=="Moderate"], d$cond[d$ideology=="Moderate"])
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 82 -0.57 2.04 -1 -0.71 2.97 -3 3 6 0.31 -1.21 0.23
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 92 0.08 2.12 0 0.09 2.97 -3 3 6 -0.2 -1.32 0.22
summary(lm(d$act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * ctrl.d, data = d)) # Control not different from 0
##
## Call:
## lm(formula = d$act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07609 0.21951 0.347 0.729
## ModsSC.d -0.24275 0.48259 -0.503 0.615
## ModsC.d -0.36556 0.40601 -0.900 0.368
## ModsL.d -0.13491 0.42257 -0.319 0.750
## ModsSL.d -0.12154 0.49968 -0.243 0.808
## ctrl.d -0.64926 0.31976 -2.030 0.043 *
## ModsSC.d:ctrl.d 0.71915 0.65570 1.097 0.273
## ModsC.d:ctrl.d 0.29058 0.54863 0.530 0.597
## ModsL.d:ctrl.d 0.45808 0.64601 0.709 0.479
## ModsSL.d:ctrl.d 0.56138 0.77413 0.725 0.469
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
summary(lm(d$act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) * clim.d, data = d)) # Climate significantly lower than 0
##
## Call:
## lm(formula = d$act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.57317 0.23251 -2.465 0.0141 *
## ModsSC.d 0.47640 0.44391 1.073 0.2838
## ModsC.d -0.07498 0.36899 -0.203 0.8391
## ModsL.d 0.32317 0.48864 0.661 0.5087
## ModsSL.d 0.43984 0.59126 0.744 0.4574
## clim.d 0.64926 0.31976 2.030 0.0430 *
## ModsSC.d:clim.d -0.71915 0.65570 -1.097 0.2734
## ModsC.d:clim.d -0.29058 0.54863 -0.530 0.5966
## ModsL.d:clim.d -0.45808 0.64601 -0.709 0.4787
## ModsSL.d:clim.d -0.56138 0.77413 -0.725 0.4688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
2. Gender effects?
# Action 1
mod.g.b1 <- lm(act1 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b1) # yes, higher than 0
##
## Call:
## lm(formula = act1 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8261 0.2263 2.1538 4.1538
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1369 0.1819 0.752 0.45225
## ModsSC.d -0.5333 0.3313 -1.610 0.10818
## ModsC.d -0.8422 0.3038 -2.772 0.00582 **
## ModsL.d 0.4698 0.3631 1.294 0.19642
## ModsSL.d -0.3108 0.4316 -0.720 0.47183
## gend.mf 0.7263 0.3638 1.996 0.04653 *
## ModsSC.d:gend.mf -0.2811 0.6626 -0.424 0.67157
## ModsC.d:gend.mf -1.6234 0.6077 -2.671 0.00784 **
## ModsL.d:gend.mf -0.8729 0.7262 -1.202 0.23002
## ModsSL.d:gend.mf -2.3785 0.8631 -2.756 0.00610 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.135 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.05646, Adjusted R-squared: 0.03703
## F-statistic: 2.906 on 9 and 437 DF, p-value: 0.002374
aggregate(d$act1[d$ideology == "Moderate"], list(d$gend[d$ideology == "Moderate"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female -0.23
## 2 Male 0.50
## 3 Other 1.00
# Action 2
mod.g.b2 <- lm(act2 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b2) # yes, higher than 0
##
## Call:
## lm(formula = act2 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4375 -1.2184 0.5263 1.5625 2.6087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.18920 0.20459 5.813 1.68e-08 ***
## ModsSC.d -0.15606 0.33874 -0.461 0.645
## ModsC.d -0.41021 0.31073 -1.320 0.188
## ModsL.d 0.52955 0.38541 1.374 0.171
## ModsSL.d -0.24753 0.44458 -0.557 0.578
## gend.mf -0.05839 0.40918 -0.143 0.887
## ModsSC.d:gend.mf 0.93948 0.67748 1.387 0.167
## ModsC.d:gend.mf -0.71697 0.62146 -1.154 0.250
## ModsL.d:gend.mf 0.62089 0.77083 0.805 0.421
## ModsSL.d:gend.mf -0.32494 0.88916 -0.365 0.715
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.803 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.03738, Adjusted R-squared: 0.006217
## F-statistic: 1.199 on 9 and 278 DF, p-value: 0.2951
# Action 3
mod.g.b3 <- lm(act3 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b3) # nothing
##
## Call:
## lm(formula = act3 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.8390 -0.0368 1.4167 4.1579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06672 0.17073 -0.391 0.6961
## ModsSC.d -0.72961 0.31655 -2.305 0.0216 *
## ModsC.d -0.34712 0.28567 -1.215 0.2250
## ModsL.d -0.04550 0.32568 -0.140 0.8890
## ModsSL.d 0.30839 0.41638 0.741 0.4593
## gend.mf -0.20698 0.34145 -0.606 0.5447
## ModsSC.d:gend.mf 0.93009 0.63310 1.469 0.1425
## ModsC.d:gend.mf 0.21986 0.57135 0.385 0.7006
## ModsL.d:gend.mf 0.54253 0.65136 0.833 0.4054
## ModsSL.d:gend.mf -0.47636 0.83277 -0.572 0.5676
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.03535, Adjusted R-squared: 0.01525
## F-statistic: 1.759 on 9 and 432 DF, p-value: 0.07405
# Action 4
mod.g.b4 <- lm(act4 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b4) # nothing
##
## Call:
## lm(formula = act4 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.944 -1.904 0.200 2.056 3.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21765 0.20985 -1.037 0.3004
## ModsSC.d 0.43116 0.37047 1.164 0.2453
## ModsC.d -0.21138 0.35032 -0.603 0.5466
## ModsL.d 0.67300 0.38161 1.764 0.0787 .
## ModsSL.d 0.53987 0.47659 1.133 0.2581
## gend.mf -0.03529 0.41969 -0.084 0.9330
## ModsSC.d:gend.mf 0.39088 0.74095 0.528 0.5981
## ModsC.d:gend.mf -0.63046 0.70063 -0.900 0.3688
## ModsL.d:gend.mf 0.37458 0.76322 0.491 0.6239
## ModsSL.d:gend.mf -1.20915 0.95317 -1.269 0.2054
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.17 on 359 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02849, Adjusted R-squared: 0.004137
## F-statistic: 1.17 on 9 and 359 DF, p-value: 0.3132
# Action 5
mod.g.b5 <- lm(act5 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b5) # yes, higher than 0
##
## Call:
## lm(formula = act5 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3000 -1.2128 0.4615 1.7000 2.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08642 0.20883 5.203 3.76e-07 ***
## ModsSC.d -0.36652 0.34054 -1.076 0.283
## ModsC.d -0.21081 0.31042 -0.679 0.498
## ModsL.d 0.39691 0.38293 1.037 0.301
## ModsSL.d -0.70565 0.44704 -1.579 0.116
## gend.mf 0.04938 0.41765 0.118 0.906
## ModsSC.d:gend.mf -0.53266 0.68108 -0.782 0.435
## ModsC.d:gend.mf -0.72369 0.62084 -1.166 0.245
## ModsL.d:gend.mf 0.31728 0.76585 0.414 0.679
## ModsSL.d:gend.mf -0.21092 0.89407 -0.236 0.814
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 285 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: -0.0005149
## F-statistic: 0.9832 on 9 and 285 DF, p-value: 0.454
# Action 6
mod.g.b6 <- lm(act6 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b6) # yes, higher than 0
##
## Call:
## lm(formula = act6 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5455 -1.2424 0.5667 1.5667 2.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3582 0.1823 7.450 7.48e-13 ***
## ModsSC.d -0.5336 0.3119 -1.710 0.0881 .
## ModsC.d -0.1016 0.2825 -0.359 0.7195
## ModsL.d 0.2245 0.3484 0.644 0.5197
## ModsSL.d -0.4188 0.4024 -1.041 0.2987
## gend.mf 0.2210 0.3646 0.606 0.5448
## ModsSC.d:gend.mf -0.6323 0.6239 -1.014 0.3115
## ModsC.d:gend.mf -0.5744 0.5651 -1.016 0.3101
## ModsL.d:gend.mf 0.4596 0.6968 0.660 0.5100
## ModsSL.d:gend.mf -1.4332 0.8049 -1.781 0.0759 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 347 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -1.033e-06
## F-statistic: 1 on 9 and 347 DF, p-value: 0.4397
# Action 7
mod.g.b7 <- lm(act7 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b7) # nothing
##
## Call:
## lm(formula = act7 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8433 0.1567 1.6364 3.6364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.10161 0.18381 -0.553 0.581
## ModsSC.d -0.01007 0.33941 -0.030 0.976
## ModsC.d -0.31813 0.31775 -1.001 0.317
## ModsL.d 0.14480 0.36346 0.398 0.691
## ModsSL.d 0.21939 0.44719 0.491 0.624
## gend.mf 0.11020 0.36761 0.300 0.764
## ModsSC.d:gend.mf 0.29499 0.67882 0.435 0.664
## ModsC.d:gend.mf -0.54344 0.63549 -0.855 0.393
## ModsL.d:gend.mf 0.20343 0.72692 0.280 0.780
## ModsSL.d:gend.mf -1.23465 0.89439 -1.380 0.168
##
## Residual standard error: 2.097 on 403 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: -0.006717
## F-statistic: 0.6946 on 9 and 403 DF, p-value: 0.714
# Action 8
mod.g.b8 <- lm(act8 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b8) # marginally higher than 0
##
## Call:
## lm(formula = act8 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9286 -1.9091 -0.2143 1.6875 4.5319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.38340 0.17676 -2.169 0.0306 *
## ModsSC.d -0.54165 0.32590 -1.662 0.0972 .
## ModsC.d -0.35321 0.29225 -1.209 0.2274
## ModsL.d 0.94462 0.36662 2.577 0.0103 *
## ModsSL.d 0.80223 0.41652 1.926 0.0547 .
## gend.mf 0.21360 0.35352 0.604 0.5460
## ModsSC.d:gend.mf 1.00013 0.65180 1.534 0.1256
## ModsC.d:gend.mf -0.31181 0.58449 -0.533 0.5940
## ModsL.d:gend.mf 0.09252 0.73325 0.126 0.8996
## ModsSL.d:gend.mf -1.23308 0.83305 -1.480 0.1395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 469 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.07584, Adjusted R-squared: 0.05811
## F-statistic: 4.276 on 9 and 469 DF, p-value: 2.361e-05
# Action 9
mod.g.b9 <- lm(act9 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b9) # yes, higher than 0
##
## Call:
## lm(formula = act9 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5882 -1.5882 0.1481 1.5417 3.8261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16736 0.16826 0.995 0.32044
## ModsSC.d -0.90473 0.31104 -2.909 0.00381 **
## ModsC.d -0.38727 0.27882 -1.389 0.16555
## ModsL.d 0.41399 0.32567 1.271 0.20433
## ModsSL.d -0.21092 0.39622 -0.532 0.59477
## gend.mf -0.06806 0.33651 -0.202 0.83983
## ModsSC.d:gend.mf -0.10938 0.62208 -0.176 0.86051
## ModsC.d:gend.mf 0.21157 0.55764 0.379 0.70457
## ModsL.d:gend.mf 0.08182 0.65133 0.126 0.90009
## ModsSL.d:gend.mf -0.93573 0.79245 -1.181 0.23832
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.97 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.04187, Adjusted R-squared: 0.02214
## F-statistic: 2.122 on 9 and 437 DF, p-value: 0.02658
# Action 10
mod.g.b10 <- lm(act10 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b10) # yes, higher than 0
##
## Call:
## lm(formula = act10 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5862 -2.0719 0.1948 1.5714 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0903 0.1739 0.519 0.6039
## ModsSC.d -0.6314 0.3171 -1.991 0.0470 *
## ModsC.d -0.4020 0.2870 -1.401 0.1619
## ModsL.d 0.8427 0.3449 2.444 0.0149 *
## ModsSL.d 0.6528 0.4173 1.564 0.1184
## gend.mf 0.0368 0.3478 0.106 0.9158
## ModsSC.d:gend.mf 0.4366 0.6341 0.689 0.4915
## ModsC.d:gend.mf -0.2706 0.5739 -0.471 0.6376
## ModsL.d:gend.mf 0.9721 0.6898 1.409 0.1594
## ModsSL.d:gend.mf -1.7230 0.8346 -2.065 0.0395 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 466 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07046, Adjusted R-squared: 0.05251
## F-statistic: 3.925 on 9 and 466 DF, p-value: 7.905e-05
# Action 11
mod.g.b11 <- lm(act11 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b11) # yes, higher than 0
##
## Call:
## lm(formula = act11 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5625 -1.0000 0.2834 1.4375 2.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.71659 0.18378 3.899 0.000119 ***
## ModsSC.d 0.07633 0.32529 0.235 0.814628
## ModsC.d 0.01068 0.30624 0.035 0.972207
## ModsL.d 1.01280 0.36352 2.786 0.005672 **
## ModsSL.d 0.77894 0.46165 1.687 0.092576 .
## gend.mf -0.06176 0.36755 -0.168 0.866671
## ModsSC.d:gend.mf 1.20317 0.65059 1.849 0.065382 .
## ModsC.d:gend.mf -0.48369 0.61247 -0.790 0.430299
## ModsL.d:gend.mf 0.44912 0.72703 0.618 0.537205
## ModsSL.d:gend.mf -0.07217 0.92329 -0.078 0.937750
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 302 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.05336, Adjusted R-squared: 0.02515
## F-statistic: 1.891 on 9 and 302 DF, p-value: 0.05276
# Action 12
mod.g.b12 <- lm(act12 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b12) # yes, higher than 0
##
## Call:
## lm(formula = act12 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5625 -1.8571 -0.1345 1.8655 4.3043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1565 0.1983 -0.789 0.43065
## ModsSC.d -0.5968 0.3510 -1.700 0.08989 .
## ModsC.d -0.6748 0.3248 -2.078 0.03841 *
## ModsL.d 1.2804 0.4017 3.188 0.00156 **
## ModsSL.d 0.3377 0.4726 0.714 0.47537
## gend.mf -0.5818 0.3966 -1.467 0.14324
## ModsSC.d:gend.mf 1.3610 0.7019 1.939 0.05326 .
## ModsC.d:gend.mf -0.3643 0.6496 -0.561 0.57523
## ModsL.d:gend.mf 2.0005 0.8034 2.490 0.01320 *
## ModsSL.d:gend.mf -0.1807 0.9453 -0.191 0.84853
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.129 on 373 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.08175, Adjusted R-squared: 0.0596
## F-statistic: 3.69 on 9 and 373 DF, p-value: 0.0001907
# Action 13
mod.g.b13 <- lm(act13 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b13) # nothing
##
## Call:
## lm(formula = act13 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.8095 0.1884 1.9558 3.3636
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15187 0.17475 -0.869 0.38530
## ModsSC.d -0.14792 0.32254 -0.459 0.64675
## ModsC.d -0.09451 0.30339 -0.312 0.75557
## ModsL.d 0.62901 0.35714 1.761 0.07890 .
## ModsSL.d 0.27440 0.41609 0.659 0.50994
## gend.mf -0.26148 0.34950 -0.748 0.45478
## ModsSC.d:gend.mf 2.04287 0.64507 3.167 0.00165 **
## ModsC.d:gend.mf 0.14554 0.60679 0.240 0.81056
## ModsL.d:gend.mf 0.73577 0.71428 1.030 0.30354
## ModsSL.d:gend.mf -0.71085 0.83217 -0.854 0.39346
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.04764, Adjusted R-squared: 0.0278
## F-statistic: 2.401 on 9 and 432 DF, p-value: 0.01156
# Action 14
mod.g.b14 <- lm(act14 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b14) # yes, higher than 0
##
## Call:
## lm(formula = act14 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8235 -1.2778 0.2195 1.5455 3.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3878 0.2061 1.882 0.0609 .
## ModsSC.d 0.1544 0.3827 0.403 0.6870
## ModsC.d -0.3587 0.3518 -1.020 0.3088
## ModsL.d 0.7144 0.4138 1.727 0.0853 .
## ModsSL.d -0.5307 0.5102 -1.040 0.2992
## gend.mf -0.1507 0.4122 -0.366 0.7150
## ModsSC.d:gend.mf 0.7133 0.7654 0.932 0.3522
## ModsC.d:gend.mf -1.3521 0.7035 -1.922 0.0557 .
## ModsL.d:gend.mf 0.8552 0.8275 1.033 0.3023
## ModsSL.d:gend.mf -1.2779 1.0204 -1.252 0.2115
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.017 on 276 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.04977, Adjusted R-squared: 0.01878
## F-statistic: 1.606 on 9 and 276 DF, p-value: 0.1132
# Action 15
mod.g.b15 <- lm(act15 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b15) # yes, higher than 0
##
## Call:
## lm(formula = act15 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6562 -1.7674 0.4444 1.6917 3.5714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06806 0.17827 -0.382 0.7029
## ModsSC.d -0.23849 0.32379 -0.737 0.4618
## ModsC.d 0.07169 0.29812 0.240 0.8101
## ModsL.d 1.12695 0.37986 2.967 0.0032 **
## ModsSL.d 0.30139 0.41287 0.730 0.4659
## gend.mf -0.75278 0.35655 -2.111 0.0354 *
## ModsSC.d:gend.mf 1.28254 0.64757 1.981 0.0484 *
## ModsC.d:gend.mf 0.15291 0.59625 0.256 0.7977
## ModsL.d:gend.mf 1.55807 0.75972 2.051 0.0410 *
## ModsSL.d:gend.mf 0.11944 0.82575 0.145 0.8851
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 374 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.04838, Adjusted R-squared: 0.02548
## F-statistic: 2.113 on 9 and 374 DF, p-value: 0.0277
aggregate(d$act15[d$ideology == "Moderate"], list(d$gend[d$ideology == "Moderate"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female 0.31
## 2 Male -0.44
## 3 Other 0.00
# Action 16
mod.g.b16 <- lm(act16 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b16) # yes, higher than 0
##
## Call:
## lm(formula = act16 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3636 -1.1400 0.1589 1.6364 2.7586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1024 0.1824 6.044 4.17e-09 ***
## ModsSC.d -0.4554 0.3261 -1.396 0.164
## ModsC.d -0.2142 0.2970 -0.721 0.471
## ModsL.d -0.1306 0.3609 -0.362 0.718
## ModsSL.d -0.1579 0.4131 -0.382 0.702
## gend.mf 0.5225 0.3648 1.432 0.153
## ModsSC.d:gend.mf 0.2887 0.6522 0.443 0.658
## ModsC.d:gend.mf -1.0262 0.5939 -1.728 0.085 .
## ModsL.d:gend.mf -0.9661 0.7218 -1.338 0.182
## ModsSL.d:gend.mf -0.6336 0.8262 -0.767 0.444
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 321 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.02518, Adjusted R-squared: -0.002148
## F-statistic: 0.9214 on 9 and 321 DF, p-value: 0.5066
# Action 17
mod.g.b17 <- lm(act17 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b17) # yes, higher than 0
##
## Call:
## lm(formula = act17 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.391 -1.477 -0.033 1.630 3.077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48265 0.17663 2.733 0.00656 **
## ModsSC.d -0.09420 0.31868 -0.296 0.76768
## ModsC.d -0.38619 0.29321 -1.317 0.18855
## ModsL.d 0.27356 0.35372 0.773 0.43975
## ModsSL.d 0.61300 0.41933 1.462 0.14455
## gend.mf 0.01145 0.35326 0.032 0.97416
## ModsSC.d:gend.mf 0.08123 0.63736 0.127 0.89865
## ModsC.d:gend.mf -0.35821 0.58642 -0.611 0.54164
## ModsL.d:gend.mf 0.76184 0.70745 1.077 0.28217
## ModsSL.d:gend.mf -0.60275 0.83866 -0.719 0.47273
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.008 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.02291, Adjusted R-squared: 0.001247
## F-statistic: 1.058 on 9 and 406 DF, p-value: 0.3934
# Action 18
mod.g.b18 <- lm(act18 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b18) # yes, higher than 0
##
## Call:
## lm(formula = act18 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.1369 0.1776 1.4528 3.1000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.77485 0.18407 4.210 3.28e-05 ***
## ModsSC.d -0.54224 0.31547 -1.719 0.0866 .
## ModsC.d -0.33460 0.30116 -1.111 0.2673
## ModsL.d 0.19110 0.33882 0.564 0.5731
## ModsSL.d 0.01462 0.41691 0.035 0.9720
## gend.mf -0.09516 0.36814 -0.258 0.7962
## ModsSC.d:gend.mf 0.76037 0.63095 1.205 0.2290
## ModsC.d:gend.mf -0.11868 0.60233 -0.197 0.8439
## ModsL.d:gend.mf 0.30612 0.67763 0.452 0.6517
## ModsSL.d:gend.mf 0.51621 0.83381 0.619 0.5363
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.02394, Adjusted R-squared: -0.001748
## F-statistic: 0.9319 on 9 and 342 DF, p-value: 0.4973
# Action 19
mod.g.b19 <- lm(act19 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b19) # yes, higher than 0
##
## Call:
## lm(formula = act19 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1622 0.3462 1.6250 2.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.130952 0.197078 5.739 2.61e-08 ***
## ModsSC.d -0.156970 0.343786 -0.457 0.648
## ModsC.d -0.115089 0.310397 -0.371 0.711
## ModsL.d 0.369048 0.418066 0.883 0.378
## ModsSL.d 0.007206 0.428628 0.017 0.987
## gend.mf -0.333333 0.394156 -0.846 0.398
## ModsSC.d:gend.mf 0.973605 0.687572 1.416 0.158
## ModsC.d:gend.mf 0.040736 0.620794 0.066 0.948
## ModsL.d:gend.mf 0.583333 0.836131 0.698 0.486
## ModsSL.d:gend.mf -0.442982 0.857257 -0.517 0.606
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.806 on 264 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.0208, Adjusted R-squared: -0.01258
## F-statistic: 0.6232 on 9 and 264 DF, p-value: 0.7769
# Action 20
mod.g.b20 <- lm(act20 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b20) # yes, higher than 0
##
## Call:
## lm(formula = act20 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.398 -1.200 0.602 1.602 2.391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.29898 0.18779 6.917 2.61e-11 ***
## ModsSC.d -0.13590 0.31136 -0.436 0.663
## ModsC.d -0.29898 0.29680 -1.007 0.315
## ModsL.d -0.03182 0.35579 -0.089 0.929
## ModsSL.d -0.40682 0.41582 -0.978 0.329
## gend.mf -0.19796 0.37558 -0.527 0.599
## ModsSC.d:gend.mf 0.45514 0.62271 0.731 0.465
## ModsC.d:gend.mf -0.58465 0.59359 -0.985 0.325
## ModsL.d:gend.mf 0.49698 0.71158 0.698 0.485
## ModsSL.d:gend.mf -0.25302 0.83164 -0.304 0.761
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.8 on 312 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.01743, Adjusted R-squared: -0.01091
## F-statistic: 0.615 on 9 and 312 DF, p-value: 0.7842
# Action 21
mod.g.b21 <- lm(act21 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b21) # nothing
##
## Call:
## lm(formula = act21 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.556 -1.840 0.160 1.696 3.818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01756 0.18612 0.094 0.9249
## ModsSC.d -0.65165 0.33164 -1.965 0.0501 .
## ModsC.d -0.37819 0.31247 -1.210 0.2269
## ModsL.d 0.45365 0.36089 1.257 0.2095
## ModsSL.d 0.41239 0.44717 0.922 0.3570
## gend.mf 0.35512 0.37223 0.954 0.3407
## ModsSC.d:gend.mf -0.72330 0.66328 -1.090 0.2762
## ModsC.d:gend.mf -0.80052 0.62494 -1.281 0.2010
## ModsL.d:gend.mf -0.23088 0.72178 -0.320 0.7492
## ModsSL.d:gend.mf -0.10391 0.89435 -0.116 0.9076
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.068 on 391 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.0295, Adjusted R-squared: 0.007162
## F-statistic: 1.321 on 9 and 391 DF, p-value: 0.2241
# Action 22
mod.g.b22 <- lm(act22 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b22) # yes, higher than 0
##
## Call:
## lm(formula = act22 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.4912 -0.1538 1.6410 3.6410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3972 0.1821 2.181 0.0298 *
## ModsSC.d -0.6041 0.3199 -1.888 0.0598 .
## ModsC.d -0.1516 0.2986 -0.508 0.6120
## ModsL.d 0.2280 0.3615 0.631 0.5285
## ModsSL.d 0.6797 0.4098 1.659 0.0980 .
## gend.mf 0.4688 0.3642 1.287 0.1988
## ModsSC.d:gend.mf 0.3995 0.6399 0.624 0.5328
## ModsC.d:gend.mf -0.9600 0.5972 -1.607 0.1088
## ModsL.d:gend.mf -0.3346 0.7230 -0.463 0.6437
## ModsSL.d:gend.mf -0.6226 0.8196 -0.760 0.4479
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.973 on 392 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.04639, Adjusted R-squared: 0.02449
## F-statistic: 2.119 on 9 and 392 DF, p-value: 0.02709
# Action 23
mod.g.b23 <- lm(act23 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b23) # marginally higher than 0
##
## Call:
## lm(formula = act23 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9474 -2.0103 0.1875 2.0227 3.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.25515 0.24953 1.023 0.307
## ModsSC.d 0.05944 0.43299 0.137 0.891
## ModsC.d -0.52842 0.38996 -1.355 0.176
## ModsL.d 0.33235 0.44785 0.742 0.459
## ModsSL.d 0.02610 0.54921 0.048 0.962
## gend.mf 0.48969 0.49905 0.981 0.327
## ModsSC.d:gend.mf 0.77586 0.86599 0.896 0.371
## ModsC.d:gend.mf -0.99077 0.77992 -1.270 0.205
## ModsL.d:gend.mf -0.73136 0.89569 -0.817 0.415
## ModsSL.d:gend.mf -1.55219 1.09842 -1.413 0.159
##
## Residual standard error: 2.26 on 282 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03359, Adjusted R-squared: 0.002749
## F-statistic: 1.089 on 9 and 282 DF, p-value: 0.3707
# Action 24
mod.g.b24 <- lm(act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b24) # nothing
##
## Call:
## lm(formula = act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5455 -1.8425 0.1575 1.8214 3.8214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3287 0.1805 -1.821 0.0693 .
## ModsSC.d 0.3136 0.3405 0.921 0.3576
## ModsC.d -0.2617 0.2985 -0.877 0.3812
## ModsL.d 0.2865 0.3690 0.776 0.4379
## ModsSL.d 0.1158 0.4282 0.270 0.7870
## gend.mf -0.3425 0.3610 -0.949 0.3433
## ModsSC.d:gend.mf 1.4637 0.6810 2.149 0.0322 *
## ModsC.d:gend.mf -0.1195 0.5969 -0.200 0.8414
## ModsL.d:gend.mf 0.7126 0.7381 0.966 0.3348
## ModsSL.d:gend.mf -0.2316 0.8564 -0.270 0.7870
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.098 on 405 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.02029, Adjusted R-squared: -0.001484
## F-statistic: 0.9318 on 9 and 405 DF, p-value: 0.4971
# Action 25
mod.g.b25 <- lm(act25 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b25) # yes, higher than 0
##
## Call:
## lm(formula = act25 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -0.8936 0.1642 1.4389 3.2051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.88521 0.15553 5.692 2.32e-08 ***
## ModsSC.d -0.96397 0.29380 -3.281 0.00112 **
## ModsC.d -0.47410 0.25867 -1.833 0.06751 .
## ModsL.d 0.32356 0.30861 1.048 0.29501
## ModsSL.d 0.47701 0.39031 1.222 0.22233
## gend.mf 0.01681 0.31106 0.054 0.95694
## ModsSC.d:gend.mf 0.23594 0.58761 0.402 0.68823
## ModsC.d:gend.mf -0.39458 0.51733 -0.763 0.44604
## ModsL.d:gend.mf 0.31564 0.61722 0.511 0.60934
## ModsSL.d:gend.mf 0.14764 0.78063 0.189 0.85008
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.05138, Adjusted R-squared: 0.03171
## F-statistic: 2.612 on 9 and 434 DF, p-value: 0.006027
# Action 26
mod.g.b26 <- lm(act26 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b26) # yes, higher than 0
##
## Call:
## lm(formula = act26 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0000 0.5278 1.3433 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.542644 0.229336 6.727 1.53e-10 ***
## ModsSC.d 0.001474 0.379614 0.004 0.997
## ModsC.d -0.014866 0.353264 -0.042 0.966
## ModsL.d 0.028785 0.455812 0.063 0.950
## ModsSL.d -0.570422 0.479711 -1.189 0.236
## gend.mf -0.228145 0.458672 -0.497 0.619
## ModsSC.d:gend.mf 0.316380 0.759228 0.417 0.677
## ModsC.d:gend.mf -0.049633 0.706527 -0.070 0.944
## ModsL.d:gend.mf 1.371002 0.911624 1.504 0.134
## ModsSL.d:gend.mf 1.172589 0.959422 1.222 0.223
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 216 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.02923, Adjusted R-squared: -0.01122
## F-statistic: 0.7225 on 9 and 216 DF, p-value: 0.688
# Action 27
mod.g.b27 <- lm(act27 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b27) # yes, higher than 0
##
## Call:
## lm(formula = act27 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4545 -1.1667 0.2174 1.5521 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6240 0.1965 3.176 0.00164 **
## ModsSC.d -0.1448 0.3269 -0.443 0.65812
## ModsC.d 0.1088 0.3138 0.347 0.72901
## ModsL.d 0.5503 0.3726 1.477 0.14074
## ModsSL.d 0.7349 0.4065 1.808 0.07159 .
## gend.mf 0.3521 0.3929 0.896 0.37090
## ModsSC.d:gend.mf 0.6063 0.6538 0.927 0.35450
## ModsC.d:gend.mf -0.2524 0.6276 -0.402 0.68783
## ModsL.d:gend.mf -0.3672 0.7452 -0.493 0.62251
## ModsSL.d:gend.mf -0.1607 0.8129 -0.198 0.84343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 307 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.03928, Adjusted R-squared: 0.01112
## F-statistic: 1.395 on 9 and 307 DF, p-value: 0.1895
# Action 28
mod.g.b28 <- lm(act28 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b28) # yes, higher than 0
##
## Call:
## lm(formula = act28 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4262 -0.9511 0.1944 1.5738 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.00563 0.18137 5.545 5.69e-08 ***
## ModsSC.d -0.22190 0.31023 -0.715 0.475
## ModsC.d 0.22922 0.28844 0.795 0.427
## ModsL.d -0.09575 0.34993 -0.274 0.785
## ModsSL.d -0.02427 0.43526 -0.056 0.956
## gend.mf 0.17056 0.36274 0.470 0.639
## ModsSC.d:gend.mf -0.21421 0.62045 -0.345 0.730
## ModsC.d:gend.mf -0.55331 0.57688 -0.959 0.338
## ModsL.d:gend.mf -0.49032 0.69985 -0.701 0.484
## ModsSL.d:gend.mf -0.99043 0.87051 -1.138 0.256
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 362 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.01604, Adjusted R-squared: -0.008426
## F-statistic: 0.6556 on 9 and 362 DF, p-value: 0.749
# Action 29
mod.g.b29 <- lm(act29 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b29) # yes, higher than 0
##
## Call:
## lm(formula = act29 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1003 0.1951 1.5000 2.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.114929 0.171938 6.484 2.96e-10 ***
## ModsSC.d 0.004118 0.299162 0.014 0.989
## ModsC.d -0.122698 0.275087 -0.446 0.656
## ModsL.d 0.037510 0.323942 0.116 0.908
## ModsSL.d 0.314895 0.397959 0.791 0.429
## gend.mf -0.058430 0.343876 -0.170 0.865
## ModsSC.d:gend.mf 0.296525 0.598324 0.496 0.620
## ModsC.d:gend.mf -0.092700 0.550174 -0.168 0.866
## ModsL.d:gend.mf 0.753552 0.647885 1.163 0.246
## ModsSL.d:gend.mf -0.134553 0.795917 -0.169 0.866
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.774 on 358 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01019, Adjusted R-squared: -0.0147
## F-statistic: 0.4093 on 9 and 358 DF, p-value: 0.93
# Action 30
mod.g.b30 <- lm(act30 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf, data = d)
summary(mod.g.b30) # yes, higher than 0
##
## Call:
## lm(formula = act30 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3529 -1.0654 0.5928 1.6471 2.3913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98271 0.19441 5.055 7.04e-07 ***
## ModsSC.d 0.10680 0.31992 0.334 0.739
## ModsC.d -0.09064 0.30305 -0.299 0.765
## ModsL.d 0.28753 0.35948 0.800 0.424
## ModsSL.d 0.09376 0.42244 0.222 0.824
## gend.mf -0.16542 0.38883 -0.425 0.671
## ModsSC.d:gend.mf -0.36143 0.63984 -0.565 0.573
## ModsC.d:gend.mf -0.40132 0.60610 -0.662 0.508
## ModsL.d:gend.mf 0.54801 0.71896 0.762 0.446
## ModsSL.d:gend.mf -0.38752 0.84487 -0.459 0.647
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.882 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.01188, Adjusted R-squared: -0.01412
## F-statistic: 0.4569 on 9 and 342 DF, p-value: 0.9027
a. Gender x condition
None
# Action 1
summary(lm(act1 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.960 0.080 2.000 5.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.10891 0.18161 0.600 0.5490
## ModsSC.d -0.51105 0.33098 -1.544 0.1233
## ModsC.d -0.78305 0.31017 -2.525 0.0119 *
## ModsL.d 0.48556 0.36207 1.341 0.1806
## ModsSL.d -0.38182 0.43641 -0.875 0.3821
## gend.mf 0.70219 0.36322 1.933 0.0539 .
## cond.c -0.70219 0.36322 -1.933 0.0539 .
## ModsSC.d:gend.mf -0.20092 0.66196 -0.304 0.7616
## ModsC.d:gend.mf -1.53691 0.62033 -2.478 0.0136 *
## ModsL.d:gend.mf -0.87326 0.72414 -1.206 0.2285
## ModsSL.d:gend.mf -1.95635 0.87283 -2.241 0.0255 *
## ModsSC.d:cond.c 1.45345 0.66196 2.196 0.0287 *
## ModsC.d:cond.c 0.49994 0.62033 0.806 0.4207
## ModsL.d:cond.c 0.57612 0.72414 0.796 0.4267
## ModsSL.d:cond.c 0.82302 0.87283 0.943 0.3462
## gend.mf:cond.c -0.43563 0.72645 -0.600 0.5490
## ModsSC.d:gend.mf:cond.c 0.99371 1.32392 0.751 0.4533
## ModsC.d:gend.mf:cond.c 0.02966 1.24066 0.024 0.9809
## ModsL.d:gend.mf:cond.c -0.77652 1.44828 -0.536 0.5921
## ModsSL.d:gend.mf:cond.c 4.59396 1.74566 2.632 0.0088 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.124 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.0873, Adjusted R-squared: 0.04669
## F-statistic: 2.15 on 19 and 427 DF, p-value: 0.003504
# Action 2
summary(lm(act2 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6000 -1.0000 0.3485 1.5192 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.160668 0.205334 5.653 4.04e-08 ***
## ModsSC.d -0.110953 0.342057 -0.324 0.7459
## ModsC.d -0.364456 0.311151 -1.171 0.2425
## ModsL.d 0.510165 0.391941 1.302 0.1942
## ModsSL.d -0.352335 0.454456 -0.775 0.4389
## gend.mf 0.011996 0.410669 0.029 0.9767
## cond.c -0.159432 0.410669 -0.388 0.6982
## ModsSC.d:gend.mf 0.774935 0.684114 1.133 0.2583
## ModsC.d:gend.mf -0.755936 0.622303 -1.215 0.2255
## ModsL.d:gend.mf 0.563004 0.783881 0.718 0.4732
## ModsSL.d:gend.mf -0.561996 0.908913 -0.618 0.5369
## ModsSC.d:cond.c 0.008864 0.684114 0.013 0.9897
## ModsC.d:cond.c -0.566325 0.622303 -0.910 0.3636
## ModsL.d:cond.c 0.151099 0.783881 0.193 0.8473
## ModsSL.d:cond.c 0.776099 0.908913 0.854 0.3939
## gend.mf:cond.c 0.985531 0.821338 1.200 0.2312
## ModsSC.d:gend.mf:cond.c 0.088333 1.368228 0.065 0.9486
## ModsC.d:gend.mf:cond.c -2.564319 1.244606 -2.060 0.0403 *
## ModsL.d:gend.mf:cond.c -0.135531 1.567763 -0.086 0.9312
## ModsSL.d:gend.mf:cond.c 1.247802 1.817826 0.686 0.4930
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 268 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.07459, Adjusted R-squared: 0.008984
## F-statistic: 1.137 on 19 and 268 DF, p-value: 0.3138
# Action 3
summary(lm(act3 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7059 -1.8261 0.0278 1.7143 3.9412
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.064746 0.170869 -0.379 0.7049
## ModsSC.d -0.725473 0.317283 -2.287 0.0227 *
## ModsC.d -0.261643 0.293981 -0.890 0.3740
## ModsL.d 0.002246 0.330741 0.007 0.9946
## ModsSL.d 0.262645 0.427089 0.615 0.5389
## gend.mf -0.211088 0.341738 -0.618 0.5371
## cond.c 0.064953 0.341738 0.190 0.8493
## ModsSC.d:gend.mf 0.905162 0.634566 1.426 0.1545
## ModsC.d:gend.mf 0.419422 0.587962 0.713 0.4760
## ModsL.d:gend.mf 0.478946 0.661482 0.724 0.4694
## ModsSL.d:gend.mf -0.384710 0.854179 -0.450 0.6527
## ModsSC.d:cond.c -0.067850 0.634566 -0.107 0.9149
## ModsC.d:cond.c -0.384398 0.587962 -0.654 0.5136
## ModsL.d:cond.c 0.702904 0.661482 1.063 0.2886
## ModsSL.d:cond.c 0.024963 0.854179 0.029 0.9767
## gend.mf:cond.c -0.144399 0.683475 -0.211 0.8328
## ModsSC.d:gend.mf:cond.c 0.922920 1.269132 0.727 0.4675
## ModsC.d:gend.mf:cond.c -1.438934 1.175924 -1.224 0.2218
## ModsL.d:gend.mf:cond.c -1.105601 1.322965 -0.836 0.4038
## ModsSL.d:gend.mf:cond.c 1.164567 1.708357 0.682 0.4958
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.05725, Adjusted R-squared: 0.01481
## F-statistic: 1.349 on 19 and 422 DF, p-value: 0.1485
# Action 4
summary(lm(act4 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2000 -1.8551 0.1449 2.0909 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.212571 0.211693 -1.004 0.3160
## ModsSC.d 0.412437 0.375956 1.097 0.2734
## ModsC.d -0.145981 0.358402 -0.407 0.6840
## ModsL.d 0.727331 0.391029 1.860 0.0637 .
## ModsSL.d 0.574110 0.496493 1.156 0.2483
## gend.mf -0.012358 0.423385 -0.029 0.9767
## cond.c -0.342715 0.423385 -0.809 0.4188
## ModsSC.d:gend.mf 0.385352 0.751912 0.512 0.6086
## ModsC.d:gend.mf -0.453231 0.716805 -0.632 0.5276
## ModsL.d:gend.mf 0.382838 0.782059 0.490 0.6248
## ModsSL.d:gend.mf -1.310719 0.992985 -1.320 0.1877
## ModsSC.d:cond.c 0.333357 0.751912 0.443 0.6578
## ModsC.d:cond.c -0.181207 0.716805 -0.253 0.8006
## ModsL.d:cond.c 1.102669 0.782059 1.410 0.1594
## ModsSL.d:cond.c 0.419638 0.992985 0.423 0.6728
## gend.mf:cond.c -0.439570 0.846770 -0.519 0.6040
## ModsSC.d:gend.mf:cond.c 0.003742 1.503824 0.002 0.9980
## ModsC.d:gend.mf:cond.c -1.377970 1.433610 -0.961 0.3371
## ModsL.d:gend.mf:cond.c 0.119662 1.564118 0.077 0.9391
## ModsSL.d:gend.mf:cond.c -0.114276 1.985970 -0.058 0.9541
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.183 on 349 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.04372, Adjusted R-squared: -0.008345
## F-statistic: 0.8397 on 19 and 349 DF, p-value: 0.6588
# Action 5
summary(lm(act5 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4800 -1.2500 0.1622 1.5200 3.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07416 0.20961 5.124 5.63e-07 ***
## ModsSC.d -0.34454 0.34680 -0.993 0.3213
## ModsC.d -0.11414 0.31715 -0.360 0.7192
## ModsL.d 0.39724 0.38741 1.025 0.3061
## ModsSL.d -0.80332 0.46523 -1.727 0.0853 .
## gend.mf 0.06048 0.41923 0.144 0.8854
## cond.c -0.38740 0.41923 -0.924 0.3563
## ModsSC.d:gend.mf -0.54243 0.69361 -0.782 0.4349
## ModsC.d:gend.mf -0.52953 0.63429 -0.835 0.4045
## ModsL.d:gend.mf 0.42530 0.77482 0.549 0.5835
## ModsSL.d:gend.mf -0.18548 0.93047 -0.199 0.8421
## ModsSC.d:cond.c 0.11935 0.69361 0.172 0.8635
## ModsC.d:cond.c 0.06501 0.63429 0.102 0.9184
## ModsL.d:cond.c -0.43451 0.77482 -0.561 0.5754
## ModsSL.d:cond.c 0.51240 0.93047 0.551 0.5823
## gend.mf:cond.c 0.04952 0.83846 0.059 0.9529
## ModsSC.d:gend.mf:cond.c -0.46797 1.38722 -0.337 0.7361
## ModsC.d:gend.mf:cond.c -1.83612 1.26858 -1.447 0.1489
## ModsL.d:gend.mf:cond.c 0.45144 1.54965 0.291 0.7710
## ModsSL.d:gend.mf:cond.c 1.53381 1.86093 0.824 0.4105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.884 on 275 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.0598, Adjusted R-squared: -0.005162
## F-statistic: 0.9205 on 19 and 275 DF, p-value: 0.5577
# Action 6
summary(lm(act6 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.0816 0.5333 1.5294 2.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.35056 0.18353 7.359 1.43e-12 ***
## ModsSC.d -0.50693 0.31455 -1.612 0.1080
## ModsC.d -0.03754 0.28643 -0.131 0.8958
## ModsL.d 0.21868 0.35145 0.622 0.5342
## ModsSL.d -0.42020 0.40941 -1.026 0.3055
## gend.mf 0.23614 0.36705 0.643 0.5204
## cond.c -0.15281 0.36705 -0.416 0.6774
## ModsSC.d:gend.mf -0.71431 0.62910 -1.135 0.2570
## ModsC.d:gend.mf -0.46217 0.57286 -0.807 0.4204
## ModsL.d:gend.mf 0.38729 0.70290 0.551 0.5820
## ModsSL.d:gend.mf -1.44686 0.81882 -1.767 0.0781 .
## ModsSC.d:cond.c 0.11149 0.62910 0.177 0.8594
## ModsC.d:cond.c -0.22806 0.57286 -0.398 0.6908
## ModsL.d:cond.c -0.29518 0.70290 -0.420 0.6748
## ModsSL.d:cond.c 0.19210 0.81882 0.235 0.8147
## gend.mf:cond.c 0.29778 0.73410 0.406 0.6853
## ModsSC.d:gend.mf:cond.c 1.00304 1.25819 0.797 0.4259
## ModsC.d:gend.mf:cond.c -1.93604 1.14572 -1.690 0.0920 .
## ModsL.d:gend.mf:cond.c -1.59227 1.40579 -1.133 0.2582
## ModsSL.d:gend.mf:cond.c -0.07635 1.63764 -0.047 0.9628
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 337 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.04582, Adjusted R-squared: -0.00798
## F-statistic: 0.8517 on 19 and 337 DF, p-value: 0.6439
# Action 7
summary(lm(act7 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0625 -1.8571 0.0625 1.7143 3.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09582 0.18244 -0.525 0.5997
## ModsSC.d -0.00593 0.33712 -0.018 0.9860
## ModsC.d -0.24063 0.32160 -0.748 0.4548
## ModsL.d 0.17638 0.36506 0.483 0.6293
## ModsSL.d 0.06978 0.46432 0.150 0.8806
## gend.mf 0.11372 0.36488 0.312 0.7555
## cond.c 0.41485 0.36488 1.137 0.2563
## ModsSC.d:gend.mf 0.27160 0.67425 0.403 0.6873
## ModsC.d:gend.mf -0.33368 0.64321 -0.519 0.6042
## ModsL.d:gend.mf 0.11406 0.73013 0.156 0.8759
## ModsSL.d:gend.mf -1.22830 0.92864 -1.323 0.1867
## ModsSC.d:cond.c -0.28313 0.67425 -0.420 0.6748
## ModsC.d:cond.c -0.73775 0.64321 -1.147 0.2521
## ModsL.d:cond.c 0.44070 0.73013 0.604 0.5465
## ModsSL.d:cond.c -0.52944 0.92864 -0.570 0.5689
## gend.mf:cond.c 0.46899 0.72976 0.643 0.5208
## ModsSC.d:gend.mf:cond.c 0.72210 1.34849 0.535 0.5926
## ModsC.d:gend.mf:cond.c -2.60891 1.28641 -2.028 0.0432 *
## ModsL.d:gend.mf:cond.c -2.29122 1.46026 -1.569 0.1174
## ModsSL.d:gend.mf:cond.c 1.42684 1.85728 0.768 0.4428
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.081 on 393 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.05477, Adjusted R-squared: 0.009077
## F-statistic: 1.199 on 19 and 393 DF, p-value: 0.2548
# Action 8
summary(lm(act8 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4000 -1.6786 -0.1429 1.5466 4.8421
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.38604 0.17541 -2.201 0.02825 *
## ModsSC.d -0.56393 0.32461 -1.737 0.08301 .
## ModsC.d -0.07658 0.29989 -0.255 0.79856
## ModsL.d 0.96938 0.36425 2.661 0.00806 **
## ModsSL.d 0.81938 0.41830 1.959 0.05074 .
## gend.mf 0.20868 0.35082 0.595 0.55225
## cond.c 0.23746 0.35082 0.677 0.49883
## ModsSC.d:gend.mf 1.05491 0.64923 1.625 0.10488
## ModsC.d:gend.mf 0.20194 0.59978 0.337 0.73650
## ModsL.d:gend.mf 0.05323 0.72851 0.073 0.94179
## ModsSL.d:gend.mf -1.40868 0.83661 -1.684 0.09290 .
## ModsSC.d:cond.c -0.11349 0.64923 -0.175 0.86131
## ModsC.d:cond.c -1.91270 0.59978 -3.189 0.00153 **
## ModsL.d:cond.c 0.35778 0.72851 0.491 0.62358
## ModsSL.d:cond.c 0.96254 0.83661 1.151 0.25053
## gend.mf:cond.c 0.48523 0.70165 0.692 0.48957
## ModsSC.d:gend.mf:cond.c -1.27863 1.29845 -0.985 0.32527
## ModsC.d:gend.mf:cond.c -3.05288 1.19955 -2.545 0.01125 *
## ModsL.d:gend.mf:cond.c -0.53284 1.45701 -0.366 0.71475
## ModsSL.d:gend.mf:cond.c 0.44811 1.67322 0.268 0.78896
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.102 on 459 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1107, Adjusted R-squared: 0.07388
## F-statistic: 3.007 on 19 and 459 DF, p-value: 2.47e-05
# Action 9
summary(lm(act9 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8000 -1.5455 0.0455 1.5000 4.4545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16707 0.16834 0.992 0.32155
## ModsSC.d -0.96669 0.31252 -3.093 0.00211 **
## ModsC.d -0.23118 0.28667 -0.806 0.42044
## ModsL.d 0.39603 0.32859 1.205 0.22878
## ModsSL.d -0.23373 0.41341 -0.565 0.57211
## gend.mf -0.07524 0.33668 -0.223 0.82327
## cond.c 0.20459 0.33668 0.608 0.54374
## ModsSC.d:gend.mf -0.03006 0.62503 -0.048 0.96166
## ModsC.d:gend.mf 0.53680 0.57334 0.936 0.34967
## ModsL.d:gend.mf 0.03476 0.65719 0.053 0.95784
## ModsSL.d:gend.mf -0.89143 0.82682 -1.078 0.28158
## ModsSC.d:cond.c 0.91738 0.62503 1.468 0.14291
## ModsC.d:cond.c -1.09098 0.57334 -1.903 0.05773 .
## ModsL.d:cond.c -0.37840 0.65719 -0.576 0.56506
## ModsSL.d:cond.c -0.23792 0.82682 -0.288 0.77367
## gend.mf:cond.c 0.29043 0.67337 0.431 0.66646
## ModsSC.d:gend.mf:cond.c -0.12528 1.25006 -0.100 0.92022
## ModsC.d:gend.mf:cond.c -2.29542 1.14668 -2.002 0.04594 *
## ModsL.d:gend.mf:cond.c -0.97138 1.31437 -0.739 0.46029
## ModsSL.d:gend.mf:cond.c -0.02376 1.65363 -0.014 0.98854
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.06597, Adjusted R-squared: 0.02441
## F-statistic: 1.587 on 19 and 427 DF, p-value: 0.05552
# Action 10
summary(lm(act10 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.8630 0.1739 1.7370 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.08573 0.17364 0.494 0.6218
## ModsSC.d -0.62338 0.31757 -1.963 0.0503 .
## ModsC.d -0.28312 0.29240 -0.968 0.3334
## ModsL.d 0.88001 0.34536 2.548 0.0112 *
## ModsSL.d 0.64458 0.41924 1.538 0.1249
## gend.mf 0.04594 0.34728 0.132 0.8948
## cond.c 0.08287 0.34728 0.239 0.8115
## ModsSC.d:gend.mf 0.42330 0.63514 0.666 0.5055
## ModsC.d:gend.mf -0.05116 0.58481 -0.087 0.9303
## ModsL.d:gend.mf 0.89760 0.69072 1.299 0.1944
## ModsSL.d:gend.mf -1.70654 0.83847 -2.035 0.0424 *
## ModsSC.d:cond.c -0.14859 0.63514 -0.234 0.8151
## ModsC.d:cond.c -0.88320 0.58481 -1.510 0.1317
## ModsL.d:cond.c 0.08567 0.69072 0.124 0.9013
## ModsSL.d:cond.c 1.11107 0.83847 1.325 0.1858
## gend.mf:cond.c 0.96470 0.69456 1.389 0.1655
## ModsSC.d:gend.mf:cond.c -0.95446 1.27028 -0.751 0.4528
## ModsC.d:gend.mf:cond.c -2.56403 1.16961 -2.192 0.0289 *
## ModsL.d:gend.mf:cond.c -2.05177 1.38145 -1.485 0.1382
## ModsSL.d:gend.mf:cond.c 1.84742 1.67694 1.102 0.2712
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 456 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.0938, Adjusted R-squared: 0.05604
## F-statistic: 2.484 on 19 and 456 DF, p-value: 0.0005392
# Action 11
summary(lm(act11 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9000 -1.0292 0.3902 1.5200 3.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.71252 0.18277 3.899 0.00012 ***
## ModsSC.d 0.07781 0.32350 0.241 0.81008
## ModsC.d 0.06157 0.30519 0.202 0.84025
## ModsL.d 1.05950 0.37144 2.852 0.00465 **
## ModsSL.d 0.72081 0.46566 1.548 0.12272
## gend.mf -0.07537 0.36553 -0.206 0.83679
## cond.c -0.65092 0.36553 -1.781 0.07599 .
## ModsSC.d:gend.mf 1.22197 0.64701 1.889 0.05993 .
## ModsC.d:gend.mf -0.38949 0.61038 -0.638 0.52390
## ModsL.d:gend.mf 0.26942 0.74287 0.363 0.71712
## ModsSL.d:gend.mf 0.04203 0.93131 0.045 0.96403
## ModsSC.d:cond.c 1.06376 0.64701 1.644 0.10123
## ModsC.d:cond.c -0.40089 0.61038 -0.657 0.51184
## ModsL.d:cond.c 0.27354 0.74287 0.368 0.71297
## ModsSL.d:cond.c 0.28426 0.93131 0.305 0.76042
## gend.mf:cond.c -0.22103 0.73107 -0.302 0.76261
## ModsSC.d:gend.mf:cond.c 0.48626 1.29402 0.376 0.70735
## ModsC.d:gend.mf:cond.c -1.50868 1.22076 -1.236 0.21751
## ModsL.d:gend.mf:cond.c -1.83373 1.48575 -1.234 0.21812
## ModsSL.d:gend.mf:cond.c 1.28770 1.86263 0.691 0.48991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.858 on 292 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.09531, Adjusted R-squared: 0.03644
## F-statistic: 1.619 on 19 and 292 DF, p-value: 0.05071
# Action 12
summary(lm(act12 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.000 -1.875 0.125 1.635 4.235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.16366 0.19735 -0.829 0.40748
## ModsSC.d -0.59087 0.34921 -1.692 0.09150 .
## ModsC.d -0.40754 0.33653 -1.211 0.22669
## ModsL.d 1.31746 0.40064 3.288 0.00111 **
## ModsSL.d 0.40457 0.48224 0.839 0.40205
## gend.mf -0.56741 0.39471 -1.438 0.15142
## cond.c 0.04443 0.39471 0.113 0.91043
## ModsSC.d:gend.mf 1.34920 0.69842 1.932 0.05416 .
## ModsC.d:gend.mf 0.15625 0.67307 0.232 0.81656
## ModsL.d:gend.mf 1.92648 0.80128 2.404 0.01671 *
## ModsSL.d:gend.mf -0.31441 0.96447 -0.326 0.74462
## ModsSC.d:cond.c 0.59089 0.69842 0.846 0.39809
## ModsC.d:cond.c -1.22702 0.67307 -1.823 0.06912 .
## ModsL.d:cond.c 0.47150 0.80128 0.588 0.55661
## ModsSL.d:cond.c 0.67375 0.96447 0.699 0.48527
## gend.mf:cond.c 1.06903 0.78941 1.354 0.17651
## ModsSC.d:gend.mf:cond.c -0.15786 1.39684 -0.113 0.91009
## ModsC.d:gend.mf:cond.c -4.09671 1.34614 -3.043 0.00251 **
## ModsL.d:gend.mf:cond.c -1.43422 1.60256 -0.895 0.37140
## ModsSL.d:gend.mf:cond.c -0.90539 1.92895 -0.469 0.63909
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.117 on 363 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.06946
## F-statistic: 2.501 on 19 and 363 DF, p-value: 0.0005499
# Action 13
summary(lm(act13 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1333 -1.8000 0.1852 1.8235 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.14786 0.17361 -0.852 0.39486
## ModsSC.d -0.15298 0.32381 -0.472 0.63686
## ModsC.d 0.05948 0.30902 0.192 0.84746
## ModsL.d 0.64946 0.35698 1.819 0.06957 .
## ModsSL.d 0.09578 0.41982 0.228 0.81964
## gend.mf -0.26949 0.34721 -0.776 0.43809
## cond.c 0.29828 0.34721 0.859 0.39079
## ModsSC.d:gend.mf 2.05299 0.64763 3.170 0.00164 **
## ModsC.d:gend.mf 0.44626 0.61804 0.722 0.47066
## ModsL.d:gend.mf 0.80795 0.71395 1.132 0.25842
## ModsSL.d:gend.mf -0.59301 0.83963 -0.706 0.48041
## ModsSC.d:cond.c -0.42724 0.64763 -0.660 0.50981
## ModsC.d:cond.c -1.56596 0.61804 -2.534 0.01165 *
## ModsL.d:cond.c -0.09315 0.71395 -0.130 0.89625
## ModsSL.d:cond.c 0.26422 0.83963 0.315 0.75316
## gend.mf:cond.c -0.16178 0.69443 -0.233 0.81590
## ModsSC.d:gend.mf:cond.c -0.12576 1.29526 -0.097 0.92270
## ModsC.d:gend.mf:cond.c -1.30286 1.23608 -1.054 0.29247
## ModsL.d:gend.mf:cond.c 1.33486 1.42790 0.935 0.35041
## ModsSL.d:gend.mf:cond.c 4.30345 1.67926 2.563 0.01073 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.08224, Adjusted R-squared: 0.04091
## F-statistic: 1.99 on 19 and 422 DF, p-value: 0.008085
# Action 14
summary(lm(act14 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1818 -1.2411 0.3129 1.5849 3.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38552 0.20939 1.841 0.0667 .
## ModsSC.d 0.11613 0.39029 0.298 0.7663
## ModsC.d -0.34138 0.35685 -0.957 0.3396
## ModsL.d 0.75258 0.42107 1.787 0.0750 .
## ModsSL.d -0.59385 0.53390 -1.112 0.2670
## gend.mf -0.16786 0.41879 -0.401 0.6889
## cond.c 0.14166 0.41879 0.338 0.7354
## ModsSC.d:gend.mf 0.77885 0.78059 0.998 0.3193
## ModsC.d:gend.mf -1.32041 0.71370 -1.850 0.0654 .
## ModsL.d:gend.mf 0.79166 0.84214 0.940 0.3480
## ModsSL.d:gend.mf -1.49880 1.06780 -1.404 0.1616
## ModsSC.d:cond.c 0.44735 0.78059 0.573 0.5671
## ModsC.d:cond.c -0.44812 0.71370 -0.628 0.5306
## ModsL.d:cond.c 0.16396 0.84214 0.195 0.8458
## ModsSL.d:cond.c 1.27501 1.06780 1.194 0.2335
## gend.mf:cond.c 0.06589 0.83757 0.079 0.9374
## ModsSC.d:gend.mf:cond.c -0.87248 1.56118 -0.559 0.5767
## ModsC.d:gend.mf:cond.c -0.25297 1.42739 -0.177 0.8595
## ModsL.d:gend.mf:cond.c -0.87712 1.68427 -0.521 0.6030
## ModsSL.d:gend.mf:cond.c 2.26745 2.13559 1.062 0.2893
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.033 on 266 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.06875, Adjusted R-squared: 0.002233
## F-statistic: 1.034 on 19 and 266 DF, p-value: 0.4224
# Action 15
summary(lm(act15 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5294 -1.7357 0.3167 1.4947 4.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07935 0.17704 -0.448 0.65427
## ModsSC.d -0.26291 0.32298 -0.814 0.41616
## ModsC.d 0.17671 0.30040 0.588 0.55673
## ModsL.d 1.08462 0.38262 2.835 0.00484 **
## ModsSL.d 0.21834 0.41487 0.526 0.59901
## gend.mf -0.74248 0.35408 -2.097 0.03669 *
## cond.c 0.13573 0.35408 0.383 0.70169
## ModsSC.d:gend.mf 1.34367 0.64595 2.080 0.03821 *
## ModsC.d:gend.mf 0.36541 0.60081 0.608 0.54344
## ModsL.d:gend.mf 1.55694 0.76524 2.035 0.04262 *
## ModsSL.d:gend.mf -0.02121 0.82973 -0.026 0.97962
## ModsSC.d:cond.c 0.17974 0.64595 0.278 0.78097
## ModsC.d:cond.c -0.67947 0.60081 -1.131 0.25883
## ModsL.d:cond.c -1.27961 0.76524 -1.672 0.09535 .
## ModsSL.d:cond.c 0.67558 0.82973 0.814 0.41606
## gend.mf:cond.c 0.83525 0.70816 1.179 0.23899
## ModsSC.d:gend.mf:cond.c -1.63287 1.29190 -1.264 0.20707
## ModsC.d:gend.mf:cond.c -2.91248 1.20161 -2.424 0.01585 *
## ModsL.d:gend.mf:cond.c 0.60249 1.53047 0.394 0.69406
## ModsSL.d:gend.mf:cond.c 1.37070 1.65947 0.826 0.40935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.021 on 364 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.09033, Adjusted R-squared: 0.04285
## F-statistic: 1.902 on 19 and 364 DF, p-value: 0.013
# Action 16
summary(lm(act16 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -0.9811 0.2963 1.4800 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10136 0.18177 6.059 3.95e-09 ***
## ModsSC.d -0.46752 0.32784 -1.426 0.1549
## ModsC.d -0.20230 0.29806 -0.679 0.4978
## ModsL.d -0.07833 0.36158 -0.217 0.8286
## ModsSL.d -0.58469 0.45061 -1.298 0.1954
## gend.mf 0.51788 0.36354 1.425 0.1553
## cond.c 0.24901 0.36354 0.685 0.4939
## ModsSC.d:gend.mf 0.32556 0.65568 0.497 0.6199
## ModsC.d:gend.mf -0.99976 0.59612 -1.677 0.0945 .
## ModsL.d:gend.mf -1.06393 0.72316 -1.471 0.1422
## ModsSL.d:gend.mf -0.38454 0.90123 -0.427 0.6699
## ModsSC.d:cond.c -0.18335 0.65568 -0.280 0.7799
## ModsC.d:cond.c 0.01133 0.59612 0.019 0.9848
## ModsL.d:cond.c -0.54506 0.72316 -0.754 0.4516
## ModsSL.d:cond.c -0.28234 0.90123 -0.313 0.7543
## gend.mf:cond.c -0.05684 0.72708 -0.078 0.9377
## ModsSC.d:gend.mf:cond.c -0.29670 1.31137 -0.226 0.8212
## ModsC.d:gend.mf:cond.c -0.94248 1.19224 -0.791 0.4298
## ModsL.d:gend.mf:cond.c -2.35105 1.44631 -1.626 0.1051
## ModsSL.d:gend.mf:cond.c 3.79017 1.80246 2.103 0.0363 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 311 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.06263, Adjusted R-squared: 0.005359
## F-statistic: 1.094 on 19 and 311 DF, p-value: 0.3561
# Action 17
summary(lm(act17 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4286 -1.3889 -0.0571 1.6000 4.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48316 0.17525 2.757 0.0061 **
## ModsSC.d -0.12899 0.31709 -0.407 0.6844
## ModsC.d -0.20647 0.30216 -0.683 0.4948
## ModsL.d 0.28635 0.35115 0.815 0.4153
## ModsSL.d 0.43976 0.42574 1.033 0.3023
## gend.mf 0.02719 0.35050 0.078 0.9382
## cond.c -0.44012 0.35050 -1.256 0.2100
## ModsSC.d:gend.mf 0.15842 0.63418 0.250 0.8029
## ModsC.d:gend.mf -0.06667 0.60433 -0.110 0.9122
## ModsL.d:gend.mf 0.71951 0.70231 1.024 0.3062
## ModsSL.d:gend.mf -0.95636 0.85148 -1.123 0.2620
## ModsSC.d:cond.c 1.23179 0.63418 1.942 0.0528 .
## ModsC.d:cond.c -0.66722 0.60433 -1.104 0.2702
## ModsL.d:cond.c 0.35825 0.70231 0.510 0.6103
## ModsSL.d:cond.c 2.13596 0.85148 2.509 0.0125 *
## gend.mf:cond.c -0.56131 0.70100 -0.801 0.4238
## ModsSC.d:gend.mf:cond.c 0.09919 1.26837 0.078 0.9377
## ModsC.d:gend.mf:cond.c -0.69623 1.20865 -0.576 0.5649
## ModsL.d:gend.mf:cond.c -0.41781 1.40462 -0.297 0.7663
## ModsSL.d:gend.mf:cond.c 4.00298 1.70296 2.351 0.0192 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 396 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.0642, Adjusted R-squared: 0.0193
## F-statistic: 1.43 on 19 and 396 DF, p-value: 0.1086
# Action 18
summary(lm(act18 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.2632 0.2372 1.3333 3.3846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.77048 0.18463 4.173 3.84e-05 ***
## ModsSC.d -0.54935 0.31679 -1.734 0.0838 .
## ModsC.d -0.28341 0.30321 -0.935 0.3506
## ModsL.d 0.21644 0.33959 0.637 0.5243
## ModsSL.d -0.14388 0.42704 -0.337 0.7364
## gend.mf -0.08876 0.36926 -0.240 0.8102
## cond.c -0.01539 0.36926 -0.042 0.9668
## ModsSC.d:gend.mf 0.79800 0.63358 1.260 0.2087
## ModsC.d:gend.mf -0.05205 0.60641 -0.086 0.9317
## ModsL.d:gend.mf 0.25777 0.67919 0.380 0.7045
## ModsSL.d:gend.mf 0.58555 0.85407 0.686 0.4934
## ModsSC.d:cond.c 0.50894 0.63358 0.803 0.4224
## ModsC.d:cond.c -0.45875 0.60641 -0.756 0.4499
## ModsL.d:cond.c 0.16185 0.67919 0.238 0.8118
## ModsSL.d:cond.c 0.59552 0.85407 0.697 0.4861
## gend.mf:cond.c 0.18519 0.73851 0.251 0.8022
## ModsSC.d:gend.mf:cond.c -0.20260 1.26716 -0.160 0.8731
## ModsC.d:gend.mf:cond.c -1.57025 1.21282 -1.295 0.1963
## ModsL.d:gend.mf:cond.c -1.33525 1.35838 -0.983 0.3263
## ModsSL.d:gend.mf:cond.c 3.15455 1.70814 1.847 0.0657 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.05189, Adjusted R-squared: -0.002371
## F-statistic: 0.9563 on 19 and 332 DF, p-value: 0.5132
# Action 19
summary(lm(act19 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6364 -1.0465 0.3693 1.4390 2.8750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15321 0.20089 5.741 2.68e-08 ***
## ModsSC.d -0.24349 0.35433 -0.687 0.493
## ModsC.d -0.03203 0.31718 -0.101 0.920
## ModsL.d 0.39124 0.43098 0.908 0.365
## ModsSL.d -0.06703 0.43994 -0.152 0.879
## gend.mf -0.30107 0.40177 -0.749 0.454
## cond.c -0.43638 0.40177 -1.086 0.278
## ModsSC.d:gend.mf 1.10663 0.70865 1.562 0.120
## ModsC.d:gend.mf 0.12221 0.63435 0.193 0.847
## ModsL.d:gend.mf 0.74551 0.86197 0.865 0.388
## ModsSL.d:gend.mf -0.53795 0.87987 -0.611 0.541
## ModsSC.d:cond.c 0.50582 0.70865 0.714 0.476
## ModsC.d:cond.c -0.56572 0.63435 -0.892 0.373
## ModsL.d:cond.c -0.34140 0.86197 -0.396 0.692
## ModsSL.d:cond.c 0.63903 0.87987 0.726 0.468
## gend.mf:cond.c 0.15618 0.80355 0.194 0.846
## ModsSC.d:gend.mf:cond.c -1.54506 1.41730 -1.090 0.277
## ModsC.d:gend.mf:cond.c -1.13612 1.26871 -0.895 0.371
## ModsL.d:gend.mf:cond.c -0.86729 1.72394 -0.503 0.615
## ModsSL.d:gend.mf:cond.c 0.77186 1.75975 0.439 0.661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.809 on 254 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.05536, Adjusted R-squared: -0.0153
## F-statistic: 0.7834 on 19 and 254 DF, p-value: 0.7262
# Action 20
summary(lm(act20 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7000 -1.1616 0.4211 1.4211 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.266144 0.188211 6.727 8.67e-11 ***
## ModsSC.d -0.062229 0.313841 -0.198 0.8430
## ModsC.d -0.241304 0.297672 -0.811 0.4182
## ModsL.d -0.015705 0.355802 -0.044 0.9648
## ModsSL.d -0.561382 0.430179 -1.305 0.1929
## gend.mf -0.193002 0.376421 -0.513 0.6085
## cond.c -0.671660 0.376421 -1.784 0.0754 .
## ModsSC.d:gend.mf 0.368507 0.627681 0.587 0.5576
## ModsC.d:gend.mf -0.548986 0.595344 -0.922 0.3572
## ModsL.d:gend.mf 0.525458 0.711604 0.738 0.4608
## ModsSL.d:gend.mf -0.383189 0.860358 -0.445 0.6564
## ModsSC.d:cond.c 0.124943 0.627681 0.199 0.8424
## ModsC.d:cond.c 0.221340 0.595344 0.372 0.7103
## ModsL.d:cond.c -0.195884 0.711604 -0.275 0.7833
## ModsSL.d:cond.c 0.714517 0.860358 0.830 0.4069
## gend.mf:cond.c -0.478108 0.752843 -0.635 0.5259
## ModsSC.d:gend.mf:cond.c 0.738209 1.255363 0.588 0.5569
## ModsC.d:gend.mf:cond.c -0.005866 1.190688 -0.005 0.9961
## ModsL.d:gend.mf:cond.c -0.120137 1.423207 -0.084 0.9328
## ModsSL.d:gend.mf:cond.c 3.392394 1.720715 1.972 0.0496 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.795 on 302 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.05394, Adjusted R-squared: -0.00558
## F-statistic: 0.9063 on 19 and 302 DF, p-value: 0.5755
# Action 21
summary(lm(act21 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1250 -1.7424 0.0508 1.7059 4.2727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02111 0.18603 0.113 0.9097
## ModsSC.d -0.67189 0.33227 -2.022 0.0439 *
## ModsC.d -0.28277 0.32685 -0.865 0.3875
## ModsL.d 0.44526 0.36127 1.232 0.2185
## ModsSL.d 0.33851 0.44928 0.753 0.4517
## gend.mf 0.35064 0.37206 0.942 0.3466
## cond.c 0.15694 0.37206 0.422 0.6734
## ModsSC.d:gend.mf -0.68545 0.66454 -1.031 0.3030
## ModsC.d:gend.mf -0.56682 0.65370 -0.867 0.3864
## ModsL.d:gend.mf -0.30124 0.72255 -0.417 0.6770
## ModsSL.d:gend.mf -0.16987 0.89857 -0.189 0.8502
## ModsSC.d:cond.c 0.52012 0.66454 0.783 0.4343
## ModsC.d:cond.c -0.21597 0.65370 -0.330 0.7413
## ModsL.d:cond.c -0.43253 0.72255 -0.599 0.5498
## ModsSL.d:cond.c 0.52383 0.89857 0.583 0.5603
## gend.mf:cond.c -0.09959 0.74411 -0.134 0.8936
## ModsSC.d:gend.mf:cond.c 0.56366 1.32908 0.424 0.6717
## ModsC.d:gend.mf:cond.c -1.83277 1.30740 -1.402 0.1618
## ModsL.d:gend.mf:cond.c -1.88494 1.44510 -1.304 0.1929
## ModsSL.d:gend.mf:cond.c 2.53805 1.79713 1.412 0.1587
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 381 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05638, Adjusted R-squared: 0.009323
## F-statistic: 1.198 on 19 and 381 DF, p-value: 0.2555
# Action 22
summary(lm(act22 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2222 -1.4571 -0.0508 1.7429 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.392787 0.182509 2.152 0.0320 *
## ModsSC.d -0.604548 0.320713 -1.885 0.0602 .
## ModsC.d -0.105287 0.302563 -0.348 0.7280
## ModsL.d 0.240467 0.363540 0.661 0.5087
## ModsSL.d 0.692180 0.415200 1.667 0.0963 .
## gend.mf 0.477584 0.365019 1.308 0.1915
## cond.c 0.002115 0.365019 0.006 0.9954
## ModsSC.d:gend.mf 0.400483 0.641426 0.624 0.5328
## ModsC.d:gend.mf -0.819250 0.605126 -1.354 0.1766
## ModsL.d:gend.mf -0.482187 0.727081 -0.663 0.5076
## ModsSL.d:gend.mf -0.647518 0.830401 -0.780 0.4360
## ModsSC.d:cond.c 0.261232 0.641426 0.407 0.6840
## ModsC.d:cond.c -0.377115 0.605126 -0.623 0.5335
## ModsL.d:cond.c -0.324179 0.727081 -0.446 0.6559
## ModsSL.d:cond.c -0.549828 0.830401 -0.662 0.5083
## gend.mf:cond.c 0.416822 0.730038 0.571 0.5684
## ModsSC.d:gend.mf:cond.c -0.398063 1.282851 -0.310 0.7565
## ModsC.d:gend.mf:cond.c -2.000155 1.210252 -1.653 0.0992 .
## ModsL.d:gend.mf:cond.c -2.963171 1.454161 -2.038 0.0423 *
## ModsSL.d:gend.mf:cond.c -1.721397 1.660801 -1.036 0.3006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.976 on 382 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.0681, Adjusted R-squared: 0.02175
## F-statistic: 1.469 on 19 and 382 DF, p-value: 0.0928
# Action 23
summary(lm(act23 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -2.000 0.125 1.920 4.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22113 0.25111 0.881 0.3793
## ModsSC.d 0.08367 0.43322 0.193 0.8470
## ModsC.d -0.45588 0.39257 -1.161 0.2465
## ModsL.d 0.29861 0.45210 0.660 0.5095
## ModsSL.d 0.14023 0.56027 0.250 0.8025
## gend.mf 0.42440 0.50223 0.845 0.3988
## cond.c -0.56726 0.50223 -1.129 0.2597
## ModsSC.d:gend.mf 0.82155 0.86644 0.948 0.3439
## ModsC.d:gend.mf -0.81601 0.78513 -1.039 0.2996
## ModsL.d:gend.mf -0.69603 0.90421 -0.770 0.4421
## ModsSL.d:gend.mf -1.64713 1.12055 -1.470 0.1427
## ModsSC.d:cond.c 0.62130 0.86644 0.717 0.4739
## ModsC.d:cond.c 0.03343 0.78513 0.043 0.9661
## ModsL.d:cond.c -0.88492 0.90421 -0.979 0.3286
## ModsSL.d:cond.c 2.24453 1.12055 2.003 0.0462 *
## gend.mf:cond.c -0.59881 1.00445 -0.596 0.5516
## ModsSC.d:gend.mf:cond.c 1.97962 1.73289 1.142 0.2543
## ModsC.d:gend.mf:cond.c -0.94464 1.57027 -0.602 0.5480
## ModsL.d:gend.mf:cond.c -1.46111 1.80842 -0.808 0.4198
## ModsSL.d:gend.mf:cond.c 2.24426 2.24110 1.001 0.3175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.253 on 272 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.07369, Adjusted R-squared: 0.008984
## F-statistic: 1.139 on 19 and 272 DF, p-value: 0.3118
# Action 24
summary(lm(act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8750 -0.0429 1.6429 4.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.32596 0.17959 -1.815 0.0703 .
## ModsSC.d 0.29388 0.34053 0.863 0.3887
## ModsC.d -0.11114 0.30273 -0.367 0.7137
## ModsL.d 0.30070 0.37646 0.799 0.4249
## ModsSL.d 0.08290 0.43636 0.190 0.8494
## gend.mf -0.29127 0.35917 -0.811 0.4179
## cond.c -0.87659 0.35917 -2.441 0.0151 *
## ModsSC.d:gend.mf 1.44634 0.68106 2.124 0.0343 *
## ModsC.d:gend.mf 0.19880 0.60545 0.328 0.7428
## ModsL.d:gend.mf 0.74179 0.75291 0.985 0.3251
## ModsSL.d:gend.mf -0.30596 0.87273 -0.351 0.7261
## ModsSC.d:cond.c 1.03621 0.68106 1.521 0.1289
## ModsC.d:cond.c -0.05476 0.60545 -0.090 0.9280
## ModsL.d:cond.c 0.90607 0.75291 1.203 0.2295
## ModsSL.d:cond.c 1.02937 0.87273 1.179 0.2389
## gend.mf:cond.c -0.86045 0.71835 -1.198 0.2317
## ModsSC.d:gend.mf:cond.c 0.54122 1.36213 0.397 0.6913
## ModsC.d:gend.mf:cond.c -2.01018 1.21090 -1.660 0.0977 .
## ModsL.d:gend.mf:cond.c 1.60150 1.50583 1.064 0.2882
## ModsSL.d:gend.mf:cond.c 1.38823 1.74545 0.795 0.4269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.083 on 395 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.05818, Adjusted R-squared: 0.01287
## F-statistic: 1.284 on 19 and 395 DF, p-value: 0.1894
# Action 25
summary(lm(act25 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6087 -0.8846 0.2222 1.3913 3.4000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8866 0.1555 5.702 2.22e-08 ***
## ModsSC.d -0.9806 0.2940 -3.336 0.000926 ***
## ModsC.d -0.3663 0.2657 -1.379 0.168677
## ModsL.d 0.3280 0.3080 1.065 0.287454
## ModsSL.d 0.3241 0.4104 0.790 0.430033
## gend.mf 0.0220 0.3110 0.071 0.943624
## cond.c -0.1983 0.3110 -0.638 0.524060
## ModsSC.d:gend.mf 0.2205 0.5880 0.375 0.707830
## ModsC.d:gend.mf -0.1737 0.5314 -0.327 0.743901
## ModsL.d:gend.mf 0.2987 0.6160 0.485 0.628047
## ModsSL.d:gend.mf -0.2769 0.8207 -0.337 0.735988
## ModsSC.d:cond.c 0.7044 0.5880 1.198 0.231568
## ModsC.d:cond.c -0.3722 0.5314 -0.700 0.484011
## ModsL.d:cond.c 0.7526 0.6160 1.222 0.222448
## ModsSL.d:cond.c 1.4434 0.8207 1.759 0.079354 .
## gend.mf:cond.c -0.3607 0.6220 -0.580 0.562283
## ModsSC.d:gend.mf:cond.c 1.0575 1.1760 0.899 0.369043
## ModsC.d:gend.mf:cond.c -1.1650 1.0628 -1.096 0.273632
## ModsL.d:gend.mf:cond.c -0.7480 1.2320 -0.607 0.544060
## ModsSL.d:gend.mf:cond.c 2.2038 1.6415 1.343 0.180119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.837 on 424 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.07813, Adjusted R-squared: 0.03682
## F-statistic: 1.891 on 19 and 424 DF, p-value: 0.0133
# Action 26
summary(lm(act26 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2857 -1.1562 0.5577 1.3947 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.553504 0.236263 6.575 3.92e-10 ***
## ModsSC.d 0.083401 0.395694 0.211 0.8333
## ModsC.d 0.082508 0.362558 0.228 0.8202
## ModsL.d 0.146496 0.490109 0.299 0.7653
## ModsSL.d -0.749933 0.513059 -1.462 0.1454
## gend.mf -0.222393 0.472525 -0.471 0.6384
## cond.c 0.001745 0.472525 0.004 0.9971
## ModsSC.d:gend.mf 0.115250 0.791388 0.146 0.8844
## ModsC.d:gend.mf -0.124631 0.725117 -0.172 0.8637
## ModsL.d:gend.mf 1.622393 0.980218 1.655 0.0994 .
## ModsSL.d:gend.mf 1.115250 1.026118 1.087 0.2784
## ModsSC.d:cond.c -0.394602 0.791388 -0.499 0.6186
## ModsC.d:cond.c -0.140436 0.725117 -0.194 0.8466
## ModsL.d:cond.c -0.601745 0.980218 -0.614 0.5400
## ModsSL.d:cond.c 0.224445 1.026118 0.219 0.8271
## gend.mf:cond.c -0.234259 0.945050 -0.248 0.8045
## ModsSC.d:gend.mf:cond.c 1.353307 1.582776 0.855 0.3935
## ModsC.d:gend.mf:cond.c -2.138360 1.450234 -1.474 0.1419
## ModsL.d:gend.mf:cond.c -0.965741 1.960436 -0.493 0.6228
## ModsSL.d:gend.mf:cond.c 2.115212 2.052236 1.031 0.3039
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.844 on 206 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.06431, Adjusted R-squared: -0.02199
## F-statistic: 0.7452 on 19 and 206 DF, p-value: 0.7689
# Action 27
summary(lm(act27 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2143 0.1667 1.4167 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.62126 0.19568 3.175 0.00166 **
## ModsSC.d -0.14209 0.32920 -0.432 0.66632
## ModsC.d 0.20691 0.31500 0.657 0.51177
## ModsL.d 0.49616 0.37476 1.324 0.18654
## ModsSL.d 0.73480 0.40620 1.809 0.07147 .
## gend.mf 0.40926 0.39136 1.046 0.29653
## cond.c -0.68874 0.39136 -1.760 0.07946 .
## ModsSC.d:gend.mf 0.54907 0.65840 0.834 0.40498
## ModsC.d:gend.mf -0.10529 0.62999 -0.167 0.86738
## ModsL.d:gend.mf -0.31078 0.74952 -0.415 0.67871
## ModsSL.d:gend.mf -0.28805 0.81240 -0.355 0.72316
## ModsSC.d:cond.c 0.06374 0.65840 0.097 0.92294
## ModsC.d:cond.c 0.05620 0.62999 0.089 0.92897
## ModsL.d:cond.c 0.34783 0.74952 0.464 0.64293
## ModsSL.d:cond.c 1.30996 0.81240 1.612 0.10792
## gend.mf:cond.c -0.17608 0.78272 -0.225 0.82216
## ModsSC.d:gend.mf:cond.c -1.07392 1.31679 -0.816 0.41541
## ModsC.d:gend.mf:cond.c -2.19376 1.25999 -1.741 0.08270 .
## ModsL.d:gend.mf:cond.c 0.85790 1.49905 0.572 0.56755
## ModsSL.d:gend.mf:cond.c 0.60033 1.62479 0.369 0.71203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 297 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.0834, Adjusted R-squared: 0.02476
## F-statistic: 1.422 on 19 and 297 DF, p-value: 0.1144
# Action 28
summary(lm(act28 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6250 -1.1321 0.2667 1.5522 3.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.996908 0.181831 5.483 8.01e-08 ***
## ModsSC.d -0.178726 0.310887 -0.575 0.566
## ModsC.d 0.290238 0.295226 0.983 0.326
## ModsL.d -0.124765 0.353475 -0.353 0.724
## ModsSL.d -0.003158 0.442139 -0.007 0.994
## gend.mf 0.128407 0.363662 0.353 0.724
## cond.c -0.128407 0.363662 -0.353 0.724
## ModsSC.d:gend.mf -0.192043 0.621775 -0.309 0.758
## ModsC.d:gend.mf -0.402699 0.590452 -0.682 0.496
## ModsL.d:gend.mf -0.644121 0.706951 -0.911 0.363
## ModsSL.d:gend.mf -1.032573 0.884278 -1.168 0.244
## ModsSC.d:cond.c -0.785230 0.621775 -1.263 0.207
## ModsC.d:cond.c -0.238478 0.590452 -0.404 0.687
## ModsL.d:cond.c -0.315879 0.706951 -0.447 0.655
## ModsSL.d:cond.c 0.515907 0.884278 0.583 0.560
## gend.mf:cond.c -1.054298 0.727325 -1.450 0.148
## ModsSC.d:gend.mf:cond.c 0.827025 1.243549 0.665 0.506
## ModsC.d:gend.mf:cond.c 0.388067 1.180903 0.329 0.743
## ModsL.d:gend.mf:cond.c -1.314274 1.413902 -0.930 0.353
## ModsSL.d:gend.mf:cond.c 1.112631 1.768555 0.629 0.530
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 352 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: -0.006203
## F-statistic: 0.8796 on 19 and 352 DF, p-value: 0.6089
# Action 29
summary(lm(act29 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6923 -1.0447 0.3077 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10986 0.17387 6.383 5.54e-10 ***
## ModsSC.d -0.02144 0.30394 -0.071 0.944
## ModsC.d -0.16381 0.29045 -0.564 0.573
## ModsL.d 0.05252 0.32813 0.160 0.873
## ModsSL.d 0.24238 0.41146 0.589 0.556
## gend.mf -0.04979 0.34774 -0.143 0.886
## cond.c -0.06861 0.34774 -0.197 0.844
## ModsSC.d:gend.mf 0.34567 0.60788 0.569 0.570
## ModsC.d:gend.mf -0.21205 0.58090 -0.365 0.715
## ModsL.d:gend.mf 0.72503 0.65625 1.105 0.270
## ModsSL.d:gend.mf -0.10470 0.82292 -0.127 0.899
## ModsSC.d:cond.c 0.32987 0.60788 0.543 0.588
## ModsC.d:cond.c 0.20409 0.58090 0.351 0.726
## ModsL.d:cond.c 0.25646 0.65625 0.391 0.696
## ModsSL.d:cond.c 0.33079 0.82292 0.402 0.688
## gend.mf:cond.c 0.24180 0.69548 0.348 0.728
## ModsSC.d:gend.mf:cond.c -0.90976 1.21575 -0.748 0.455
## ModsC.d:gend.mf:cond.c 0.46203 1.16179 0.398 0.691
## ModsL.d:gend.mf:cond.c -0.33178 1.31250 -0.253 0.801
## ModsSL.d:gend.mf:cond.c 1.33385 1.64584 0.810 0.418
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.791 on 348 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01904, Adjusted R-squared: -0.03452
## F-statistic: 0.3554 on 19 and 348 DF, p-value: 0.995
# Action 30
summary(lm(act30 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (ModsSC.d + ModsC.d + ModsL.d + ModsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.545 -1.059 0.400 1.466 3.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.96881 0.19543 4.957 1.14e-06 ***
## ModsSC.d 0.07513 0.32157 0.234 0.8154
## ModsC.d -0.08817 0.30976 -0.285 0.7761
## ModsL.d 0.29918 0.36094 0.829 0.4078
## ModsSL.d -0.01995 0.43233 -0.046 0.9632
## gend.mf -0.18650 0.39086 -0.477 0.6336
## cond.c 0.06350 0.39086 0.162 0.8710
## ModsSC.d:gend.mf -0.32562 0.64314 -0.506 0.6130
## ModsC.d:gend.mf -0.40813 0.61952 -0.659 0.5105
## ModsL.d:gend.mf 0.48385 0.72187 0.670 0.5032
## ModsSL.d:gend.mf -0.46123 0.86466 -0.533 0.5941
## ModsSC.d:cond.c 1.11529 0.64314 1.734 0.0838 .
## ModsC.d:cond.c -0.12364 0.61952 -0.200 0.8419
## ModsL.d:cond.c -0.39115 0.72187 -0.542 0.5883
## ModsSL.d:cond.c 0.53877 0.86466 0.623 0.5336
## gend.mf:cond.c 0.60603 0.78172 0.775 0.4387
## ModsSC.d:gend.mf:cond.c 0.55155 1.28629 0.429 0.6684
## ModsC.d:gend.mf:cond.c -0.15241 1.23904 -0.123 0.9022
## ModsL.d:gend.mf:cond.c -2.28406 1.44375 -1.582 0.1146
## ModsSL.d:gend.mf:cond.c 1.68943 1.72932 0.977 0.3293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.04439, Adjusted R-squared: -0.0103
## F-statistic: 0.8117 on 19 and 332 DF, p-value: 0.6931
iv. Conservatives
# Action 1
con.b1 <- lm(act1 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b1) # yes, higher than 0
##
## Call:
## lm(formula = act1 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.646 -1.962 0.038 2.038 3.490
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.49000 0.21507 -2.278 0.023181 *
## ConsSC.d 0.02846 0.34266 0.083 0.933841
## ConsM.d 0.45196 0.26720 1.691 0.091446 .
## ConsL.d 1.13615 0.34266 3.316 0.000989 ***
## ConsSL.d 0.66143 0.42239 1.566 0.118078
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.151 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.0298, Adjusted R-squared: 0.02106
## F-statistic: 3.409 on 4 and 444 DF, p-value: 0.00923
# Action 2
con.b2 <- lm(act2 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b2) # yes, higher than 0
##
## Call:
## lm(formula = act2 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.2212 0.1077 1.7788 2.1077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89231 0.22392 3.985 8.58e-05 ***
## ConsSC.d 0.06421 0.34784 0.185 0.8537
## ConsM.d 0.32893 0.28104 1.170 0.2428
## ConsL.d 0.67912 0.35741 1.900 0.0584 .
## ConsSL.d 0.14936 0.43121 0.346 0.7293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 285 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01519, Adjusted R-squared: 0.001372
## F-statistic: 1.099 on 4 and 285 DF, p-value: 0.3572
# Action 3
con.b3 <- lm(act3 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b3) # nothing
##
## Call:
## lm(formula = act3 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.9837 0.0163 1.4167 3.8852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4167 0.2051 -2.031 0.0428 *
## ConsSC.d -0.4686 0.3291 -1.424 0.1552
## ConsM.d 0.4004 0.2530 1.582 0.1143
## ConsL.d 0.2255 0.3185 0.708 0.4794
## ConsSL.d 0.7881 0.3968 1.986 0.0477 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 439 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02777, Adjusted R-squared: 0.01891
## F-statistic: 3.134 on 4 and 439 DF, p-value: 0.01467
# Action 4
con.b4 <- lm(act4 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b4) # nothing
##
## Call:
## lm(formula = act4 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.7938 0.2062 2.0051 3.2877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.28767 0.25299 -1.137 0.2563
## ConsSC.d 0.48375 0.39449 1.226 0.2209
## ConsM.d 0.08142 0.30530 0.267 0.7899
## ConsL.d 0.66698 0.38021 1.754 0.0802 .
## ConsSL.d 0.77043 0.47447 1.624 0.1053
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.162 on 366 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01709, Adjusted R-squared: 0.006351
## F-statistic: 1.591 on 4 and 366 DF, p-value: 0.176
# Action 5
con.b5 <- lm(act5 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b5) # yes, higher than 0
##
## Call:
## lm(formula = act5 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4048 -1.0917 0.2653 1.5952 2.5833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9726 0.2190 4.441 1.27e-05 ***
## ConsSC.d -0.2379 0.3456 -0.688 0.492
## ConsM.d 0.1191 0.2830 0.421 0.674
## ConsL.d 0.4322 0.3624 1.192 0.234
## ConsSL.d -0.5559 0.4403 -1.263 0.208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 292 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.01867, Adjusted R-squared: 0.005229
## F-statistic: 1.389 on 4 and 292 DF, p-value: 0.2378
# Action 6
con.b6 <- lm(act6 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b6) # yes, higher than 0
##
## Call:
## lm(formula = act6 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4348 -1.3099 0.6706 1.6706 2.1296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.32941 0.19663 6.761 5.67e-11 ***
## ConsSC.d -0.45904 0.31548 -1.455 0.147
## ConsM.d -0.01955 0.24861 -0.079 0.937
## ConsL.d 0.10537 0.33183 0.318 0.751
## ConsSL.d -0.14191 0.37599 -0.377 0.706
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 354 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.00896, Adjusted R-squared: -0.002238
## F-statistic: 0.8001 on 4 and 354 DF, p-value: 0.5257
# Action 7
con.b7 <- lm(act7 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b7) # nothing
##
## Call:
## lm(formula = act7 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.8652 0.1348 1.6286 3.3140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3140 0.2252 -1.394 0.164
## ConsSC.d 0.1561 0.3568 0.437 0.662
## ConsM.d 0.1791 0.2743 0.653 0.514
## ConsL.d 0.2801 0.3531 0.793 0.428
## ConsSL.d 0.6854 0.4188 1.636 0.103
##
## Residual standard error: 2.089 on 410 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.006798, Adjusted R-squared: -0.002892
## F-statistic: 0.7016 on 4 and 410 DF, p-value: 0.5912
# Action 8
con.b8 <- lm(act8 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b8) # marginally higher than 0
##
## Call:
## lm(formula = act8 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.625 -1.855 -0.287 1.713 4.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7130 0.2041 -3.493 0.000522 ***
## ConsSC.d -0.4320 0.3269 -1.321 0.186978
## ConsM.d 0.2702 0.2531 1.068 0.286207
## ConsL.d 1.1892 0.3362 3.537 0.000445 ***
## ConsSL.d 1.3380 0.3926 3.408 0.000710 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 476 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.06121, Adjusted R-squared: 0.05332
## F-statistic: 7.759 on 4 and 476 DF, p-value: 4.609e-06
# Action 9
con.b9 <- lm(act9 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b9) # yes, higher than 0
##
## Call:
## lm(formula = act9 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5781 -1.5781 0.2525 1.7167 3.7167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2525 0.1976 -1.278 0.20196
## ConsSC.d -0.4641 0.3217 -1.443 0.14978
## ConsM.d 0.4525 0.2437 1.857 0.06401 .
## ConsL.d 0.8307 0.3154 2.634 0.00874 **
## ConsSL.d 0.4470 0.3827 1.168 0.24343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.966 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03759, Adjusted R-squared: 0.02892
## F-statistic: 4.336 on 4 and 444 DF, p-value: 0.00189
# Action 10
con.b10 <- lm(act10 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b10) # yes, higher than 0
##
## Call:
## lm(formula = act10 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2571 0.2025 -1.270 0.204753
## ConsSC.d -0.3605 0.3230 -1.116 0.264918
## ConsM.d 0.3375 0.2503 1.349 0.178086
## ConsL.d 0.9341 0.3275 2.852 0.004531 **
## ConsSL.d 1.4071 0.3855 3.650 0.000292 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
# Action 11
con.b11 <- lm(act11 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b11) # yes, higher than 0
##
## Call:
## lm(formula = act11 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6585 -0.8154 0.2741 1.3415 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.81538 0.23160 3.521 0.000495 ***
## ConsSC.d -0.08069 0.35327 -0.228 0.819476
## ConsM.d -0.08946 0.28190 -0.317 0.751199
## ConsL.d 0.84315 0.37240 2.264 0.024260 *
## ConsSL.d 0.72628 0.44600 1.628 0.104453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 309 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03501, Adjusted R-squared: 0.02252
## F-statistic: 2.803 on 4 and 309 DF, p-value: 0.02604
# Action 12
con.b12 <- lm(act12 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b12) # yes, higher than 0
##
## Call:
## lm(formula = act12 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.736 -2.158 0.000 2.000 3.842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6000 0.2262 -2.653 0.008317 **
## ConsSC.d -0.2421 0.3632 -0.667 0.505456
## ConsM.d 0.6000 0.2834 2.117 0.034871 *
## ConsL.d 1.3358 0.3715 3.596 0.000366 ***
## ConsSL.d 0.9333 0.4708 1.982 0.048158 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.146 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0525, Adjusted R-squared: 0.04253
## F-statistic: 5.264 on 4 and 380 DF, p-value: 0.0003892
# Action 13
con.b13 <- lm(act13 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b13) # nothing
##
## Call:
## lm(formula = act13 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3438 -1.9149 0.0851 1.6562 3.5781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2174 0.2167 -1.003 0.316
## ConsSC.d -0.3607 0.3384 -1.066 0.287
## ConsM.d 0.1323 0.2645 0.500 0.617
## ConsL.d 0.5611 0.3384 1.658 0.098 .
## ConsSL.d 0.4745 0.4129 1.149 0.251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.079 on 438 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01713, Adjusted R-squared: 0.008155
## F-statistic: 1.909 on 4 and 438 DF, p-value: 0.108
# Action 14
con.b14 <- lm(act14 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b14) # yes, higher than 0
##
## Call:
## lm(formula = act14 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9487 -1.4219 -0.0198 1.6780 2.9091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32203 0.26446 1.218 0.224
## ConsSC.d 0.17797 0.41606 0.428 0.669
## ConsM.d 0.09984 0.31966 0.312 0.755
## ConsL.d 0.62668 0.41923 1.495 0.136
## ConsSL.d -0.23112 0.50746 -0.455 0.649
##
## Residual standard error: 2.031 on 283 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.01158, Adjusted R-squared: -0.002388
## F-statistic: 0.829 on 4 and 283 DF, p-value: 0.5076
# Action 15
con.b15 <- lm(act15 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b15) # yes, higher than 0
##
## Call:
## lm(formula = act15 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8889 -2.1024 0.1111 1.8916 3.3559
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.108434 0.224818 0.482 0.6299
## ConsSC.d -0.464366 0.348778 -1.331 0.1839
## ConsM.d -0.006024 0.275344 -0.022 0.9826
## ConsL.d 0.780455 0.379166 2.058 0.0402 *
## ConsSL.d 0.204066 0.426191 0.479 0.6323
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.048 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.02508, Adjusted R-squared: 0.01482
## F-statistic: 2.444 on 4 and 380 DF, p-value: 0.0462
# Action 16
con.b16 <- lm(act16 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b16) # yes, higher than 0
##
## Call:
## lm(formula = act16 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0698 -0.9861 0.0357 1.4375 2.4375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98611 0.21629 4.559 7.26e-06 ***
## ConsSC.d -0.42361 0.34198 -1.239 0.216
## ConsM.d -0.02183 0.26615 -0.082 0.935
## ConsL.d 0.08366 0.35371 0.237 0.813
## ConsSL.d 0.04837 0.40364 0.120 0.905
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 327 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.007238, Adjusted R-squared: -0.004905
## F-statistic: 0.5961 on 4 and 327 DF, p-value: 0.6657
# Action 17
con.b17 <- lm(act17 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b17) # yes, higher than 0
##
## Call:
## lm(formula = act17 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2059 -1.4798 -0.1685 1.6230 2.8315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1685 0.2120 0.795 0.4271
## ConsSC.d 0.2085 0.3325 0.627 0.5309
## ConsM.d 0.3112 0.2609 1.193 0.2336
## ConsL.d 0.3815 0.3341 1.142 0.2542
## ConsSL.d 1.0373 0.4033 2.572 0.0105 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2 on 412 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: 0.006815
## F-statistic: 1.714 on 4 and 412 DF, p-value: 0.146
# Action 18
con.b18 <- lm(act18 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b18) # yes, higher than 0
##
## Call:
## lm(formula = act18 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1196 0.1844 1.5135 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4865 0.2141 2.272 0.0237 *
## ConsSC.d -0.2978 0.3314 -0.899 0.3695
## ConsM.d 0.3291 0.2644 1.245 0.2140
## ConsL.d 0.4258 0.3246 1.312 0.1904
## ConsSL.d 0.2721 0.4035 0.674 0.5004
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01769, Adjusted R-squared: 0.006435
## F-statistic: 1.572 on 4 and 349 DF, p-value: 0.1814
# Action 19
con.b19 <- lm(act19 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b19) # yes, higher than 0
##
## Call:
## lm(formula = act19 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.438 -1.050 0.093 1.704 2.093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0500 0.2325 4.515 9.45e-06 ***
## ConsSC.d -0.1430 0.3599 -0.397 0.691
## ConsM.d 0.1801 0.2877 0.626 0.532
## ConsL.d 0.3875 0.3943 0.983 0.327
## ConsSL.d 0.2463 0.4174 0.590 0.556
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 270 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.00789, Adjusted R-squared: -0.006807
## F-statistic: 0.5368 on 4 and 270 DF, p-value: 0.7088
# Action 20
con.b20 <- lm(act20 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b20) # yes, higher than 0
##
## Call:
## lm(formula = act20 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3566 -1.1957 0.6434 1.6434 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.13043 0.21584 5.237 2.96e-07 ***
## ConsSC.d 0.02051 0.32748 0.063 0.950
## ConsM.d 0.22615 0.26741 0.846 0.398
## ConsL.d 0.06522 0.34128 0.191 0.849
## ConsSL.d -0.13043 0.40700 -0.320 0.749
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.793 on 319 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.004413, Adjusted R-squared: -0.008071
## F-statistic: 0.3535 on 4 and 319 DF, p-value: 0.8415
# Action 21
con.b21 <- lm(act21 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b21) # nothing
##
## Call:
## lm(formula = act21 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4407 -1.9401 0.0599 1.5806 3.5806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2683 0.2275 -1.179 0.2390
## ConsSC.d -0.3124 0.3467 -0.901 0.3682
## ConsM.d 0.2084 0.2778 0.750 0.4536
## ConsL.d 0.7090 0.3517 2.016 0.0445 *
## ConsSL.d 0.6925 0.4247 1.631 0.1038
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 398 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02474, Adjusted R-squared: 0.01494
## F-statistic: 2.524 on 4 and 398 DF, p-value: 0.04049
# Action 22
con.b22 <- lm(act22 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b22) # yes, higher than 0
##
## Call:
## lm(formula = act22 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1351 -1.3415 -0.1351 1.7143 3.3279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34146 0.21808 1.566 0.1182
## ConsSC.d -0.66933 0.33390 -2.005 0.0457 *
## ConsM.d -0.05575 0.26603 -0.210 0.8341
## ConsL.d 0.24782 0.34234 0.724 0.4696
## ConsSL.d 0.79367 0.39110 2.029 0.0431 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.975 on 399 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03383, Adjusted R-squared: 0.02414
## F-statistic: 3.492 on 4 and 399 DF, p-value: 0.008087
# Action 23
con.b23 <- lm(act23 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b23) # marginally higher than 0
##
## Call:
## lm(formula = act23 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6154 -2.1138 0.1846 2.1846 3.1846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1846 0.2810 -0.657 0.5116
## ConsSC.d 0.4529 0.4517 1.003 0.3169
## ConsM.d 0.2984 0.3473 0.859 0.3909
## ConsL.d 0.8000 0.4588 1.744 0.0823 .
## ConsSL.d 0.7446 0.5331 1.397 0.1635
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.265 on 288 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.01368, Adjusted R-squared: -2.033e-05
## F-statistic: 0.9985 on 4 and 288 DF, p-value: 0.4087
# Action 24
con.b24 <- lm(act24 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b24) # nothing
##
## Call:
## lm(formula = act24 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9189 -1.8727 0.1273 1.6453 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5000 0.2195 -2.278 0.0232 *
## ConsSC.d 0.3727 0.3588 1.039 0.2995
## ConsM.d 0.2701 0.2714 0.995 0.3202
## ConsL.d 0.3621 0.3530 1.026 0.3056
## ConsSL.d 0.4189 0.4098 1.022 0.3073
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 411 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.004608, Adjusted R-squared: -0.005079
## F-statistic: 0.4757 on 4 and 411 DF, p-value: 0.7536
# Action 25
con.b25 <- lm(act25 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b25) # yes, higher than 0
##
## Call:
## lm(formula = act25 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3429 -0.8925 0.1167 1.5000 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5000 0.1815 2.754 0.00613 **
## ConsSC.d -0.6167 0.2983 -2.067 0.03929 *
## ConsM.d 0.3925 0.2259 1.737 0.08301 .
## ConsL.d 0.6270 0.2938 2.134 0.03338 *
## ConsSL.d 0.8429 0.3592 2.347 0.01938 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 441 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.049, Adjusted R-squared: 0.04037
## F-statistic: 5.68 on 4 and 441 DF, p-value: 0.0001824
# Action 26
con.b26 <- lm(act26 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b26) # yes, higher than 0
##
## Call:
## lm(formula = act26 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5686 -1.2581 0.4595 1.4314 2.0526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56863 0.25593 6.129 3.99e-09 ***
## ConsSC.d -0.02809 0.39470 -0.071 0.943
## ConsM.d 0.04935 0.32099 0.154 0.878
## ConsL.d -0.31056 0.41624 -0.746 0.456
## ConsSL.d -0.62126 0.49124 -1.265 0.207
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.828 on 222 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01216, Adjusted R-squared: -0.005638
## F-statistic: 0.6832 on 4 and 222 DF, p-value: 0.6042
# Action 27
con.b27 <- lm(act27 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b27) # yes, higher than 0
##
## Call:
## lm(formula = act27 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3871 -0.9483 0.2813 1.5577 2.5577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7188 0.2347 3.062 0.00239 **
## ConsSC.d -0.2764 0.3506 -0.789 0.43096
## ConsM.d -0.1676 0.2878 -0.582 0.56088
## ConsL.d 0.4590 0.3653 1.257 0.20984
## ConsSL.d 0.6683 0.4109 1.627 0.10483
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 314 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02704, Adjusted R-squared: 0.01464
## F-statistic: 2.182 on 4 and 314 DF, p-value: 0.07092
# Action 28
con.b28 <- lm(act28 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b28) # yes, higher than 0
##
## Call:
## lm(formula = act28 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3214 -0.9728 0.2105 1.6786 2.2105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3214 0.1991 6.637 1.14e-10 ***
## ConsSC.d -0.5320 0.3131 -1.699 0.0902 .
## ConsM.d -0.3486 0.2496 -1.397 0.1633
## ConsL.d -0.3214 0.3165 -1.016 0.3105
## ConsSL.d -0.1279 0.3834 -0.334 0.7389
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 369 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.009436, Adjusted R-squared: -0.001302
## F-statistic: 0.8787 on 4 and 369 DF, p-value: 0.4767
# Action 29
con.b29 <- lm(act29 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b29) # yes, higher than 0
##
## Call:
## lm(formula = act29 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4828 -1.0893 0.0182 1.5172 2.0182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02410 0.19371 5.287 2.15e-07 ***
## ConsSC.d 0.06519 0.30518 0.214 0.831
## ConsM.d 0.11876 0.24230 0.490 0.624
## ConsL.d -0.04228 0.30683 -0.138 0.890
## ConsSL.d 0.45866 0.38067 1.205 0.229
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.765 on 365 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.005014, Adjusted R-squared: -0.00589
## F-statistic: 0.4598 on 4 and 365 DF, p-value: 0.7652
# Action 30
con.b30 <- lm(act30 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d, data = d)
summary(con.b30) # yes, higher than 0
##
## Call:
## lm(formula = act30 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1765 -1.0435 0.8235 1.8235 1.9875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01250 0.20976 4.827 2.08e-06 ***
## ConsSC.d 0.12785 0.32519 0.393 0.694
## ConsM.d 0.03098 0.26364 0.118 0.907
## ConsL.d 0.16397 0.33618 0.488 0.626
## ConsSL.d 0.13036 0.41196 0.316 0.752
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.001091, Adjusted R-squared: -0.01036
## F-statistic: 0.09525 on 4 and 349 DF, p-value: 0.9839
Significantly higher than 0: 2; 5; 6; 11; 16; 18; 19; 20; 25; 26; 27;
28; 29; 30 Not different from 0: 4, 7, 9, 10, 13, 14, 15, 17, 21, 22, 23
Significantly lower than 0: 1, 3, 8, 12, 24
1. Condition Differences?
# Action 1
con.c.b1 <- lm(act1 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b1) # no
##
## Call:
## lm(formula = act1 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.750 -2.200 0.250 1.765 3.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.478896 0.216361 -2.213 0.02738 *
## ConsSC.d -0.006818 0.343826 -0.020 0.98419
## ConsM.d 0.421824 0.268317 1.572 0.11665
## ConsL.d 1.126623 0.343235 3.282 0.00111 **
## ConsSL.d 0.552323 0.433554 1.274 0.20336
## cond.c -0.185065 0.432722 -0.428 0.66910
## ConsSC.d:cond.c 0.813636 0.687652 1.183 0.23737
## ConsM.d:cond.c -0.398466 0.536635 -0.743 0.45816
## ConsL.d:cond.c 0.389610 0.686471 0.568 0.57063
## ConsSL.d:cond.c -0.577173 0.867107 -0.666 0.50600
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.04314, Adjusted R-squared: 0.02353
## F-statistic: 2.199 on 9 and 439 DF, p-value: 0.02116
# Action 2
con.c.b2 <- lm(act2 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b2) #no
##
## Call:
## lm(formula = act2 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -1.068 0.375 1.615 2.375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8883 0.2248 3.952 9.83e-05 ***
## ConsSC.d 0.0903 0.3523 0.256 0.7979
## ConsM.d 0.3040 0.2833 1.073 0.2841
## ConsL.d 0.6742 0.3610 1.868 0.0629 .
## ConsSL.d 0.1572 0.4339 0.362 0.7174
## cond.c -0.5265 0.4496 -1.171 0.2425
## ConsSC.d:cond.c 0.2731 0.7046 0.388 0.6986
## ConsM.d:cond.c 0.1419 0.5666 0.250 0.8024
## ConsL.d:cond.c 0.4015 0.7220 0.556 0.5786
## ConsSL.d:cond.c 0.6174 0.8679 0.711 0.4774
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.812 on 280 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -0.006049
## F-statistic: 0.8069 on 9 and 280 DF, p-value: 0.6102
# Action 3
con.c.b3 <- lm(act3 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b3) #no
##
## Call:
## lm(formula = act3 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9375 0.0625 1.6410 3.9394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.42063 0.20678 -2.034 0.0425 *
## ConsSC.d -0.45978 0.33083 -1.390 0.1653
## ConsM.d 0.40643 0.25448 1.597 0.1110
## ConsL.d 0.30702 0.32170 0.954 0.3404
## ConsSL.d 0.76303 0.41335 1.846 0.0656 .
## cond.c 0.06349 0.41356 0.154 0.8781
## ConsSC.d:cond.c -0.18146 0.66166 -0.274 0.7840
## ConsM.d:cond.c 0.03310 0.50896 0.065 0.9482
## ConsL.d:cond.c 0.99133 0.64341 1.541 0.1241
## ConsSL.d:cond.c -0.24827 0.82670 -0.300 0.7641
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03846, Adjusted R-squared: 0.01852
## F-statistic: 1.929 on 9 and 434 DF, p-value: 0.04628
# Action 4
con.c.b4 <- lm(act4 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b4) # no
##
## Call:
## lm(formula = act4 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8400 -1.8941 0.1059 2.0378 3.3488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.27442 0.25799 -1.064 0.2882
## ConsSC.d 0.47240 0.39963 1.182 0.2379
## ConsM.d 0.06148 0.30997 0.198 0.8429
## ConsL.d 0.70957 0.38633 1.837 0.0671 .
## ConsSL.d 0.73758 0.49607 1.487 0.1379
## cond.c -0.14884 0.51598 -0.288 0.7732
## ConsSC.d:cond.c 0.11002 0.79926 0.138 0.8906
## ConsM.d:cond.c -0.06528 0.61993 -0.105 0.9162
## ConsL.d:cond.c 0.95853 0.77266 1.241 0.2156
## ConsSL.d:cond.c 0.02252 0.99214 0.023 0.9819
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.169 on 361 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.0238, Adjusted R-squared: -0.0005384
## F-statistic: 0.9779 on 9 and 361 DF, p-value: 0.4579
# Action 5
con.c.b5 <- lm(act5 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b5) # no
##
## Call:
## lm(formula = act5 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2586 -1.0323 0.1818 1.7414 2.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98041 0.22216 4.413 1.44e-05 ***
## ConsSC.d -0.22783 0.35174 -0.648 0.518
## ConsM.d 0.09988 0.28599 0.349 0.727
## ConsL.d 0.40368 0.36521 1.105 0.270
## ConsSL.d -0.56613 0.44750 -1.265 0.207
## cond.c -0.10369 0.44432 -0.233 0.816
## ConsSC.d:cond.c -0.09114 0.70348 -0.130 0.897
## ConsM.d:cond.c -0.25297 0.57198 -0.442 0.659
## ConsL.d:cond.c -0.76450 0.73042 -1.047 0.296
## ConsSL.d:cond.c 0.07512 0.89500 0.084 0.933
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 287 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.03018, Adjusted R-squared: -0.0002301
## F-statistic: 0.9924 on 9 and 287 DF, p-value: 0.4463
# Action 6
con.c.b6 <- lm(act6 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b6) # no
##
## Call:
## lm(formula = act6 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2000 0.5974 1.5974 2.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.33166 0.19851 6.708 7.96e-11 ***
## ConsSC.d -0.45249 0.31903 -1.418 0.157
## ConsM.d -0.03036 0.25100 -0.121 0.904
## ConsL.d 0.09334 0.33612 0.278 0.781
## ConsSL.d -0.16162 0.38361 -0.421 0.674
## cond.c -0.05463 0.39702 -0.138 0.891
## ConsSC.d:cond.c -0.10371 0.63807 -0.163 0.871
## ConsM.d:cond.c -0.14797 0.50201 -0.295 0.768
## ConsL.d:cond.c -0.09537 0.67225 -0.142 0.887
## ConsSL.d:cond.c -0.13161 0.76722 -0.172 0.864
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.824 on 349 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.01098, Adjusted R-squared: -0.01453
## F-statistic: 0.4303 on 9 and 349 DF, p-value: 0.9185
# Action 7
con.c.b7 <- lm(act7 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b7) # no
##
## Call:
## lm(formula = act7 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8333 0.1667 1.4211 3.6061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.32511 0.22601 -1.438 0.151
## ConsSC.d 0.16770 0.35682 0.470 0.639
## ConsM.d 0.19505 0.27469 0.710 0.478
## ConsL.d 0.36823 0.35437 1.039 0.299
## ConsSL.d 0.64178 0.42128 1.523 0.128
## cond.c 0.19189 0.45202 0.425 0.671
## ConsSC.d:cond.c -0.21040 0.71363 -0.295 0.768
## ConsM.d:cond.c 0.09148 0.54937 0.167 0.868
## ConsL.d:cond.c 1.10648 0.70874 1.561 0.119
## ConsSL.d:cond.c -0.95855 0.84255 -1.138 0.256
##
## Residual standard error: 2.082 on 405 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.02562, Adjusted R-squared: 0.00397
## F-statistic: 1.183 on 9 and 405 DF, p-value: 0.3039
# Action 8
con.c.b8 <- lm(act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b8) # yes, cond difference (negative)
##
## Call:
## lm(formula = act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6302 0.2061 -3.057 0.002364 **
## ConsSC.d -0.5250 0.3291 -1.595 0.111314
## ConsM.d 0.1898 0.2544 0.746 0.456004
## ConsL.d 1.1409 0.3380 3.376 0.000797 ***
## ConsSL.d 1.3385 0.3984 3.360 0.000843 ***
## cond.c -0.9937 0.4123 -2.410 0.016334 *
## ConsSC.d:cond.c 1.1501 0.6581 1.747 0.081213 .
## ConsM.d:cond.c 1.1035 0.5089 2.168 0.030629 *
## ConsL.d:cond.c 1.6151 0.6759 2.389 0.017264 *
## ConsSL.d:cond.c 1.8270 0.7967 2.293 0.022285 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
# Action 9
con.c.b9 <- lm(act9 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b9) # no
##
## Call:
## lm(formula = act9 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.5893 0.0465 1.4286 4.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.22861 0.19907 -1.148 0.2514
## ConsSC.d -0.56211 0.32411 -1.734 0.0836 .
## ConsM.d 0.43438 0.24501 1.773 0.0769 .
## ConsL.d 0.80599 0.31753 2.538 0.0115 *
## ConsSL.d 0.35361 0.40014 0.884 0.3773
## cond.c -0.36420 0.39813 -0.915 0.3608
## ConsSC.d:cond.c 1.47506 0.64822 2.276 0.0234 *
## ConsM.d:cond.c 0.52084 0.49002 1.063 0.2884
## ConsL.d:cond.c 0.35230 0.63506 0.555 0.5794
## ConsSL.d:cond.c -0.05246 0.80028 -0.066 0.9478
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.964 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.05102, Adjusted R-squared: 0.03157
## F-statistic: 2.623 on 9 and 439 DF, p-value: 0.00582
# Action 10
con.c.b10 <- lm(act10 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b10) # no
##
## Call:
## lm(formula = act10 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3750 -1.9896 0.0217 1.8350 3.6579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2312 0.2046 -1.130 0.25896
## ConsSC.d -0.3811 0.3261 -1.168 0.24323
## ConsM.d 0.3085 0.2522 1.223 0.22186
## ConsL.d 0.9431 0.3312 2.847 0.00460 **
## ConsSL.d 1.4187 0.3931 3.609 0.00034 ***
## cond.c -0.4189 0.4091 -1.024 0.30638
## ConsSC.d:cond.c 0.3277 0.6523 0.502 0.61562
## ConsM.d:cond.c 0.2435 0.5044 0.483 0.62957
## ConsL.d:cond.c 0.9238 0.6625 1.394 0.16384
## ConsSL.d:cond.c 0.7939 0.7862 1.010 0.31308
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.08 on 467 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05853, Adjusted R-squared: 0.04038
## F-statistic: 3.226 on 9 and 467 DF, p-value: 0.000826
# Action 11
con.c.b11 <- lm(act11 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b11) # no
##
## Call:
## lm(formula = act11 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -1.0299 0.3452 1.5429 2.5735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8452 0.2314 3.653 0.000305 ***
## ConsSC.d -0.1144 0.3524 -0.325 0.745648
## ConsM.d -0.1171 0.2814 -0.416 0.677615
## ConsL.d 0.8095 0.3838 2.109 0.035763 *
## ConsSL.d 0.6476 0.4492 1.442 0.150417
## cond.c -0.7762 0.4628 -1.677 0.094506 .
## ConsSC.d:cond.c 1.1545 0.7047 1.638 0.102403
## ConsM.d:cond.c 0.1728 0.5627 0.307 0.758974
## ConsL.d:cond.c 0.7524 0.7677 0.980 0.327835
## ConsSL.d:cond.c 0.1905 0.8984 0.212 0.832238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 304 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.0581, Adjusted R-squared: 0.03021
## F-statistic: 2.083 on 9 and 304 DF, p-value: 0.03077
# Action 12
con.c.b12 <- lm(act12 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b12) # no
##
## Call:
## lm(formula = act12 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1304 -1.8929 -0.1098 1.8696 4.1071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5686 0.2285 -2.488 0.013271 *
## ConsSC.d -0.2780 0.3650 -0.762 0.446701
## ConsM.d 0.5643 0.2855 1.977 0.048793 *
## ConsL.d 1.3505 0.3753 3.598 0.000363 ***
## ConsSL.d 0.9569 0.4853 1.972 0.049385 *
## cond.c -0.4706 0.4570 -1.030 0.303851
## ConsSC.d:cond.c 0.9915 0.7300 1.358 0.175226
## ConsM.d:cond.c 0.2424 0.5709 0.425 0.671368
## ConsL.d:cond.c 1.1677 0.7507 1.556 0.120662
## ConsSL.d:cond.c 0.8941 0.9706 0.921 0.357550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.149 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0624, Adjusted R-squared: 0.0399
## F-statistic: 2.773 on 9 and 375 DF, p-value: 0.003732
# Action 13
con.c.b13 <- lm(act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b13) # yes, condition difference
##
## Call:
## lm(formula = act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.16978 0.21784 -0.779 0.4362
## ConsSC.d -0.37780 0.34252 -1.103 0.2706
## ConsM.d 0.09002 0.26538 0.339 0.7346
## ConsL.d 0.50899 0.33930 1.500 0.1343
## ConsSL.d 0.40787 0.41934 0.973 0.3313
## cond.c -0.87614 0.43568 -2.011 0.0449 *
## ConsSC.d:cond.c 0.55022 0.68503 0.803 0.4223
## ConsM.d:cond.c 1.21147 0.53075 2.283 0.0229 *
## ConsL.d:cond.c 0.73104 0.67860 1.077 0.2820
## ConsSL.d:cond.c 0.68566 0.83869 0.818 0.4141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
# Action 14
con.c.b14 <- lm(act14 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b14) # no
##
## Call:
## lm(formula = act14 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.3731 0.1429 1.6269 3.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.33449 0.26659 1.255 0.211
## ConsSC.d 0.11564 0.42136 0.274 0.784
## ConsM.d 0.08978 0.32197 0.279 0.781
## ConsL.d 0.66007 0.42587 1.550 0.122
## ConsSL.d -0.15592 0.52489 -0.297 0.767
## cond.c -0.29398 0.53318 -0.551 0.582
## ConsSC.d:cond.c 0.95894 0.84272 1.138 0.256
## ConsM.d:cond.c 0.39626 0.64394 0.615 0.539
## ConsL.d:cond.c 0.80485 0.85175 0.945 0.346
## ConsSL.d:cond.c 0.93684 1.04977 0.892 0.373
##
## Residual standard error: 2.04 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.02046, Adjusted R-squared: -0.01125
## F-statistic: 0.6452 on 9 and 278 DF, p-value: 0.7579
# Action 15
con.c.b15 <- lm(act15 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b15) # no
##
## Call:
## lm(formula = act15 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.12175 0.22621 0.538 0.5907
## ConsSC.d -0.49704 0.35057 -1.418 0.1571
## ConsM.d -0.02274 0.27647 -0.082 0.9345
## ConsL.d 0.68325 0.38085 1.794 0.0736 .
## ConsSL.d 0.20374 0.42670 0.477 0.6333
## cond.c -0.20095 0.45241 -0.444 0.6572
## ConsSC.d:cond.c 0.52729 0.70114 0.752 0.4525
## ConsM.d:cond.c 0.10683 0.55294 0.193 0.8469
## ConsL.d:cond.c -1.30905 0.76171 -1.719 0.0865 .
## ConsSL.d:cond.c 0.61663 0.85340 0.723 0.4704
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
# Action 16
con.c.b16 <- lm(act16 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b16) # no
##
## Call:
## lm(formula = act16 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2105 -1.1000 0.2034 1.4500 2.4500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97446 0.21753 4.480 1.04e-05 ***
## ConsSC.d -0.41374 0.34655 -1.194 0.233
## ConsM.d -0.01017 0.26754 -0.038 0.970
## ConsL.d 0.10888 0.35840 0.304 0.761
## ConsSL.d -0.01920 0.42061 -0.046 0.964
## cond.c 0.41950 0.43505 0.964 0.336
## ConsSC.d:cond.c -0.39808 0.69310 -0.574 0.566
## ConsM.d:cond.c -0.14808 0.53508 -0.277 0.782
## ConsL.d:cond.c -0.25284 0.71681 -0.353 0.725
## ConsSL.d:cond.c -0.93003 0.84123 -1.106 0.270
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.843 on 322 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.01422, Adjusted R-squared: -0.01334
## F-statistic: 0.5159 on 9 and 322 DF, p-value: 0.8629
# Action 17
con.c.b17 <- lm(act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b17) # marginal
##
## Call:
## lm(formula = act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24843 0.21493 1.156 0.2484
## ConsSC.d 0.09465 0.33403 0.283 0.7771
## ConsM.d 0.22185 0.26304 0.843 0.3995
## ConsL.d 0.31218 0.33599 0.929 0.3534
## ConsSL.d 1.03372 0.40799 2.534 0.0117 *
## cond.c -0.83648 0.42987 -1.946 0.0524 .
## ConsSC.d:cond.c 1.66548 0.66807 2.493 0.0131 *
## ConsM.d:cond.c 0.53790 0.52607 1.022 0.3072
## ConsL.d:cond.c 1.04860 0.67198 1.560 0.1194
## ConsSL.d:cond.c 1.70076 0.81598 2.084 0.0378 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
# Action 18
con.c.b18 <- lm(act18 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b18) # no
##
## Call:
## lm(formula = act18 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.1538 0.2031 1.4211 3.0400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4839 0.2152 2.249 0.0251 *
## ConsSC.d -0.3075 0.3333 -0.923 0.3569
## ConsM.d 0.3301 0.2661 1.241 0.2155
## ConsL.d 0.4478 0.3268 1.370 0.1715
## ConsSL.d 0.2863 0.4143 0.691 0.4900
## cond.c -0.1901 0.4303 -0.442 0.6590
## ConsSC.d:cond.c 0.6229 0.6666 0.934 0.3507
## ConsM.d:cond.c 0.1558 0.5321 0.293 0.7699
## ConsL.d:cond.c 0.6342 0.6537 0.970 0.3326
## ConsSL.d:cond.c 0.2860 0.8286 0.345 0.7302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.85 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.0227, Adjusted R-squared: -0.002867
## F-statistic: 0.8879 on 9 and 344 DF, p-value: 0.5362
# Action 19
con.c.b19 <- lm(act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b19) # marginal
##
## Call:
## lm(formula = act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1389 0.2368 4.808 2.55e-06 ***
## ConsSC.d -0.2384 0.3695 -0.645 0.5193
## ConsM.d 0.1097 0.2913 0.377 0.7068
## ConsL.d 0.2659 0.3983 0.667 0.5051
## ConsSL.d 0.1551 0.4194 0.370 0.7119
## cond.c -0.8889 0.4737 -1.876 0.0617 .
## ConsSC.d:cond.c 0.9398 0.7389 1.272 0.2045
## ConsM.d:cond.c 0.4245 0.5827 0.729 0.4669
## ConsL.d:cond.c 0.3651 0.7967 0.458 0.6471
## ConsSL.d:cond.c 0.7625 0.8389 0.909 0.3642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
# Action 20
con.c.b20 <- lm(act20 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b20) # no
##
## Call:
## lm(formula = act20 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.589 -1.054 0.411 1.411 2.308
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.14485 0.21553 5.312 2.06e-07 ***
## ConsSC.d 0.04428 0.32815 0.135 0.893
## ConsM.d 0.17646 0.26759 0.659 0.510
## ConsL.d 0.01991 0.34102 0.058 0.953
## ConsSL.d -0.15584 0.40584 -0.384 0.701
## cond.c -0.39780 0.43106 -0.923 0.357
## ConsSC.d:cond.c -0.18046 0.65629 -0.275 0.784
## ConsM.d:cond.c -0.13767 0.53519 -0.257 0.797
## ConsL.d:cond.c -0.31267 0.68204 -0.458 0.647
## ConsSL.d:cond.c -0.19560 0.81168 -0.241 0.810
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.786 on 314 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.028, Adjusted R-squared: 0.0001354
## F-statistic: 1.005 on 9 and 314 DF, p-value: 0.4359
# Action 21
con.c.b21 <- lm(act21 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b21) # no
##
## Call:
## lm(formula = act21 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5556 -1.8723 0.1609 1.9286 3.9286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2924 0.2307 -1.268 0.2057
## ConsSC.d -0.3189 0.3504 -0.910 0.3632
## ConsM.d 0.2369 0.2808 0.844 0.3992
## ConsL.d 0.7421 0.3551 2.089 0.0373 *
## ConsSL.d 0.7202 0.4286 1.680 0.0937 .
## cond.c 0.3295 0.4614 0.714 0.4756
## ConsSC.d:cond.c 0.3050 0.7007 0.435 0.6636
## ConsM.d:cond.c -0.1186 0.5615 -0.211 0.8329
## ConsL.d:cond.c -0.1177 0.7103 -0.166 0.8685
## ConsSL.d:cond.c -0.2517 0.8572 -0.294 0.7692
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.067 on 393 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.03105, Adjusted R-squared: 0.008857
## F-statistic: 1.399 on 9 and 393 DF, p-value: 0.1863
# Action 22
con.c.b22 <- lm(act22 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b22) # no
##
## Call:
## lm(formula = act22 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2609 -1.3146 -0.2532 1.6854 3.4483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.347426 0.222463 1.562 0.1192
## ConsSC.d -0.680939 0.337986 -2.015 0.0446 *
## ConsM.d -0.063541 0.270231 -0.235 0.8142
## ConsL.d 0.267157 0.348296 0.767 0.4435
## ConsSL.d 0.747294 0.403323 1.853 0.0647 .
## cond.c -0.069853 0.444926 -0.157 0.8753
## ConsSC.d:cond.c 0.299379 0.675971 0.443 0.6581
## ConsM.d:cond.c 0.008411 0.540462 0.016 0.9876
## ConsL.d:cond.c 0.424020 0.696592 0.609 0.5431
## ConsSL.d:cond.c -0.262445 0.806645 -0.325 0.7451
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.985 on 394 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03615, Adjusted R-squared: 0.01413
## F-statistic: 1.642 on 9 and 394 DF, p-value: 0.1015
# Action 23
con.c.b23 <- lm(act23 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b23) # no
##
## Call:
## lm(formula = act23 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.222 -2.250 0.125 1.870 3.297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1665 0.2835 -0.587 0.557
## ConsSC.d 0.4344 0.4533 0.958 0.339
## ConsM.d 0.2719 0.3494 0.778 0.437
## ConsL.d 0.6692 0.4649 1.439 0.151
## ConsSL.d 0.8714 0.5503 1.584 0.114
## cond.c -0.2616 0.5670 -0.461 0.645
## ConsSC.d:cond.c 0.2973 0.9065 0.328 0.743
## ConsM.d:cond.c -0.1526 0.6989 -0.218 0.827
## ConsL.d:cond.c -0.9939 0.9298 -1.069 0.286
## ConsSL.d:cond.c 1.2963 1.1005 1.178 0.240
##
## Residual standard error: 2.264 on 283 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.03197, Adjusted R-squared: 0.001189
## F-statistic: 1.039 on 9 and 283 DF, p-value: 0.4092
# Action 24
con.c.b24 <- lm(act24 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b24) # no
##
## Call:
## lm(formula = act24 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4688 0.2229 -2.103 0.0361 *
## ConsSC.d 0.3371 0.3628 0.929 0.3534
## ConsM.d 0.2203 0.2743 0.803 0.4225
## ConsL.d 0.3144 0.3584 0.877 0.3809
## ConsSL.d 0.3794 0.4171 0.910 0.3635
## cond.c -0.3587 0.4458 -0.805 0.4216
## ConsSC.d:cond.c 0.4286 0.7256 0.591 0.5551
## ConsM.d:cond.c -0.2906 0.5486 -0.530 0.5966
## ConsL.d:cond.c 0.1675 0.7168 0.234 0.8154
## ConsSL.d:cond.c 0.2708 0.8341 0.325 0.7456
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
# Action 25
con.c.b25 <- lm(act25 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b25) # no
##
## Call:
## lm(formula = act25 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -0.9307 0.1529 1.3778 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5129 0.1827 2.808 0.00521 **
## ConsSC.d -0.6492 0.2998 -2.166 0.03087 *
## ConsM.d 0.3760 0.2270 1.656 0.09839 .
## ConsL.d 0.6207 0.2944 2.109 0.03554 *
## ConsSL.d 0.9038 0.3650 2.476 0.01366 *
## cond.c -0.2187 0.3653 -0.599 0.54968
## ConsSC.d:cond.c 0.6127 0.5995 1.022 0.30740
## ConsM.d:cond.c 0.1351 0.4540 0.298 0.76623
## ConsL.d:cond.c 1.0484 0.5887 1.781 0.07565 .
## ConsSL.d:cond.c 0.9568 0.7300 1.311 0.19067
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 436 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.06134, Adjusted R-squared: 0.04197
## F-statistic: 3.166 on 9 and 436 DF, p-value: 0.001022
# Action 26
con.c.b26 <- lm(act26 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b26) # no
##
## Call:
## lm(formula = act26 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6364 -1.2583 0.6087 1.4130 2.3000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57680 0.26082 6.046 6.43e-09 ***
## ConsSC.d 0.01171 0.40720 0.029 0.977
## ConsM.d 0.04226 0.32607 0.130 0.897
## ConsL.d -0.31847 0.42184 -0.755 0.451
## ConsSL.d -0.61569 0.49768 -1.237 0.217
## cond.c 0.11912 0.52164 0.228 0.820
## ConsSC.d:cond.c -0.51353 0.81441 -0.631 0.529
## ConsM.d:cond.c -0.05492 0.65213 -0.084 0.933
## ConsL.d:cond.c -0.13579 0.84368 -0.161 0.872
## ConsSL.d:cond.c 0.40310 0.99536 0.405 0.686
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.845 on 217 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01605, Adjusted R-squared: -0.02476
## F-statistic: 0.3932 on 9 and 217 DF, p-value: 0.9376
# Action 27
con.c.b27 <- lm(act27 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b27) # no
##
## Call:
## lm(formula = act27 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6429 -0.9985 0.1379 1.4000 2.8667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7310 0.2353 3.107 0.00206 **
## ConsSC.d -0.2325 0.3528 -0.659 0.51034
## ConsM.d -0.1956 0.2882 -0.679 0.49791
## ConsL.d 0.3887 0.3719 1.045 0.29677
## ConsSL.d 0.6786 0.4119 1.648 0.10047
## cond.c -0.2621 0.4705 -0.557 0.57794
## ConsSC.d:cond.c -0.4682 0.7057 -0.664 0.50750
## ConsM.d:cond.c -0.3088 0.5765 -0.536 0.59253
## ConsL.d:cond.c -0.2127 0.7438 -0.286 0.77509
## ConsSL.d:cond.c 0.7285 0.8238 0.884 0.37726
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.874 on 309 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.04657, Adjusted R-squared: 0.0188
## F-statistic: 1.677 on 9 and 309 DF, p-value: 0.09363
# Action 28
con.c.b28 <- lm(act28 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b28) # no
##
## Call:
## lm(formula = act28 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3214 0.1992 6.632 1.2e-10 ***
## ConsSC.d -0.4933 0.3141 -1.570 0.117
## ConsM.d -0.3429 0.2499 -1.372 0.171
## ConsL.d -0.3031 0.3194 -0.949 0.343
## ConsSL.d -0.1021 0.3912 -0.261 0.794
## cond.c -0.2619 0.3985 -0.657 0.511
## ConsSC.d:cond.c -0.6202 0.6282 -0.987 0.324
## ConsM.d:cond.c 0.4498 0.4999 0.900 0.369
## ConsL.d:cond.c 0.4861 0.6387 0.761 0.447
## ConsSL.d:cond.c 0.4900 0.7824 0.626 0.532
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
# Action 29
con.c.b29 <- lm(act29 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b29) # no
##
## Call:
## lm(formula = act29 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.500 -1.087 0.129 1.546 2.129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02941 0.19808 5.197 3.4e-07 ***
## ConsSC.d 0.04349 0.31007 0.140 0.889
## ConsM.d 0.11022 0.24647 0.447 0.655
## ConsL.d -0.03143 0.31218 -0.101 0.920
## ConsSL.d 0.44786 0.39317 1.139 0.255
## cond.c -0.05882 0.39616 -0.148 0.882
## ConsSC.d:cond.c 0.36463 0.62014 0.588 0.557
## ConsM.d:cond.c -0.04653 0.49293 -0.094 0.925
## ConsL.d:cond.c 0.31286 0.62436 0.501 0.617
## ConsSL.d:cond.c 0.01337 0.78634 0.017 0.986
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.775 on 360 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.00734, Adjusted R-squared: -0.01748
## F-statistic: 0.2958 on 9 and 360 DF, p-value: 0.9757
# Action 30
con.c.b30 <- lm(act30 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * cond.c, data = d)
summary(con.c.b30) # no
##
## Call:
## lm(formula = act30 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02399 0.21071 4.860 1.79e-06 ***
## ConsSC.d 0.04851 0.32716 0.148 0.8822
## ConsM.d 0.02013 0.26436 0.076 0.9394
## ConsL.d 0.15861 0.33863 0.468 0.6398
## ConsSL.d 0.13226 0.41545 0.318 0.7504
## cond.c -0.22980 0.42142 -0.545 0.5859
## ConsSC.d:cond.c 1.33480 0.65433 2.040 0.0421 *
## ConsM.d:cond.c 0.14156 0.52872 0.268 0.7891
## ConsL.d:cond.c 0.31914 0.67727 0.471 0.6378
## ConsSL.d:cond.c 0.41730 0.83091 0.502 0.6158
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
Climate > Control: 17 Control > Climate: 8, 13, 19
a. Means for condition diffs
describeBy(d$act8[d$ideology=="Conservative"], d$cond[d$ideology=="Conservative"]) # both opposed (not different from 0 in ctrl; different in climate)
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 63 -1.13 2.05 -2 -1.37 1.48 -3 3 6 0.68 -0.94 0.26
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 45 -0.13 2.18 0 -0.16 2.97 -3 3 6 -0.13 -1.51 0.33
summary(lm(d$act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = d$act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1333 0.3149 -0.423 0.6722
## ConsSC.d -1.1000 0.4979 -2.209 0.0276 *
## ConsM.d -0.3619 0.3764 -0.962 0.3368
## ConsL.d 0.3333 0.4761 0.700 0.4842
## ConsSL.d 0.4250 0.5339 0.796 0.4264
## ctrl.d -0.9937 0.4123 -2.410 0.0163 *
## ConsSC.d:ctrl.d 1.1501 0.6581 1.747 0.0812 .
## ConsM.d:ctrl.d 1.1035 0.5089 2.168 0.0306 *
## ConsL.d:ctrl.d 1.6151 0.6759 2.389 0.0173 *
## ConsSL.d:ctrl.d 1.8270 0.7967 2.293 0.0223 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
summary(lm(d$act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * clim.d, data = d))
##
## Call:
## lm(formula = d$act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.12698 0.26614 -4.235 2.75e-05 ***
## ConsSC.d 0.05006 0.43040 0.116 0.907455
## ConsM.d 0.74157 0.34251 2.165 0.030880 *
## ConsL.d 1.94841 0.47979 4.061 5.72e-05 ***
## ConsSL.d 2.25198 0.59137 3.808 0.000159 ***
## clim.d 0.99365 0.41230 2.410 0.016334 *
## ConsSC.d:clim.d -1.15006 0.65814 -1.747 0.081213 .
## ConsM.d:clim.d -1.10347 0.50889 -2.168 0.030629 *
## ConsL.d:clim.d -1.61508 0.67591 -2.389 0.017264 *
## ConsSL.d:clim.d -1.82698 0.79675 -2.293 0.022285 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
describeBy(d$act13[d$ideology=="Conservative"], d$cond[d$ideology=="Conservative"]) # opposed in climate, supported in ctrl
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 51 -0.61 2.09 -1 -0.76 2.97 -3 3 6 0.3 -1.28 0.29
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 41 0.27 2.1 0 0.33 2.97 -3 3 6 -0.27 -1.3 0.33
summary(lm(d$act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = d$act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26829 0.32438 0.827 0.4086
## ConsSC.d -0.65291 0.52072 -1.254 0.2106
## ConsM.d -0.51572 0.38691 -1.333 0.1833
## ConsL.d 0.14347 0.48178 0.298 0.7660
## ConsSL.d 0.06504 0.55737 0.117 0.9072
## ctrl.d -0.87614 0.43568 -2.011 0.0449 *
## ConsSC.d:ctrl.d 0.55022 0.68503 0.803 0.4223
## ConsM.d:ctrl.d 1.21147 0.53075 2.283 0.0229 *
## ConsL.d:ctrl.d 0.73104 0.67860 1.077 0.2820
## ConsSL.d:ctrl.d 0.68566 0.83869 0.818 0.4141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
summary(lm(d$act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * clim.d, data = d))
##
## Call:
## lm(formula = d$act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6078 0.2908 -2.090 0.0372 *
## ConsSC.d -0.1027 0.4451 -0.231 0.8177
## ConsM.d 0.6958 0.3633 1.915 0.0561 .
## ConsL.d 0.8745 0.4779 1.830 0.0680 .
## ConsSL.d 0.7507 0.6267 1.198 0.2316
## clim.d 0.8761 0.4357 2.011 0.0449 *
## ConsSC.d:clim.d -0.5502 0.6850 -0.803 0.4223
## ConsM.d:clim.d -1.2115 0.5308 -2.283 0.0229 *
## ConsL.d:clim.d -0.7310 0.6786 -1.077 0.2820
## ConsSL.d:clim.d -0.6857 0.8387 -0.818 0.4141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
## ctrl not different from 0, so not significantly supported; climate different from 0, so significantly opposed
describeBy(d$act17[d$ideology=="Conservative"], d$cond[d$ideology=="Conservative"]) # opposited in climate, supported in ctrl
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 53 -0.17 2.04 0 -0.21 2.97 -3 3 6 0.16 -1.18 0.28
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 0.67 1.96 1 0.8 1.48 -3 3 6 -0.5 -0.91 0.33
summary(lm(d$act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = d$act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6667 0.3317 2.010 0.0451 *
## ConsSC.d -0.7381 0.5015 -1.472 0.1419
## ConsM.d -0.0471 0.3913 -0.120 0.9042
## ConsL.d -0.2121 0.4797 -0.442 0.6586
## ConsSL.d 0.1833 0.5551 0.330 0.7414
## ctrl.d -0.8365 0.4299 -1.946 0.0524 .
## ConsSC.d:ctrl.d 1.6655 0.6681 2.493 0.0131 *
## ConsM.d:ctrl.d 0.5379 0.5261 1.022 0.3072
## ConsL.d:ctrl.d 1.0486 0.6720 1.560 0.1194
## ConsSL.d:ctrl.d 1.7008 0.8160 2.084 0.0378 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
summary(lm(d$act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * clim.d, data = d))
##
## Call:
## lm(formula = d$act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1698 0.2734 -0.621 0.53487
## ConsSC.d 0.9274 0.4413 2.101 0.03623 *
## ConsM.d 0.4908 0.3516 1.396 0.16355
## ConsL.d 0.8365 0.4706 1.777 0.07624 .
## ConsSL.d 1.8841 0.5981 3.150 0.00175 **
## clim.d 0.8365 0.4299 1.946 0.05235 .
## ConsSC.d:clim.d -1.6655 0.6681 -2.493 0.01306 *
## ConsM.d:clim.d -0.5379 0.5261 -1.022 0.30716
## ConsL.d:clim.d -1.0486 0.6720 -1.560 0.11943
## ConsSL.d:clim.d -1.7008 0.8160 -2.084 0.03775 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
## ctrl different from 0, so significantly supported; climate not different from 0, so not significantly opposed
describeBy(d$act19[d$ideology=="Conservative"], d$cond[d$ideology=="Conservative"])
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 0.69 1.89 1 0.83 1.48 -3 3 6 -0.5 -0.92 0.32
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 24 1.58 1.64 2 1.8 1.48 -3 3 6 -0.94 0.2 0.33
summary(lm(d$act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = d$act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.58333 0.36693 4.315 2.25e-05 ***
## ConsSC.d -0.70833 0.58016 -1.221 0.2232
## ConsM.d -0.10256 0.44359 -0.231 0.8173
## ConsL.d 0.08333 0.56049 0.149 0.8819
## ConsSL.d -0.22619 0.60451 -0.374 0.7086
## ctrl.d -0.88889 0.47370 -1.876 0.0617 .
## ConsSC.d:ctrl.d 0.93981 0.73893 1.272 0.2045
## ConsM.d:ctrl.d 0.42451 0.58267 0.729 0.4669
## ConsL.d:ctrl.d 0.36508 0.79668 0.458 0.6471
## ConsSL.d:ctrl.d 0.76252 0.83890 0.909 0.3642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
summary(lm(d$act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) * clim.d, data = d))
##
## Call:
## lm(formula = d$act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6944 0.2996 2.318 0.0212 *
## ConsSC.d 0.2315 0.4576 0.506 0.6134
## ConsM.d 0.3219 0.3778 0.852 0.3949
## ConsL.d 0.4484 0.5662 0.792 0.4291
## ConsSL.d 0.5363 0.5816 0.922 0.3573
## clim.d 0.8889 0.4737 1.876 0.0617 .
## ConsSC.d:clim.d -0.9398 0.7389 -1.272 0.2045
## ConsM.d:clim.d -0.4245 0.5827 -0.729 0.4669
## ConsL.d:clim.d -0.3651 0.7967 -0.458 0.6471
## ConsSL.d:clim.d -0.7625 0.8389 -0.909 0.3642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
## both higher than 0
2. Gender effects?
# Action 1
con.g.b1 <- lm(act1 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b1) # yes, higher than 0
##
## Call:
## lm(formula = act1 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8261 0.2263 2.1538 4.1538
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7053 0.2434 -2.898 0.00394 **
## ConsSC.d 0.3088 0.3687 0.838 0.40267
## ConsM.d 0.8422 0.3038 2.772 0.00582 **
## ConsL.d 1.3120 0.3975 3.301 0.00104 **
## ConsSL.d 0.5314 0.4608 1.153 0.24951
## gend.mf -0.8971 0.4867 -1.843 0.06600 .
## ConsSC.d:gend.mf 1.3422 0.7373 1.820 0.06938 .
## ConsM.d:gend.mf 1.6234 0.6077 2.671 0.00784 **
## ConsL.d:gend.mf 0.7504 0.7950 0.944 0.34571
## ConsSL.d:gend.mf -0.7551 0.9217 -0.819 0.41310
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.135 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.05646, Adjusted R-squared: 0.03703
## F-statistic: 2.906 on 9 and 437 DF, p-value: 0.002374
# Action 2
con.g.b2 <- lm(act2 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b2) # yes, higher than 0
##
## Call:
## lm(formula = act2 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4375 -1.2184 0.5263 1.5625 2.6087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7790 0.2339 3.331 0.000983 ***
## ConsSC.d 0.2542 0.3572 0.712 0.477344
## ConsM.d 0.4102 0.3107 1.320 0.187868
## ConsL.d 0.9398 0.4017 2.339 0.020026 *
## ConsSL.d 0.1627 0.4588 0.355 0.723169
## gend.mf -0.7754 0.4677 -1.658 0.098509 .
## ConsSC.d:gend.mf 1.6565 0.7144 2.319 0.021133 *
## ConsM.d:gend.mf 0.7170 0.6215 1.154 0.249615
## ConsL.d:gend.mf 1.3379 0.8034 1.665 0.097008 .
## ConsSL.d:gend.mf 0.3920 0.9176 0.427 0.669535
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.803 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.03738, Adjusted R-squared: 0.006217
## F-statistic: 1.199 on 9 and 278 DF, p-value: 0.2951
# Action 3
con.g.b3 <- lm(act3 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b3) # nothing
##
## Call:
## lm(formula = act3 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.8390 -0.0368 1.4167 4.1579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.41385 0.22904 -1.807 0.0715 .
## ConsSC.d -0.38249 0.35145 -1.088 0.2771
## ConsM.d 0.34712 0.28567 1.215 0.2250
## ConsL.d 0.30163 0.35970 0.839 0.4022
## ConsSL.d 0.65552 0.44350 1.478 0.1401
## gend.mf 0.01288 0.45809 0.028 0.9776
## ConsSC.d:gend.mf 0.71023 0.70290 1.010 0.3129
## ConsM.d:gend.mf -0.21986 0.57135 -0.385 0.7006
## ConsL.d:gend.mf 0.32267 0.71940 0.449 0.6540
## ConsSL.d:gend.mf -0.69622 0.88699 -0.785 0.4329
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.03535, Adjusted R-squared: 0.01525
## F-statistic: 1.759 on 9 and 432 DF, p-value: 0.07405
# Action 4
con.g.b4 <- lm(act4 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b4) # nothing
##
## Call:
## lm(formula = act4 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.944 -1.904 0.200 2.056 3.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4290 0.2805 -1.529 0.127
## ConsSC.d 0.6425 0.4146 1.550 0.122
## ConsM.d 0.2114 0.3503 0.603 0.547
## ConsL.d 0.8844 0.4246 2.083 0.038 *
## ConsSL.d 0.7513 0.5116 1.468 0.143
## gend.mf -0.6658 0.5610 -1.187 0.236
## ConsSC.d:gend.mf 1.0213 0.8292 1.232 0.219
## ConsM.d:gend.mf 0.6305 0.7006 0.900 0.369
## ConsL.d:gend.mf 1.0050 0.8492 1.184 0.237
## ConsSL.d:gend.mf -0.5787 1.0233 -0.566 0.572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.17 on 359 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02849, Adjusted R-squared: 0.004137
## F-statistic: 1.17 on 9 and 359 DF, p-value: 0.3132
# Action 5
con.g.b5 <- lm(act5 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b5) # yes, higher than 0
##
## Call:
## lm(formula = act5 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3000 -1.2128 0.4615 1.7000 2.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8756 0.2297 3.812 0.000169 ***
## ConsSC.d -0.1557 0.3537 -0.440 0.660103
## ConsM.d 0.2108 0.3104 0.679 0.497626
## ConsL.d 0.6077 0.3947 1.540 0.124729
## ConsSL.d -0.4948 0.4572 -1.082 0.279965
## gend.mf -0.6743 0.4594 -1.468 0.143227
## ConsSC.d:gend.mf 0.1910 0.7074 0.270 0.787330
## ConsM.d:gend.mf 0.7237 0.6208 1.166 0.244727
## ConsL.d:gend.mf 1.0410 0.7894 1.319 0.188316
## ConsSL.d:gend.mf 0.5128 0.9143 0.561 0.575355
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 285 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: -0.0005149
## F-statistic: 0.9832 on 9 and 285 DF, p-value: 0.454
# Action 6
con.g.b6 <- lm(act6 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b6) # yes, higher than 0
##
## Call:
## lm(formula = act6 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5455 -1.2424 0.5667 1.5667 2.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.25667 0.21585 5.822 1.33e-08 ***
## ConsSC.d -0.43199 0.33265 -1.299 0.195
## ConsM.d 0.10156 0.28254 0.359 0.719
## ConsL.d 0.32608 0.36709 0.888 0.375
## ConsSL.d -0.31727 0.41871 -0.758 0.449
## gend.mf -0.35333 0.43170 -0.818 0.414
## ConsSC.d:gend.mf -0.05792 0.66531 -0.087 0.931
## ConsM.d:gend.mf 0.57438 0.56508 1.016 0.310
## ConsL.d:gend.mf 1.03399 0.73417 1.408 0.160
## ConsSL.d:gend.mf -0.85879 0.83742 -1.026 0.306
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 347 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -1.033e-06
## F-statistic: 1 on 9 and 347 DF, p-value: 0.4397
# Action 7
con.g.b7 <- lm(act7 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b7) # nothing
##
## Call:
## lm(formula = act7 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8433 0.1567 1.6364 3.6364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4197 0.2592 -1.619 0.106
## ConsSC.d 0.3081 0.3855 0.799 0.425
## ConsM.d 0.3181 0.3177 1.001 0.317
## ConsL.d 0.4629 0.4068 1.138 0.256
## ConsSL.d 0.5375 0.4831 1.113 0.267
## gend.mf -0.4332 0.5184 -0.836 0.404
## ConsSC.d:gend.mf 0.8384 0.7710 1.088 0.277
## ConsM.d:gend.mf 0.5434 0.6355 0.855 0.393
## ConsL.d:gend.mf 0.7469 0.8136 0.918 0.359
## ConsSL.d:gend.mf -0.6912 0.9662 -0.715 0.475
##
## Residual standard error: 2.097 on 403 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: -0.006717
## F-statistic: 0.6946 on 9 and 403 DF, p-value: 0.714
# Action 8
con.g.b8 <- lm(act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b8) # marginally higher than 0
##
## Call:
## lm(formula = act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9286 -1.9091 -0.2143 1.6875 4.5319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.73661 0.23273 -3.165 0.00165 **
## ConsSC.d -0.18844 0.35934 -0.524 0.60025
## ConsM.d 0.35321 0.29225 1.209 0.22742
## ConsL.d 1.29783 0.39665 3.272 0.00115 **
## ConsSL.d 1.15544 0.44318 2.607 0.00942 **
## gend.mf -0.09821 0.46546 -0.211 0.83298
## ConsSC.d:gend.mf 1.31195 0.71869 1.825 0.06857 .
## ConsM.d:gend.mf 0.31181 0.58449 0.533 0.59395
## ConsL.d:gend.mf 0.40434 0.79330 0.510 0.61051
## ConsSL.d:gend.mf -0.92127 0.88636 -1.039 0.29917
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 469 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.07584, Adjusted R-squared: 0.05811
## F-statistic: 4.276 on 9 and 469 DF, p-value: 2.361e-05
# Action 9
con.g.b9 <- lm(act9 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b9) # yes, higher than 0
##
## Call:
## lm(formula = act9 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5882 -1.5882 0.1481 1.5417 3.8261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2199 0.2223 -0.989 0.3232
## ConsSC.d -0.5175 0.3433 -1.507 0.1325
## ConsM.d 0.3873 0.2788 1.389 0.1656
## ConsL.d 0.8013 0.3566 2.247 0.0252 *
## ConsSL.d 0.1763 0.4220 0.418 0.6763
## gend.mf 0.1435 0.4447 0.323 0.7470
## ConsSC.d:gend.mf -0.3210 0.6866 -0.467 0.6404
## ConsM.d:gend.mf -0.2116 0.5576 -0.379 0.7046
## ConsL.d:gend.mf -0.1298 0.7132 -0.182 0.8557
## ConsSL.d:gend.mf -1.1473 0.8441 -1.359 0.1748
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.97 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.04187, Adjusted R-squared: 0.02214
## F-statistic: 2.122 on 9 and 437 DF, p-value: 0.02658
# Action 10
con.g.b10 <- lm(act10 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b10) # yes, higher than 0
##
## Call:
## lm(formula = act10 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5862 -2.0719 0.1948 1.5714 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3117 0.2283 -1.366 0.17275
## ConsSC.d -0.2294 0.3498 -0.656 0.51237
## ConsM.d 0.4020 0.2870 1.401 0.16194
## ConsL.d 1.2447 0.3752 3.317 0.00098 ***
## ConsSL.d 1.0548 0.4427 2.383 0.01759 *
## gend.mf -0.2338 0.4565 -0.512 0.60885
## ConsSC.d:gend.mf 0.7072 0.6997 1.011 0.31266
## ConsM.d:gend.mf 0.2706 0.5739 0.471 0.63756
## ConsL.d:gend.mf 1.2427 0.7505 1.656 0.09841 .
## ConsSL.d:gend.mf -1.4524 0.8854 -1.640 0.10158
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 466 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07046, Adjusted R-squared: 0.05251
## F-statistic: 3.925 on 9 and 466 DF, p-value: 7.905e-05
# Action 11
con.g.b11 <- lm(act11 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b11) # yes, higher than 0
##
## Call:
## lm(formula = act11 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5625 -1.0000 0.2834 1.4375 2.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.72727 0.24496 2.969 0.00323 **
## ConsSC.d 0.06566 0.36339 0.181 0.85674
## ConsM.d -0.01068 0.30624 -0.035 0.97221
## ConsL.d 1.00212 0.39797 2.518 0.01232 *
## ConsSL.d 0.76826 0.48924 1.570 0.11738
## gend.mf -0.54545 0.48993 -1.113 0.26645
## ConsSC.d:gend.mf 1.68687 0.72677 2.321 0.02095 *
## ConsM.d:gend.mf 0.48369 0.61247 0.790 0.43030
## ConsL.d:gend.mf 0.93282 0.79593 1.172 0.24213
## ConsSL.d:gend.mf 0.41153 0.97847 0.421 0.67436
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 302 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.05336, Adjusted R-squared: 0.02515
## F-statistic: 1.891 on 9 and 302 DF, p-value: 0.05276
# Action 12
con.g.b12 <- lm(act12 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b12) # yes, higher than 0
##
## Call:
## lm(formula = act12 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5625 -1.8571 -0.1345 1.8655 4.3043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.83128 0.25721 -3.232 0.00134 **
## ConsSC.d 0.07803 0.38731 0.201 0.84044
## ConsM.d 0.67482 0.32478 2.078 0.03841 *
## ConsL.d 1.95526 0.43380 4.507 8.8e-06 ***
## ConsSL.d 1.01253 0.50023 2.024 0.04367 *
## gend.mf -0.94614 0.51442 -1.839 0.06667 .
## ConsSC.d:gend.mf 1.72536 0.77462 2.227 0.02652 *
## ConsM.d:gend.mf 0.36432 0.64957 0.561 0.57523
## ConsL.d:gend.mf 2.36484 0.86759 2.726 0.00672 **
## ConsSL.d:gend.mf 0.18364 1.00045 0.184 0.85446
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.129 on 373 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.08175, Adjusted R-squared: 0.0596
## F-statistic: 3.69 on 9 and 373 DF, p-value: 0.0001907
# Action 13
con.g.b13 <- lm(act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b13) # nothing
##
## Call:
## lm(formula = act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.8095 0.1884 1.9558 3.3636
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.24638 0.24801 -0.993 0.3211
## ConsSC.d -0.05341 0.36743 -0.145 0.8845
## ConsM.d 0.09451 0.30339 0.312 0.7556
## ConsL.d 0.72352 0.39814 1.817 0.0699 .
## ConsSL.d 0.36891 0.45177 0.817 0.4146
## gend.mf -0.11594 0.49602 -0.234 0.8153
## ConsSC.d:gend.mf 1.89733 0.73485 2.582 0.0102 *
## ConsM.d:gend.mf -0.14554 0.60679 -0.240 0.8106
## ConsL.d:gend.mf 0.59023 0.79629 0.741 0.4590
## ConsSL.d:gend.mf -0.85639 0.90355 -0.948 0.3438
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.04764, Adjusted R-squared: 0.0278
## F-statistic: 2.401 on 9 and 432 DF, p-value: 0.01156
# Action 14
con.g.b14 <- lm(act14 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b14) # yes, higher than 0
##
## Call:
## lm(formula = act14 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8235 -1.2778 0.2195 1.5455 3.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02913 0.28508 0.102 0.91868
## ConsSC.d 0.51307 0.43043 1.192 0.23429
## ConsM.d 0.35870 0.35177 1.020 0.30876
## ConsL.d 1.07314 0.45825 2.342 0.01990 *
## ConsSL.d -0.17199 0.54691 -0.314 0.75340
## gend.mf -1.50271 0.57016 -2.636 0.00887 **
## ConsSC.d:gend.mf 2.06537 0.86086 2.399 0.01709 *
## ConsM.d:gend.mf 1.35205 0.70353 1.922 0.05566 .
## ConsL.d:gend.mf 2.20726 0.91650 2.408 0.01668 *
## ConsSL.d:gend.mf 0.07414 1.09382 0.068 0.94601
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.017 on 276 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.04977, Adjusted R-squared: 0.01878
## F-statistic: 1.606 on 9 and 276 DF, p-value: 0.1132
aggregate(d$act14[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female 0.78
## 2 Male -0.72
# Action 15
con.g.b15 <- lm(act15 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b15) # yes, higher than 0
##
## Call:
## lm(formula = act15 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6562 -1.7674 0.4444 1.6917 3.5714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.003638 0.238949 0.015 0.9879
## ConsSC.d -0.310185 0.360766 -0.860 0.3905
## ConsM.d -0.071693 0.298124 -0.240 0.8101
## ConsL.d 1.055257 0.411837 2.562 0.0108 *
## ConsSL.d 0.229696 0.442469 0.519 0.6040
## gend.mf -0.599868 0.477897 -1.255 0.2102
## ConsSC.d:gend.mf 1.129630 0.721533 1.566 0.1183
## ConsM.d:gend.mf -0.152910 0.596248 -0.256 0.7977
## ConsL.d:gend.mf 1.405156 0.823673 1.706 0.0888 .
## ConsSL.d:gend.mf -0.033466 0.884938 -0.038 0.9699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 374 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.04838, Adjusted R-squared: 0.02548
## F-statistic: 2.113 on 9 and 374 DF, p-value: 0.0277
# Action 16
con.g.b16 <- lm(act16 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b16) # yes, higher than 0
##
## Call:
## lm(formula = act16 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3636 -1.1400 0.1589 1.6364 2.7586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.88818 0.23434 3.790 0.00018 ***
## ConsSC.d -0.24118 0.35778 -0.674 0.50074
## ConsM.d 0.21420 0.29695 0.721 0.47124
## ConsL.d 0.08359 0.38974 0.214 0.83031
## ConsSL.d 0.05626 0.43852 0.128 0.89799
## gend.mf -0.50364 0.46869 -1.075 0.28337
## ConsSC.d:gend.mf 1.31489 0.71556 1.838 0.06705 .
## ConsM.d:gend.mf 1.02615 0.59391 1.728 0.08499 .
## ConsL.d:gend.mf 0.06009 0.77948 0.077 0.93860
## ConsSL.d:gend.mf 0.39253 0.87703 0.448 0.65477
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 321 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.02518, Adjusted R-squared: -0.002148
## F-statistic: 0.9214 on 9 and 321 DF, p-value: 0.5066
# Action 17
con.g.b17 <- lm(act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b17) # yes, higher than 0
##
## Call:
## lm(formula = act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.391 -1.477 -0.033 1.630 3.077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09646 0.23404 0.412 0.6804
## ConsSC.d 0.29198 0.35374 0.825 0.4096
## ConsM.d 0.38619 0.29321 1.317 0.1885
## ConsL.d 0.65975 0.38561 1.711 0.0879 .
## ConsSL.d 0.99919 0.44656 2.238 0.0258 *
## gend.mf -0.34676 0.46808 -0.741 0.4592
## ConsSC.d:gend.mf 0.43944 0.70748 0.621 0.5349
## ConsM.d:gend.mf 0.35821 0.58642 0.611 0.5416
## ConsL.d:gend.mf 1.12006 0.77122 1.452 0.1472
## ConsSL.d:gend.mf -0.24454 0.89312 -0.274 0.7844
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.008 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.02291, Adjusted R-squared: 0.001247
## F-statistic: 1.058 on 9 and 406 DF, p-value: 0.3934
# Action 18
con.g.b18 <- lm(act18 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b18) # yes, higher than 0
##
## Call:
## lm(formula = act18 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.1369 0.1776 1.4528 3.1000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4403 0.2384 1.847 0.0656 .
## ConsSC.d -0.2076 0.3499 -0.593 0.5533
## ConsM.d 0.3346 0.3012 1.111 0.2673
## ConsL.d 0.5257 0.3711 1.417 0.1575
## ConsSL.d 0.3492 0.4436 0.787 0.4316
## gend.mf -0.2138 0.4767 -0.449 0.6540
## ConsSC.d:gend.mf 0.8791 0.6999 1.256 0.2100
## ConsM.d:gend.mf 0.1187 0.6023 0.197 0.8439
## ConsL.d:gend.mf 0.4248 0.7422 0.572 0.5675
## ConsSL.d:gend.mf 0.6349 0.8871 0.716 0.4747
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.02394, Adjusted R-squared: -0.001748
## F-statistic: 0.9319 on 9 and 342 DF, p-value: 0.4973
# Action 19
con.g.b19 <- lm(act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b19) # yes, higher than 0
##
## Call:
## lm(formula = act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1622 0.3462 1.6250 2.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01586 0.23981 4.236 3.14e-05 ***
## ConsSC.d -0.04188 0.36994 -0.113 0.910
## ConsM.d 0.11509 0.31040 0.371 0.711
## ConsL.d 0.48414 0.43982 1.101 0.272
## ConsSL.d 0.12229 0.44988 0.272 0.786
## gend.mf -0.29260 0.47961 -0.610 0.542
## ConsSC.d:gend.mf 0.93287 0.73988 1.261 0.208
## ConsM.d:gend.mf -0.04074 0.62079 -0.066 0.948
## ConsL.d:gend.mf 0.54260 0.87965 0.617 0.538
## ConsSL.d:gend.mf -0.48372 0.89975 -0.538 0.591
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.806 on 264 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.0208, Adjusted R-squared: -0.01258
## F-statistic: 0.6232 on 9 and 264 DF, p-value: 0.7769
# Action 20
con.g.b20 <- lm(act20 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b20) # yes, higher than 0
##
## Call:
## lm(formula = act20 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.398 -1.200 0.602 1.602 2.391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0000 0.2298 4.351 1.84e-05 ***
## ConsSC.d 0.1631 0.3384 0.482 0.6302
## ConsM.d 0.2990 0.2968 1.007 0.3145
## ConsL.d 0.2672 0.3797 0.704 0.4822
## ConsSL.d -0.1078 0.4364 -0.247 0.8050
## gend.mf -0.7826 0.4597 -1.703 0.0897 .
## ConsSC.d:gend.mf 1.0398 0.6768 1.536 0.1255
## ConsM.d:gend.mf 0.5846 0.5936 0.985 0.3254
## ConsL.d:gend.mf 1.0816 0.7593 1.424 0.1553
## ConsSL.d:gend.mf 0.3316 0.8729 0.380 0.7043
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.8 on 312 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.01743, Adjusted R-squared: -0.01091
## F-statistic: 0.615 on 9 and 312 DF, p-value: 0.7842
# Action 21
con.g.b21 <- lm(act21 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b21) # nothing
##
## Call:
## lm(formula = act21 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.556 -1.840 0.160 1.696 3.818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.36063 0.25100 -1.437 0.1516
## ConsSC.d -0.27346 0.37195 -0.735 0.4627
## ConsM.d 0.37819 0.31247 1.210 0.2269
## ConsL.d 0.83184 0.39825 2.089 0.0374 *
## ConsSL.d 0.79058 0.47783 1.655 0.0988 .
## gend.mf -0.44540 0.50199 -0.887 0.3755
## ConsSC.d:gend.mf 0.07722 0.74390 0.104 0.9174
## ConsM.d:gend.mf 0.80052 0.62494 1.281 0.2010
## ConsL.d:gend.mf 0.56964 0.79649 0.715 0.4749
## ConsSL.d:gend.mf 0.69661 0.95566 0.729 0.4665
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.068 on 391 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.0295, Adjusted R-squared: 0.007162
## F-statistic: 1.321 on 9 and 391 DF, p-value: 0.2241
# Action 22
con.g.b22 <- lm(act22 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b22) # yes, higher than 0
##
## Call:
## lm(formula = act22 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.4912 -0.1538 1.6410 3.6410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2456 0.2367 1.038 0.3000
## ConsSC.d -0.4525 0.3539 -1.279 0.2017
## ConsM.d 0.1516 0.2986 0.508 0.6120
## ConsL.d 0.3796 0.3918 0.969 0.3332
## ConsSL.d 0.8313 0.4368 1.903 0.0577 .
## gend.mf -0.4912 0.4733 -1.038 0.3000
## ConsSC.d:gend.mf 1.3595 0.7077 1.921 0.0555 .
## ConsM.d:gend.mf 0.9600 0.5972 1.607 0.1088
## ConsL.d:gend.mf 0.6254 0.7836 0.798 0.4253
## ConsSL.d:gend.mf 0.3374 0.8736 0.386 0.6996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.973 on 392 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.04639, Adjusted R-squared: 0.02449
## F-statistic: 2.119 on 9 and 392 DF, p-value: 0.02709
# Action 23
con.g.b23 <- lm(act23 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b23) # marginally higher than 0
##
## Call:
## lm(formula = act23 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9474 -2.0103 0.1875 2.0227 3.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2733 0.2997 -0.912 0.3626
## ConsSC.d 0.5879 0.4637 1.268 0.2059
## ConsM.d 0.5284 0.3900 1.355 0.1765
## ConsL.d 0.8608 0.4776 1.802 0.0726 .
## ConsSL.d 0.5545 0.5737 0.966 0.3346
## gend.mf -0.5011 0.5994 -0.836 0.4038
## ConsSC.d:gend.mf 1.7666 0.9274 1.905 0.0578 .
## ConsM.d:gend.mf 0.9908 0.7799 1.270 0.2050
## ConsL.d:gend.mf 0.2594 0.9552 0.272 0.7861
## ConsSL.d:gend.mf -0.5614 1.1475 -0.489 0.6250
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.26 on 282 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03359, Adjusted R-squared: 0.002749
## F-statistic: 1.089 on 9 and 282 DF, p-value: 0.3707
# Action 24
con.g.b24 <- lm(act24 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b24) # nothing
##
## Call:
## lm(formula = act24 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5455 -1.8425 0.1575 1.8214 3.8214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5904 0.2377 -2.484 0.0134 *
## ConsSC.d 0.5753 0.3740 1.538 0.1248
## ConsM.d 0.2617 0.2985 0.877 0.3812
## ConsL.d 0.5482 0.4001 1.370 0.1714
## ConsSL.d 0.3774 0.4553 0.829 0.4076
## gend.mf -0.4621 0.4753 -0.972 0.3316
## ConsSC.d:gend.mf 1.5833 0.7479 2.117 0.0349 *
## ConsM.d:gend.mf 0.1195 0.5969 0.200 0.8414
## ConsL.d:gend.mf 0.8322 0.8002 1.040 0.2990
## ConsSL.d:gend.mf -0.1120 0.9105 -0.123 0.9021
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.098 on 405 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.02029, Adjusted R-squared: -0.001484
## F-statistic: 0.9318 on 9 and 405 DF, p-value: 0.4971
# Action 25
con.g.b25 <- lm(act25 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b25) # yes, higher than 0
##
## Call:
## lm(formula = act25 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -0.8936 0.1642 1.4389 3.2051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4111 0.2067 1.989 0.0473 *
## ConsSC.d -0.4899 0.3238 -1.513 0.1310
## ConsM.d 0.4741 0.2587 1.833 0.0675 .
## ConsL.d 0.7977 0.3373 2.365 0.0185 *
## ConsSL.d 0.9511 0.4134 2.301 0.0219 *
## gend.mf -0.3778 0.4134 -0.914 0.3613
## ConsSC.d:gend.mf 0.6305 0.6476 0.974 0.3308
## ConsM.d:gend.mf 0.3946 0.5173 0.763 0.4460
## ConsL.d:gend.mf 0.7102 0.6746 1.053 0.2930
## ConsSL.d:gend.mf 0.5422 0.8267 0.656 0.5123
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.05138, Adjusted R-squared: 0.03171
## F-statistic: 2.612 on 9 and 434 DF, p-value: 0.006027
# Action 26
con.g.b26 <- lm(act26 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b26) # yes, higher than 0
##
## Call:
## lm(formula = act26 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0000 0.5278 1.3433 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.52778 0.26870 5.686 4.19e-08 ***
## ConsSC.d 0.01634 0.40461 0.040 0.968
## ConsM.d 0.01487 0.35326 0.042 0.966
## ConsL.d 0.04365 0.47683 0.092 0.927
## ConsSL.d -0.55556 0.49973 -1.112 0.267
## gend.mf -0.27778 0.53740 -0.517 0.606
## ConsSC.d:gend.mf 0.36601 0.80923 0.452 0.652
## ConsM.d:gend.mf 0.04963 0.70653 0.070 0.944
## ConsL.d:gend.mf 1.42063 0.95367 1.490 0.138
## ConsSL.d:gend.mf 1.22222 0.99946 1.223 0.223
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 216 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.02923, Adjusted R-squared: -0.01122
## F-statistic: 0.7225 on 9 and 216 DF, p-value: 0.688
# Action 27
con.g.b27 <- lm(act27 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b27) # yes, higher than 0
##
## Call:
## lm(formula = act27 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4545 -1.1667 0.2174 1.5521 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.73277 0.24468 2.995 0.00297 **
## ConsSC.d -0.25360 0.35795 -0.708 0.47919
## ConsM.d -0.10881 0.31379 -0.347 0.72901
## ConsL.d 0.44147 0.40014 1.103 0.27076
## ConsSL.d 0.62608 0.43185 1.450 0.14814
## gend.mf 0.09968 0.48937 0.204 0.83873
## ConsSC.d:gend.mf 0.85865 0.71591 1.199 0.23130
## ConsM.d:gend.mf 0.25240 0.62758 0.402 0.68783
## ConsL.d:gend.mf -0.11483 0.80028 -0.143 0.88600
## ConsSL.d:gend.mf 0.09171 0.86370 0.106 0.91551
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 307 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.03928, Adjusted R-squared: 0.01112
## F-statistic: 1.395 on 9 and 307 DF, p-value: 0.1895
# Action 28
con.g.b28 <- lm(act28 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b28) # yes, higher than 0
##
## Call:
## lm(formula = act28 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4262 -0.9511 0.1944 1.5738 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.23485 0.22428 5.506 6.98e-08 ***
## ConsSC.d -0.45112 0.33712 -1.338 0.182
## ConsM.d -0.22922 0.28844 -0.795 0.427
## ConsL.d -0.32497 0.37397 -0.869 0.385
## ConsSL.d -0.25349 0.45481 -0.557 0.578
## gend.mf -0.38275 0.44856 -0.853 0.394
## ConsSC.d:gend.mf 0.33910 0.67424 0.503 0.615
## ConsM.d:gend.mf 0.55331 0.57688 0.959 0.338
## ConsL.d:gend.mf 0.06298 0.74795 0.084 0.933
## ConsSL.d:gend.mf -0.43712 0.90963 -0.481 0.631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 362 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.01604, Adjusted R-squared: -0.008426
## F-statistic: 0.6556 on 9 and 362 DF, p-value: 0.749
# Action 29
con.g.b29 <- lm(act29 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b29) # yes, higher than 0
##
## Call:
## lm(formula = act29 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1003 0.1951 1.5000 2.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99223 0.21473 4.621 5.34e-06 ***
## ConsSC.d 0.12682 0.32565 0.389 0.697
## ConsM.d 0.12270 0.27509 0.446 0.656
## ConsL.d 0.16021 0.34855 0.460 0.646
## ConsSL.d 0.43759 0.41823 1.046 0.296
## gend.mf -0.15113 0.42947 -0.352 0.725
## ConsSC.d:gend.mf 0.38923 0.65129 0.598 0.550
## ConsM.d:gend.mf 0.09270 0.55017 0.168 0.866
## ConsL.d:gend.mf 0.84625 0.69710 1.214 0.226
## ConsSL.d:gend.mf -0.04185 0.83647 -0.050 0.960
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.774 on 358 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01019, Adjusted R-squared: -0.0147
## F-statistic: 0.4093 on 9 and 358 DF, p-value: 0.93
# Action 30
con.g.b30 <- lm(act30 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf, data = d)
summary(con.g.b30) # yes, higher than 0
##
## Call:
## lm(formula = act30 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3529 -1.0654 0.5928 1.6471 2.3913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89207 0.23247 3.837 0.000148 ***
## ConsSC.d 0.19745 0.34437 0.573 0.566785
## ConsM.d 0.09064 0.30305 0.299 0.765042
## ConsL.d 0.37818 0.38141 0.992 0.322128
## ConsSL.d 0.18440 0.44124 0.418 0.676270
## gend.mf -0.56674 0.46494 -1.219 0.223697
## ConsSC.d:gend.mf 0.03989 0.68875 0.058 0.953850
## ConsM.d:gend.mf 0.40132 0.60610 0.662 0.508327
## ConsL.d:gend.mf 0.94933 0.76281 1.245 0.214161
## ConsSL.d:gend.mf 0.01380 0.88249 0.016 0.987531
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.882 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.01188, Adjusted R-squared: -0.01412
## F-statistic: 0.4569 on 9 and 342 DF, p-value: 0.9027
a. Gender x condition
Actions 7, 8, 9, 12, 15, 24, 26, 27
# Action 1
summary(lm(act1 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.960 0.080 2.000 5.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.67414 0.25143 -2.681 0.00762 **
## ConsSC.d 0.27199 0.37388 0.727 0.46732
## ConsM.d 0.78305 0.31017 2.525 0.01194 *
## ConsL.d 1.26860 0.40166 3.158 0.00170 **
## ConsSL.d 0.40122 0.46978 0.854 0.39355
## gend.mf -0.83473 0.50287 -1.660 0.09766 .
## cond.c -0.20225 0.50287 -0.402 0.68775
## ConsSC.d:gend.mf 1.33599 0.74776 1.787 0.07470 .
## ConsM.d:gend.mf 1.53691 0.62033 2.478 0.01361 *
## ConsL.d:gend.mf 0.66366 0.80332 0.826 0.40919
## ConsSL.d:gend.mf -0.41944 0.93956 -0.446 0.65552
## ConsSC.d:cond.c 0.95351 0.74776 1.275 0.20294
## ConsM.d:cond.c -0.49994 0.62033 -0.806 0.42074
## ConsL.d:cond.c 0.07618 0.80332 0.095 0.92450
## ConsSL.d:cond.c 0.32308 0.93956 0.344 0.73112
## gend.mf:cond.c -0.40596 1.00574 -0.404 0.68668
## ConsSC.d:gend.mf:cond.c 0.96404 1.49551 0.645 0.51952
## ConsM.d:gend.mf:cond.c -0.02966 1.24066 -0.024 0.98094
## ConsL.d:gend.mf:cond.c -0.80618 1.60664 -0.502 0.61608
## ConsSL.d:gend.mf:cond.c 4.56429 1.87912 2.429 0.01555 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.124 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.0873, Adjusted R-squared: 0.04669
## F-statistic: 2.15 on 19 and 427 DF, p-value: 0.003504
# Action 2
summary(lm(act2 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6000 -1.0000 0.3485 1.5192 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.79621 0.23378 3.406 0.000761 ***
## ConsSC.d 0.25350 0.35985 0.704 0.481754
## ConsM.d 0.36446 0.31115 1.171 0.242512
## ConsL.d 0.87462 0.40756 2.146 0.032773 *
## ConsSL.d 0.01212 0.46800 0.026 0.979356
## gend.mf -0.74394 0.46756 -1.591 0.112763
## cond.c -0.72576 0.46756 -1.552 0.121789
## ConsSC.d:gend.mf 1.53087 0.71970 2.127 0.034327 *
## ConsM.d:gend.mf 0.75594 0.62230 1.215 0.225535
## ConsL.d:gend.mf 1.31894 0.81513 1.618 0.106822
## ConsSL.d:gend.mf 0.19394 0.93599 0.207 0.836010
## ConsSC.d:cond.c 0.57519 0.71970 0.799 0.424881
## ConsM.d:cond.c 0.56633 0.62230 0.910 0.363615
## ConsL.d:cond.c 0.71742 0.81513 0.880 0.379573
## ConsSL.d:cond.c 1.34242 0.93599 1.434 0.152675
## gend.mf:cond.c -1.57879 0.93512 -1.688 0.092512 .
## ConsSC.d:gend.mf:cond.c 2.65265 1.43941 1.843 0.066452 .
## ConsM.d:gend.mf:cond.c 2.56432 1.24461 2.060 0.040331 *
## ConsL.d:gend.mf:cond.c 2.42879 1.63026 1.490 0.137447
## ConsSL.d:gend.mf:cond.c 3.81212 1.87199 2.036 0.042693 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 268 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.07459, Adjusted R-squared: 0.008984
## F-statistic: 1.137 on 19 and 268 DF, p-value: 0.3138
# Action 3
summary(lm(act3 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7059 -1.8261 0.0278 1.7143 3.9412
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.32639 0.23923 -1.364 0.1732
## ConsSC.d -0.46383 0.35875 -1.293 0.1968
## ConsM.d 0.26164 0.29398 0.890 0.3740
## ConsL.d 0.26389 0.37070 0.712 0.4769
## ConsSL.d 0.52429 0.45873 1.143 0.2537
## gend.mf 0.20833 0.47845 0.435 0.6635
## cond.c -0.31944 0.47845 -0.668 0.5047
## ConsSC.d:gend.mf 0.48574 0.71750 0.677 0.4988
## ConsM.d:gend.mf -0.41942 0.58796 -0.713 0.4760
## ConsL.d:gend.mf 0.05952 0.74141 0.080 0.9360
## ConsSL.d:gend.mf -0.80413 0.91747 -0.876 0.3813
## ConsSC.d:cond.c 0.31655 0.71750 0.441 0.6593
## ConsM.d:cond.c 0.38440 0.58796 0.654 0.5136
## ConsL.d:cond.c 1.08730 0.74141 1.467 0.1432
## ConsSL.d:cond.c 0.40936 0.91747 0.446 0.6557
## gend.mf:cond.c -1.58333 0.95690 -1.655 0.0987 .
## ConsSC.d:gend.mf:cond.c 2.36185 1.43500 1.646 0.1005
## ConsM.d:gend.mf:cond.c 1.43893 1.17592 1.224 0.2218
## ConsL.d:gend.mf:cond.c 0.33333 1.48282 0.225 0.8222
## ConsSL.d:gend.mf:cond.c 2.60350 1.83494 1.419 0.1567
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.05725, Adjusted R-squared: 0.01481
## F-statistic: 1.349 on 19 and 422 DF, p-value: 0.1485
# Action 4
summary(lm(act4 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2000 -1.8551 0.1449 2.0909 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3586 0.2892 -1.240 0.2159
## ConsSC.d 0.5584 0.4245 1.316 0.1892
## ConsM.d 0.1460 0.3584 0.407 0.6840
## ConsL.d 0.8733 0.4379 1.994 0.0469 *
## ConsSL.d 0.7201 0.5342 1.348 0.1785
## gend.mf -0.4656 0.5784 -0.805 0.4214
## cond.c -0.5239 0.5784 -0.906 0.3657
## ConsSC.d:gend.mf 0.8386 0.8489 0.988 0.3239
## ConsM.d:gend.mf 0.4532 0.7168 0.632 0.5276
## ConsL.d:gend.mf 0.8361 0.8757 0.955 0.3404
## ConsSL.d:gend.mf -0.8575 1.0683 -0.803 0.4227
## ConsSC.d:cond.c 0.5146 0.8489 0.606 0.5448
## ConsM.d:cond.c 0.1812 0.7168 0.253 0.8006
## ConsL.d:cond.c 1.2839 0.8757 1.466 0.1435
## ConsSL.d:cond.c 0.6008 1.0683 0.562 0.5742
## gend.mf:cond.c -1.8175 1.1568 -1.571 0.1171
## ConsSC.d:gend.mf:cond.c 1.3817 1.6978 0.814 0.4163
## ConsM.d:gend.mf:cond.c 1.3780 1.4336 0.961 0.3371
## ConsL.d:gend.mf:cond.c 1.4976 1.7515 0.855 0.3931
## ConsSL.d:gend.mf:cond.c 1.2637 2.1367 0.591 0.5546
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.183 on 349 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.04372, Adjusted R-squared: -0.008345
## F-statistic: 0.8397 on 19 and 349 DF, p-value: 0.6588
# Action 5
summary(lm(act5 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4800 -1.2500 0.1622 1.5200 3.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.96002 0.23800 4.034 7.12e-05 ***
## ConsSC.d -0.23041 0.36466 -0.632 0.5280
## ConsM.d 0.11414 0.31715 0.360 0.7192
## ConsL.d 0.51138 0.40348 1.267 0.2061
## ConsSL.d -0.68918 0.47869 -1.440 0.1511
## gend.mf -0.46906 0.47600 -0.985 0.3253
## cond.c -0.32239 0.47600 -0.677 0.4988
## ConsSC.d:gend.mf -0.01290 0.72932 -0.018 0.9859
## ConsM.d:gend.mf 0.52953 0.63429 0.835 0.4045
## ConsL.d:gend.mf 0.95483 0.80695 1.183 0.2377
## ConsSL.d:gend.mf 0.34406 0.95739 0.359 0.7196
## ConsSC.d:cond.c 0.05434 0.72932 0.075 0.9407
## ConsM.d:cond.c -0.06501 0.63429 -0.102 0.9184
## ConsL.d:cond.c -0.49952 0.80695 -0.619 0.5364
## ConsSL.d:cond.c 0.44739 0.95739 0.467 0.6407
## gend.mf:cond.c -1.78660 0.95199 -1.877 0.0616 .
## ConsSC.d:gend.mf:cond.c 1.36815 1.45865 0.938 0.3491
## ConsM.d:gend.mf:cond.c 1.83612 1.26858 1.447 0.1489
## ConsL.d:gend.mf:cond.c 2.28756 1.61390 1.417 0.1575
## ConsSL.d:gend.mf:cond.c 3.36993 1.91477 1.760 0.0795 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.884 on 275 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.0598, Adjusted R-squared: -0.005162
## F-statistic: 0.9205 on 19 and 275 DF, p-value: 0.5577
# Action 6
summary(lm(act6 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.0816 0.5333 1.5294 2.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.31301 0.21991 5.971 5.99e-09 ***
## ConsSC.d -0.46939 0.33707 -1.393 0.1647
## ConsM.d 0.03754 0.28643 0.131 0.8958
## ConsL.d 0.25622 0.37174 0.689 0.4911
## ConsSL.d -0.38266 0.42696 -0.896 0.3708
## gend.mf -0.22603 0.43982 -0.514 0.6076
## cond.c -0.38087 0.43982 -0.866 0.3871
## ConsSC.d:gend.mf -0.25213 0.67415 -0.374 0.7086
## ConsM.d:gend.mf 0.46217 0.57286 0.807 0.4204
## ConsL.d:gend.mf 0.84946 0.74349 1.143 0.2540
## ConsSL.d:gend.mf -0.98469 0.85392 -1.153 0.2497
## ConsSC.d:cond.c 0.33955 0.67415 0.504 0.6148
## ConsM.d:cond.c 0.22806 0.57286 0.398 0.6908
## ConsL.d:cond.c -0.06713 0.74349 -0.090 0.9281
## ConsSL.d:cond.c 0.42015 0.85392 0.492 0.6230
## gend.mf:cond.c -1.63826 0.87963 -1.862 0.0634 .
## ConsSC.d:gend.mf:cond.c 2.93908 1.34829 2.180 0.0300 *
## ConsM.d:gend.mf:cond.c 1.93604 1.14572 1.690 0.0920 .
## ConsL.d:gend.mf:cond.c 0.34378 1.48698 0.231 0.8173
## ConsSL.d:gend.mf:cond.c 1.85969 1.70783 1.089 0.2770
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 337 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.04582, Adjusted R-squared: -0.00798
## F-statistic: 0.8517 on 19 and 337 DF, p-value: 0.6439
# Action 7
summary(lm(act7 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0625 -1.8571 0.0625 1.7143 3.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3364 0.2648 -1.270 0.2047
## ConsSC.d 0.2347 0.3880 0.605 0.5456
## ConsM.d 0.2406 0.3216 0.748 0.4548
## ConsL.d 0.4170 0.4125 1.011 0.3126
## ConsSL.d 0.3104 0.5024 0.618 0.5371
## gend.mf -0.2200 0.5297 -0.415 0.6782
## cond.c -0.3229 0.5297 -0.610 0.5425
## ConsSC.d:gend.mf 0.6053 0.7759 0.780 0.4358
## ConsM.d:gend.mf 0.3337 0.6432 0.519 0.6042
## ConsL.d:gend.mf 0.4477 0.8249 0.543 0.5876
## ConsSL.d:gend.mf -0.8946 1.0049 -0.890 0.3739
## ConsSC.d:cond.c 0.4546 0.7759 0.586 0.5583
## ConsM.d:cond.c 0.7378 0.6432 1.147 0.2521
## ConsL.d:cond.c 1.1785 0.8249 1.429 0.1539
## ConsSL.d:cond.c 0.2083 1.0049 0.207 0.8359
## gend.mf:cond.c -2.1399 1.0594 -2.020 0.0441 *
## ConsSC.d:gend.mf:cond.c 3.3310 1.5518 2.147 0.0324 *
## ConsM.d:gend.mf:cond.c 2.6089 1.2864 2.028 0.0432 *
## ConsL.d:gend.mf:cond.c 0.3177 1.6499 0.193 0.8474
## ConsSL.d:gend.mf:cond.c 4.0357 2.0098 2.008 0.0453 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.081 on 393 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.05477, Adjusted R-squared: 0.009077
## F-statistic: 1.199 on 19 and 393 DF, p-value: 0.2548
aggregate(d$act7[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate 0.15
## 2 Male climate -1.14
## 3 Female ctrl -0.60
## 4 Male ctrl 0.25
# Action 8
summary(lm(act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4000 -1.6786 -0.1429 1.5466 4.8421
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.46262 0.24324 -1.902 0.057804 .
## ConsSC.d -0.48735 0.36574 -1.333 0.183355
## ConsM.d 0.07658 0.29989 0.255 0.798564
## ConsL.d 1.04595 0.40134 2.606 0.009454 **
## ConsSL.d 0.89595 0.45097 1.987 0.047546 *
## gend.mf 0.41062 0.48647 0.844 0.399065
## cond.c -1.67524 0.48647 -3.444 0.000627 ***
## ConsSC.d:gend.mf 0.85297 0.73149 1.166 0.244191
## ConsM.d:gend.mf -0.20194 0.59978 -0.337 0.736501
## ConsL.d:gend.mf -0.14871 0.80268 -0.185 0.853097
## ConsSL.d:gend.mf -1.61062 0.90194 -1.786 0.074802 .
## ConsSC.d:cond.c 1.79921 0.73149 2.460 0.014274 *
## ConsM.d:cond.c 1.91270 0.59978 3.189 0.001525 **
## ConsL.d:cond.c 2.27048 0.80268 2.829 0.004880 **
## ConsSL.d:cond.c 2.87524 0.90194 3.188 0.001531 **
## gend.mf:cond.c -2.56765 0.97294 -2.639 0.008596 **
## ConsSC.d:gend.mf:cond.c 1.77425 1.46297 1.213 0.225842
## ConsM.d:gend.mf:cond.c 3.05288 1.19955 2.545 0.011254 *
## ConsL.d:gend.mf:cond.c 2.52003 1.60536 1.570 0.117160
## ConsSL.d:gend.mf:cond.c 3.50098 1.80387 1.941 0.052893 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.102 on 459 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1107, Adjusted R-squared: 0.07388
## F-statistic: 3.007 on 19 and 459 DF, p-value: 2.47e-05
aggregate(d$act8[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.86
## 2 Male climate -1.74
## 3 Female ctrl -0.47
## 4 Male ctrl 1.22
# Action 9
summary(lm(act9 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8000 -1.5455 0.0455 1.5000 4.4545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.064112 0.232036 -0.276 0.78245
## ConsSC.d -0.735509 0.350953 -2.096 0.03669 *
## ConsM.d 0.231180 0.286670 0.806 0.42044
## ConsL.d 0.627208 0.365342 1.717 0.08675 .
## ConsSL.d -0.002554 0.443179 -0.006 0.99540
## gend.mf 0.461558 0.464071 0.995 0.32050
## cond.c -0.886395 0.464071 -1.910 0.05680 .
## ConsSC.d:gend.mf -0.566861 0.701906 -0.808 0.41977
## ConsM.d:gend.mf -0.536799 0.573340 -0.936 0.34967
## ConsL.d:gend.mf -0.502034 0.730684 -0.687 0.49241
## ConsSL.d:gend.mf -1.428225 0.886358 -1.611 0.10784
## ConsSC.d:cond.c 2.008365 0.701906 2.861 0.00443 **
## ConsM.d:cond.c 1.090984 0.573340 1.903 0.05773 .
## ConsL.d:cond.c 0.712585 0.730684 0.975 0.33000
## ConsSL.d:cond.c 0.853062 0.886358 0.962 0.33638
## gend.mf:cond.c -2.004988 0.928143 -2.160 0.03131 *
## ConsSC.d:gend.mf:cond.c 2.170139 1.403811 1.546 0.12287
## ConsM.d:gend.mf:cond.c 2.295415 1.146680 2.002 0.04594 *
## ConsL.d:gend.mf:cond.c 1.324036 1.461368 0.906 0.36543
## ConsSL.d:gend.mf:cond.c 2.271655 1.772717 1.281 0.20073
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.06597, Adjusted R-squared: 0.02441
## F-statistic: 1.587 on 19 and 427 DF, p-value: 0.05552
aggregate(d$act9[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.24
## 2 Male climate -0.78
## 3 Female ctrl -0.35
## 4 Male ctrl 1.11
# Action 10
summary(lm(act10 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.8630 0.1739 1.7370 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.197392 0.235263 -0.839 0.40190
## ConsSC.d -0.340257 0.355033 -0.958 0.33838
## ConsM.d 0.283118 0.292403 0.968 0.33344
## ConsL.d 1.163124 0.380096 3.060 0.00234 **
## ConsSL.d 0.927695 0.448282 2.069 0.03907 *
## gend.mf -0.005217 0.470527 -0.011 0.99116
## cond.c -0.800339 0.470527 -1.701 0.08964 .
## ConsSC.d:gend.mf 0.474454 0.710066 0.668 0.50436
## ConsM.d:gend.mf 0.051156 0.584806 0.087 0.93033
## ConsL.d:gend.mf 0.948751 0.760192 1.248 0.21266
## ConsSL.d:gend.mf -1.655389 0.896564 -1.846 0.06549 .
## ConsSC.d:cond.c 0.734611 0.710066 1.035 0.30142
## ConsM.d:cond.c 0.883204 0.584806 1.510 0.13167
## ConsL.d:cond.c 0.968873 0.760192 1.275 0.20313
## ConsSL.d:cond.c 1.994278 0.896564 2.224 0.02661 *
## gend.mf:cond.c -1.599322 0.941053 -1.700 0.08991 .
## ConsSC.d:gend.mf:cond.c 1.609567 1.420133 1.133 0.25765
## ConsM.d:gend.mf:cond.c 2.564026 1.169612 2.192 0.02887 *
## ConsL.d:gend.mf:cond.c 0.512254 1.520385 0.337 0.73633
## ConsSL.d:gend.mf:cond.c 4.411444 1.793127 2.460 0.01426 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 456 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.0938, Adjusted R-squared: 0.05604
## F-statistic: 2.484 on 19 and 456 DF, p-value: 0.0005392
# Action 11
summary(lm(act11 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9000 -1.0292 0.3902 1.5200 3.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.77409 0.24441 3.167 0.0017 **
## ConsSC.d 0.01624 0.36192 0.045 0.9642
## ConsM.d -0.06157 0.30519 -0.202 0.8402
## ConsL.d 0.99793 0.40534 2.462 0.0144 *
## ConsSL.d 0.65924 0.49312 1.337 0.1823
## gend.mf -0.46486 0.48882 -0.951 0.3424
## cond.c -1.05181 0.48882 -2.152 0.0322 *
## ConsSC.d:gend.mf 1.61146 0.72385 2.226 0.0268 *
## ConsM.d:gend.mf 0.38949 0.61038 0.638 0.5239
## ConsL.d:gend.mf 0.65890 0.81068 0.813 0.4170
## ConsSL.d:gend.mf 0.43152 0.98624 0.438 0.6620
## ConsSC.d:cond.c 1.46465 0.72385 2.023 0.0439 *
## ConsM.d:cond.c 0.40089 0.61038 0.657 0.5118
## ConsL.d:cond.c 0.67443 0.81068 0.832 0.4061
## ConsSL.d:cond.c 0.68514 0.98624 0.695 0.4878
## gend.mf:cond.c -1.72971 0.97764 -1.769 0.0779 .
## ConsSC.d:gend.mf:cond.c 1.99494 1.44769 1.378 0.1693
## ConsM.d:gend.mf:cond.c 1.50868 1.22076 1.236 0.2175
## ConsL.d:gend.mf:cond.c -0.32505 1.62135 -0.200 0.8412
## ConsSL.d:gend.mf:cond.c 2.79638 1.97249 1.418 0.1573
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.858 on 292 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.09531, Adjusted R-squared: 0.03644
## F-statistic: 1.619 on 19 and 292 DF, p-value: 0.05071
# Action 12
summary(lm(act12 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.000 -1.875 0.125 1.635 4.235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5712 0.2726 -2.095 0.036824 *
## ConsSC.d -0.1833 0.3966 -0.462 0.644200
## ConsM.d 0.4075 0.3365 1.211 0.226686
## ConsL.d 1.7250 0.4426 3.898 0.000116 ***
## ConsSL.d 0.8121 0.5176 1.569 0.117520
## gend.mf -0.4112 0.5452 -0.754 0.451240
## cond.c -1.1826 0.5452 -2.169 0.030720 *
## ConsSC.d:gend.mf 1.1929 0.7932 1.504 0.133477
## ConsM.d:gend.mf -0.1562 0.6731 -0.232 0.816559
## ConsL.d:gend.mf 1.7702 0.8851 2.000 0.046253 *
## ConsSL.d:gend.mf -0.4707 1.0352 -0.455 0.649631
## ConsSC.d:cond.c 1.8179 0.7932 2.292 0.022491 *
## ConsM.d:cond.c 1.2270 0.6731 1.823 0.069122 .
## ConsL.d:cond.c 1.6985 0.8851 1.919 0.055779 .
## ConsSL.d:cond.c 1.9008 1.0352 1.836 0.067155 .
## gend.mf:cond.c -3.0277 1.0904 -2.777 0.005776 **
## ConsSC.d:gend.mf:cond.c 3.9388 1.5865 2.483 0.013488 *
## ConsM.d:gend.mf:cond.c 4.0967 1.3461 3.043 0.002510 **
## ConsL.d:gend.mf:cond.c 2.6625 1.7703 1.504 0.133457
## ConsSL.d:gend.mf:cond.c 3.1913 2.0704 1.541 0.124092
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.117 on 363 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.06946
## F-statistic: 2.501 on 19 and 363 DF, p-value: 0.0005499
aggregate(d$act12[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.20
## 2 Male climate -2.12
## 3 Female ctrl -0.53
## 4 Male ctrl 0.57
# Action 13
summary(lm(act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1333 -1.8000 0.1852 1.8235 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08838 0.25565 -0.346 0.72972
## ConsSC.d -0.21246 0.37426 -0.568 0.57056
## ConsM.d -0.05948 0.30902 -0.192 0.84746
## ConsL.d 0.58999 0.40329 1.463 0.14423
## ConsSL.d 0.03630 0.45985 0.079 0.93712
## gend.mf 0.17677 0.51129 0.346 0.72972
## cond.c -1.26768 0.51129 -2.479 0.01355 *
## ConsSC.d:gend.mf 1.60673 0.74852 2.147 0.03240 *
## ConsM.d:gend.mf -0.44626 0.61804 -0.722 0.47066
## ConsL.d:gend.mf 0.36169 0.80659 0.448 0.65408
## ConsSL.d:gend.mf -1.03927 0.91970 -1.130 0.25911
## ConsSC.d:cond.c 1.13872 0.74852 1.521 0.12893
## ConsM.d:cond.c 1.56596 0.61804 2.534 0.01165 *
## ConsL.d:cond.c 1.47280 0.80659 1.826 0.06856 .
## ConsSL.d:cond.c 1.83018 0.91970 1.990 0.04724 *
## gend.mf:cond.c -1.46465 1.02258 -1.432 0.15280
## ConsSC.d:gend.mf:cond.c 1.17710 1.49704 0.786 0.43214
## ConsM.d:gend.mf:cond.c 1.30286 1.23608 1.054 0.29247
## ConsL.d:gend.mf:cond.c 2.63772 1.61318 1.635 0.10277
## ConsSL.d:gend.mf:cond.c 5.60631 1.83939 3.048 0.00245 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.08224, Adjusted R-squared: 0.04091
## F-statistic: 1.99 on 19 and 422 DF, p-value: 0.008085
# Action 14
summary(lm(act14 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1818 -1.2411 0.3129 1.5849 3.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04414 0.28896 0.153 0.8787
## ConsSC.d 0.45751 0.43815 1.044 0.2974
## ConsM.d 0.34138 0.35685 0.957 0.3396
## ConsL.d 1.09396 0.46578 2.349 0.0196 *
## ConsSL.d -0.25247 0.56982 -0.443 0.6581
## gend.mf -1.48828 0.57791 -2.575 0.0106 *
## cond.c -0.30646 0.57791 -0.530 0.5964
## ConsSC.d:gend.mf 2.09927 0.87631 2.396 0.0173 *
## ConsM.d:gend.mf 1.32041 0.71370 1.850 0.0654 .
## ConsL.d:gend.mf 2.11207 0.93155 2.267 0.0242 *
## ConsSL.d:gend.mf -0.17839 1.13964 -0.157 0.8757
## ConsSC.d:cond.c 0.89547 0.87631 1.022 0.3078
## ConsM.d:cond.c 0.44812 0.71370 0.628 0.5306
## ConsL.d:cond.c 0.61207 0.93155 0.657 0.5117
## ConsSL.d:cond.c 1.72313 1.13964 1.512 0.1317
## gend.mf:cond.c -0.18708 1.15582 -0.162 0.8715
## ConsSC.d:gend.mf:cond.c -0.61951 1.75262 -0.353 0.7240
## ConsM.d:gend.mf:cond.c 0.25297 1.42739 0.177 0.8595
## ConsL.d:gend.mf:cond.c -0.62415 1.86311 -0.335 0.7379
## ConsSL.d:gend.mf:cond.c 2.52041 2.27929 1.106 0.2698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.033 on 266 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.06875, Adjusted R-squared: 0.002233
## F-statistic: 1.034 on 19 and 266 DF, p-value: 0.4224
# Action 15
summary(lm(act15 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5294 -1.7357 0.3167 1.4947 4.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09736 0.24269 0.401 0.6885
## ConsSC.d -0.43962 0.36314 -1.211 0.2268
## ConsM.d -0.17671 0.30040 -0.588 0.5567
## ConsL.d 0.90791 0.41707 2.177 0.0301 *
## ConsSL.d 0.04163 0.44684 0.093 0.9258
## gend.mf -0.37707 0.48538 -0.777 0.4377
## cond.c -0.54374 0.48538 -1.120 0.2634
## ConsSC.d:gend.mf 0.97826 0.72627 1.347 0.1788
## ConsM.d:gend.mf -0.36541 0.60081 -0.608 0.5434
## ConsL.d:gend.mf 1.19153 0.83415 1.428 0.1540
## ConsSL.d:gend.mf -0.38662 0.89369 -0.433 0.6656
## ConsSC.d:cond.c 0.85922 0.72627 1.183 0.2376
## ConsM.d:cond.c 0.67947 0.60081 1.131 0.2588
## ConsL.d:cond.c -0.60013 0.83415 -0.719 0.4723
## ConsSL.d:cond.c 1.35505 0.89369 1.516 0.1303
## gend.mf:cond.c -2.07722 0.97076 -2.140 0.0330 *
## ConsSC.d:gend.mf:cond.c 1.27961 1.45255 0.881 0.3789
## ConsM.d:gend.mf:cond.c 2.91248 1.20161 2.424 0.0158 *
## ConsL.d:gend.mf:cond.c 3.51497 1.66830 2.107 0.0358 *
## ConsSL.d:gend.mf:cond.c 4.28318 1.78738 2.396 0.0171 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.021 on 364 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.09033, Adjusted R-squared: 0.04285
## F-statistic: 1.902 on 19 and 364 DF, p-value: 0.013
aggregate(d$act15[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate 0.53
## 2 Male climate -0.88
## 3 Female ctrl 0.04
## 4 Male ctrl 0.70
# Action 16
summary(lm(act16 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -0.9811 0.2963 1.4800 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89906 0.23622 3.806 0.00017 ***
## ConsSC.d -0.26522 0.36089 -0.735 0.46294
## ConsM.d 0.20230 0.29806 0.679 0.49783
## ConsL.d 0.12397 0.39179 0.316 0.75190
## ConsSL.d -0.38239 0.47520 -0.805 0.42161
## gend.mf -0.48188 0.47244 -1.020 0.30853
## cond.c 0.26034 0.47244 0.551 0.58199
## ConsSC.d:gend.mf 1.32531 0.72177 1.836 0.06728 .
## ConsM.d:gend.mf 0.99976 0.59612 1.677 0.09453 .
## ConsL.d:gend.mf -0.06417 0.78358 -0.082 0.93478
## ConsSL.d:gend.mf 0.61521 0.95040 0.647 0.51790
## ConsSC.d:cond.c -0.19469 0.72177 -0.270 0.78755
## ConsM.d:cond.c -0.01133 0.59612 -0.019 0.98484
## ConsL.d:cond.c -0.55639 0.78358 -0.710 0.47819
## ConsSL.d:cond.c -0.29368 0.95040 -0.309 0.75753
## gend.mf:cond.c -0.99932 0.94488 -1.058 0.29105
## ConsSC.d:gend.mf:cond.c 0.64578 1.44355 0.447 0.65493
## ConsM.d:gend.mf:cond.c 0.94248 1.19224 0.791 0.42983
## ConsL.d:gend.mf:cond.c -1.40858 1.56715 -0.899 0.36945
## ConsSL.d:gend.mf:cond.c 4.73265 1.90079 2.490 0.01330 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 311 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.06263, Adjusted R-squared: 0.005359
## F-statistic: 1.094 on 19 and 311 DF, p-value: 0.3561
# Action 17
summary(lm(act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4286 -1.3889 -0.0571 1.6000 4.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27669 0.24615 1.124 0.26167
## ConsSC.d 0.07748 0.36114 0.215 0.83024
## ConsM.d 0.20647 0.30216 0.683 0.49481
## ConsL.d 0.49282 0.39139 1.259 0.20872
## ConsSL.d 0.64623 0.45949 1.406 0.16039
## gend.mf -0.03948 0.49230 -0.080 0.93612
## cond.c -1.10734 0.49230 -2.249 0.02504 *
## ConsSC.d:gend.mf 0.22509 0.72229 0.312 0.75548
## ConsM.d:gend.mf 0.06667 0.60433 0.110 0.91221
## ConsL.d:gend.mf 0.78619 0.78278 1.004 0.31582
## ConsSL.d:gend.mf -0.88968 0.91898 -0.968 0.33358
## ConsSC.d:cond.c 1.89901 0.72229 2.629 0.00889 **
## ConsM.d:cond.c 0.66722 0.60433 1.104 0.27023
## ConsL.d:cond.c 1.02547 0.78278 1.310 0.19094
## ConsSL.d:cond.c 2.80317 0.91898 3.050 0.00244 **
## gend.mf:cond.c -1.25754 0.98460 -1.277 0.20228
## ConsSC.d:gend.mf:cond.c 0.79542 1.44458 0.551 0.58220
## ConsM.d:gend.mf:cond.c 0.69623 1.20865 0.576 0.56492
## ConsL.d:gend.mf:cond.c 0.27842 1.56556 0.178 0.85894
## ConsSL.d:gend.mf:cond.c 4.69921 1.83797 2.557 0.01094 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 396 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.0642, Adjusted R-squared: 0.0193
## F-statistic: 1.43 on 19 and 396 DF, p-value: 0.1086
# Action 18
summary(lm(act18 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.2632 0.2372 1.3333 3.3846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48707 0.24051 2.025 0.04365 *
## ConsSC.d -0.26593 0.35230 -0.755 0.45087
## ConsM.d 0.28341 0.30321 0.935 0.35061
## ConsL.d 0.49985 0.37294 1.340 0.18106
## ConsSL.d 0.13953 0.45400 0.307 0.75878
## gend.mf -0.14080 0.48102 -0.293 0.76992
## cond.c -0.47414 0.48102 -0.986 0.32501
## ConsSC.d:gend.mf 0.85005 0.70460 1.206 0.22851
## ConsM.d:gend.mf 0.05205 0.60641 0.086 0.93166
## ConsL.d:gend.mf 0.30982 0.74588 0.415 0.67813
## ConsSL.d:gend.mf 0.63760 0.90800 0.702 0.48305
## ConsSC.d:cond.c 0.96769 0.70460 1.373 0.17055
## ConsM.d:cond.c 0.45875 0.60641 0.756 0.44989
## ConsL.d:cond.c 0.62060 0.74588 0.832 0.40599
## ConsSL.d:cond.c 1.05427 0.90800 1.161 0.24644
## gend.mf:cond.c -1.38506 0.96205 -1.440 0.15090
## ConsSC.d:gend.mf:cond.c 1.36764 1.40919 0.971 0.33250
## ConsM.d:gend.mf:cond.c 1.57025 1.21282 1.295 0.19632
## ConsL.d:gend.mf:cond.c 0.23499 1.49175 0.158 0.87492
## ConsSL.d:gend.mf:cond.c 4.72480 1.81601 2.602 0.00969 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.05189, Adjusted R-squared: -0.002371
## F-statistic: 0.9563 on 19 and 332 DF, p-value: 0.5132
# Action 19
summary(lm(act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6364 -1.0465 0.3693 1.4390 2.8750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12118 0.24545 4.568 7.69e-06 ***
## ConsSC.d -0.21145 0.38136 -0.554 0.5797
## ConsM.d 0.03203 0.31718 0.101 0.9196
## ConsL.d 0.42327 0.45347 0.933 0.3515
## ConsSL.d -0.03500 0.46199 -0.076 0.9397
## gend.mf -0.17886 0.49090 -0.364 0.7159
## cond.c -1.00209 0.49090 -2.041 0.0423 *
## ConsSC.d:gend.mf 0.98442 0.76272 1.291 0.1980
## ConsM.d:gend.mf -0.12221 0.63435 -0.193 0.8474
## ConsL.d:gend.mf 0.62330 0.90695 0.687 0.4925
## ConsSL.d:gend.mf -0.66016 0.92398 -0.714 0.4756
## ConsSC.d:cond.c 1.07154 0.76272 1.405 0.1613
## ConsM.d:cond.c 0.56572 0.63435 0.892 0.3733
## ConsL.d:cond.c 0.22431 0.90695 0.247 0.8049
## ConsSL.d:cond.c 1.20474 0.92398 1.304 0.1935
## gend.mf:cond.c -0.97994 0.98180 -0.998 0.3192
## ConsSC.d:gend.mf:cond.c -0.40895 1.52544 -0.268 0.7889
## ConsM.d:gend.mf:cond.c 1.13612 1.26871 0.895 0.3714
## ConsL.d:gend.mf:cond.c 0.26883 1.81389 0.148 0.8823
## ConsSL.d:gend.mf:cond.c 1.90797 1.84796 1.032 0.3028
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.809 on 254 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.05536, Adjusted R-squared: -0.0153
## F-statistic: 0.7834 on 19 and 254 DF, p-value: 0.7262
# Action 20
summary(lm(act20 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7000 -1.1616 0.4211 1.4211 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.024840 0.230619 4.444 1.24e-05 ***
## ConsSC.d 0.179074 0.340966 0.525 0.5998
## ConsM.d 0.241304 0.297672 0.811 0.4182
## ConsL.d 0.225599 0.379943 0.594 0.5531
## ConsSL.d -0.320078 0.450351 -0.711 0.4778
## gend.mf -0.741987 0.461239 -1.609 0.1087
## cond.c -0.450321 0.461239 -0.976 0.3297
## ConsSC.d:gend.mf 0.917492 0.681933 1.345 0.1795
## ConsM.d:gend.mf 0.548986 0.595344 0.922 0.3572
## ConsL.d:gend.mf 1.074443 0.759887 1.414 0.1584
## ConsSL.d:gend.mf 0.165797 0.900702 0.184 0.8541
## ConsSC.d:cond.c -0.096397 0.681933 -0.141 0.8877
## ConsM.d:cond.c -0.221340 0.595344 -0.372 0.7103
## ConsL.d:cond.c -0.417223 0.759887 -0.549 0.5834
## ConsSL.d:cond.c 0.493178 0.900702 0.548 0.5844
## gend.mf:cond.c -0.483974 0.922478 -0.525 0.6002
## ConsSC.d:gend.mf:cond.c 0.744075 1.363865 0.546 0.5858
## ConsM.d:gend.mf:cond.c 0.005866 1.190688 0.005 0.9961
## ConsL.d:gend.mf:cond.c -0.114271 1.519774 -0.075 0.9401
## ConsSL.d:gend.mf:cond.c 3.398260 1.801404 1.886 0.0602 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.795 on 302 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.05394, Adjusted R-squared: -0.00558
## F-statistic: 0.9063 on 19 and 302 DF, p-value: 0.5755
# Action 21
summary(lm(act21 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1250 -1.7424 0.0508 1.7059 4.2727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.26166 0.26875 -0.974 0.3309
## ConsSC.d -0.38912 0.38474 -1.011 0.3125
## ConsM.d 0.28277 0.32685 0.865 0.3875
## ConsL.d 0.72803 0.41005 1.775 0.0766 .
## ConsSL.d 0.62128 0.48936 1.270 0.2050
## gend.mf -0.21618 0.53749 -0.402 0.6878
## cond.c -0.05903 0.53749 -0.110 0.9126
## ConsSC.d:gend.mf -0.11863 0.76947 -0.154 0.8776
## ConsM.d:gend.mf 0.56682 0.65370 0.867 0.3864
## ConsL.d:gend.mf 0.26558 0.82009 0.324 0.7462
## ConsSL.d:gend.mf 0.39695 0.97872 0.406 0.6853
## ConsSC.d:cond.c 0.73609 0.76947 0.957 0.3394
## ConsM.d:cond.c 0.21597 0.65370 0.330 0.7413
## ConsL.d:cond.c -0.21656 0.82009 -0.264 0.7919
## ConsSL.d:cond.c 0.73980 0.97872 0.756 0.4502
## gend.mf:cond.c -1.93235 1.07498 -1.798 0.0730 .
## ConsSC.d:gend.mf:cond.c 2.39643 1.53894 1.557 0.1203
## ConsM.d:gend.mf:cond.c 1.83277 1.30740 1.402 0.1618
## ConsL.d:gend.mf:cond.c -0.05217 1.64018 -0.032 0.9746
## ConsSL.d:gend.mf:cond.c 4.37081 1.95744 2.233 0.0261 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 381 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05638, Adjusted R-squared: 0.009323
## F-statistic: 1.198 on 19 and 381 DF, p-value: 0.2555
# Action 22
summary(lm(act22 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2222 -1.4571 -0.0508 1.7429 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28750 0.24132 1.191 0.2342
## ConsSC.d -0.49926 0.35747 -1.397 0.1633
## ConsM.d 0.10529 0.30256 0.348 0.7280
## ConsL.d 0.34575 0.39634 0.872 0.3836
## ConsSL.d 0.79747 0.44420 1.795 0.0734 .
## gend.mf -0.34167 0.48264 -0.708 0.4794
## cond.c -0.37500 0.48264 -0.777 0.4377
## ConsSC.d:gend.mf 1.21973 0.71493 1.706 0.0888 .
## ConsM.d:gend.mf 0.81925 0.60513 1.354 0.1766
## ConsL.d:gend.mf 0.33706 0.79268 0.425 0.6709
## ConsSL.d:gend.mf 0.17173 0.88841 0.193 0.8468
## ConsSC.d:cond.c 0.63835 0.71493 0.893 0.3725
## ConsM.d:cond.c 0.37712 0.60513 0.623 0.5335
## ConsL.d:cond.c 0.05294 0.79268 0.067 0.9468
## ConsSL.d:cond.c -0.17271 0.88841 -0.194 0.8460
## gend.mf:cond.c -1.58333 0.96527 -1.640 0.1018
## ConsSC.d:gend.mf:cond.c 1.60209 1.42986 1.120 0.2632
## ConsM.d:gend.mf:cond.c 2.00016 1.21025 1.653 0.0992 .
## ConsL.d:gend.mf:cond.c -0.96302 1.58537 -0.607 0.5439
## ConsSL.d:gend.mf:cond.c 0.27876 1.77681 0.157 0.8754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.976 on 382 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.0681, Adjusted R-squared: 0.02175
## F-statistic: 1.469 on 19 and 382 DF, p-value: 0.0928
# Action 23
summary(lm(act23 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -2.000 0.125 1.920 4.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.23475 0.30175 -0.778 0.4373
## ConsSC.d 0.53955 0.46441 1.162 0.2463
## ConsM.d 0.45588 0.39257 1.161 0.2465
## ConsL.d 0.75449 0.48207 1.565 0.1187
## ConsSL.d 0.59612 0.58472 1.019 0.3089
## gend.mf -0.39161 0.60349 -0.649 0.5169
## cond.c -0.53383 0.60349 -0.885 0.3772
## ConsSC.d:gend.mf 1.63757 0.92881 1.763 0.0790 .
## ConsM.d:gend.mf 0.81601 0.78513 1.039 0.2996
## ConsL.d:gend.mf 0.11998 0.96414 0.124 0.9011
## ConsSL.d:gend.mf -0.83112 1.16944 -0.711 0.4779
## ConsSC.d:cond.c 0.58787 0.92881 0.633 0.5273
## ConsM.d:cond.c -0.03343 0.78513 -0.043 0.9661
## ConsL.d:cond.c -0.91835 0.96414 -0.953 0.3417
## ConsSL.d:cond.c 2.21110 1.16944 1.891 0.0597 .
## gend.mf:cond.c -1.54345 1.20698 -1.279 0.2021
## ConsSC.d:gend.mf:cond.c 2.92426 1.85763 1.574 0.1166
## ConsM.d:gend.mf:cond.c 0.94464 1.57027 0.602 0.5480
## ConsL.d:gend.mf:cond.c -0.51647 1.92828 -0.268 0.7890
## ConsSL.d:gend.mf:cond.c 3.18890 2.33889 1.363 0.1739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.253 on 272 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.07369, Adjusted R-squared: 0.008984
## F-statistic: 1.139 on 19 and 272 DF, p-value: 0.3118
# Action 24
summary(lm(act24 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8750 -0.0429 1.6429 4.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.43710 0.24370 -1.794 0.07364 .
## ConsSC.d 0.40502 0.37829 1.071 0.28497
## ConsM.d 0.11114 0.30273 0.367 0.71371
## ConsL.d 0.41184 0.41093 1.002 0.31685
## ConsSL.d 0.19405 0.46643 0.416 0.67761
## gend.mf -0.09246 0.48741 -0.190 0.84964
## cond.c -0.93135 0.48741 -1.911 0.05675 .
## ConsSC.d:gend.mf 1.24753 0.75658 1.649 0.09996 .
## ConsM.d:gend.mf -0.19880 0.60545 -0.328 0.74282
## ConsL.d:gend.mf 0.54299 0.82185 0.661 0.50920
## ConsSL.d:gend.mf -0.50476 0.93285 -0.541 0.58875
## ConsSC.d:cond.c 1.09096 0.75658 1.442 0.15010
## ConsM.d:cond.c 0.05476 0.60545 0.090 0.92798
## ConsL.d:cond.c 0.96082 0.82185 1.169 0.24307
## ConsSL.d:cond.c 1.08413 0.93285 1.162 0.24587
## gend.mf:cond.c -2.87063 0.97481 -2.945 0.00342 **
## ConsSC.d:gend.mf:cond.c 2.55140 1.51315 1.686 0.09256 .
## ConsM.d:gend.mf:cond.c 2.01018 1.21090 1.660 0.09769 .
## ConsL.d:gend.mf:cond.c 3.61169 1.64370 2.197 0.02858 *
## ConsSL.d:gend.mf:cond.c 3.39841 1.86570 1.822 0.06928 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.083 on 395 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.05818, Adjusted R-squared: 0.01287
## F-statistic: 1.284 on 19 and 395 DF, p-value: 0.1894
aggregate(d$act24[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate -0.14
## 2 Male climate -1.67
## 3 Female ctrl -0.64
## 4 Male ctrl 0.70
# Action 25
summary(lm(act25 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6087 -0.8846 0.2222 1.3913 3.4000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5203 0.2154 2.415 0.0162 *
## ConsSC.d -0.6143 0.3297 -1.863 0.0631 .
## ConsM.d 0.3663 0.2657 1.379 0.1687
## ConsL.d 0.6944 0.3422 2.029 0.0431 *
## ConsSL.d 0.6905 0.4366 1.581 0.1145
## gend.mf -0.1517 0.4309 -0.352 0.7250
## cond.c -0.5705 0.4309 -1.324 0.1862
## ConsSC.d:gend.mf 0.3942 0.6593 0.598 0.5502
## ConsM.d:gend.mf 0.1737 0.5314 0.327 0.7439
## ConsL.d:gend.mf 0.4724 0.6844 0.690 0.4905
## ConsSL.d:gend.mf -0.1032 0.8732 -0.118 0.9060
## ConsSC.d:cond.c 1.0767 0.6593 1.633 0.1032
## ConsM.d:cond.c 0.3722 0.5314 0.700 0.4840
## ConsL.d:cond.c 1.1249 0.6844 1.644 0.1010
## ConsSL.d:cond.c 1.8156 0.8732 2.079 0.0382 *
## gend.mf:cond.c -1.5256 0.8618 -1.770 0.0774 .
## ConsSC.d:gend.mf:cond.c 2.2224 1.3186 1.685 0.0926 .
## ConsM.d:gend.mf:cond.c 1.1650 1.0628 1.096 0.2736
## ConsL.d:gend.mf:cond.c 0.4169 1.3688 0.305 0.7608
## ConsSL.d:gend.mf:cond.c 3.3688 1.7465 1.929 0.0544 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.837 on 424 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.07813, Adjusted R-squared: 0.03682
## F-statistic: 1.891 on 19 and 424 DF, p-value: 0.0133
# Action 26
summary(lm(act26 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2857 -1.1562 0.5577 1.3947 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6360119 0.2750065 5.949 1.14e-08 ***
## ConsSC.d 0.0008929 0.4199790 0.002 0.9983
## ConsM.d -0.0825078 0.3625584 -0.228 0.8202
## ConsL.d 0.0639881 0.5099170 0.125 0.9003
## ConsSL.d -0.8324405 0.5320132 -1.565 0.1192
## gend.mf -0.3470238 0.5500130 -0.631 0.5288
## cond.c -0.1386905 0.5500130 -0.252 0.8012
## ConsSC.d:gend.mf 0.2398810 0.8399581 0.286 0.7755
## ConsM.d:gend.mf 0.1246310 0.7251168 0.172 0.8637
## ConsL.d:gend.mf 1.7470238 1.0198341 1.713 0.0882 .
## ConsSL.d:gend.mf 1.2398810 1.0640265 1.165 0.2453
## ConsSC.d:cond.c -0.2541667 0.8399581 -0.303 0.7625
## ConsM.d:cond.c 0.1404356 0.7251168 0.194 0.8466
## ConsL.d:cond.c -0.4613095 1.0198341 -0.452 0.6515
## ConsSL.d:cond.c 0.3648810 1.0640265 0.343 0.7320
## gend.mf:cond.c -2.3726190 1.1000261 -2.157 0.0322 *
## ConsSC.d:gend.mf:cond.c 3.4916667 1.6799161 2.078 0.0389 *
## ConsM.d:gend.mf:cond.c 2.1383597 1.4502336 1.474 0.1419
## ConsL.d:gend.mf:cond.c 1.1726190 2.0396681 0.575 0.5660
## ConsSL.d:gend.mf:cond.c 4.2535714 2.1280529 1.999 0.0469 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.844 on 206 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.06431, Adjusted R-squared: -0.02199
## F-statistic: 0.7452 on 19 and 206 DF, p-value: 0.7689
aggregate(d$act26[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate 2.33
## 2 Male climate 0.80
## 3 Female ctrl 1.29
## 4 Male ctrl 2.12
# Action 27
summary(lm(act27 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2143 0.1667 1.4167 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.82817 0.24685 3.355 0.000897 ***
## ConsSC.d -0.34901 0.36196 -0.964 0.335720
## ConsM.d -0.20691 0.31500 -0.657 0.511771
## ConsL.d 0.28925 0.40384 0.716 0.474404
## ConsSL.d 0.52789 0.43317 1.219 0.223945
## gend.mf 0.30397 0.49369 0.616 0.538561
## cond.c -0.63254 0.49369 -1.281 0.201107
## ConsSC.d:gend.mf 0.65436 0.72392 0.904 0.366769
## ConsM.d:gend.mf 0.10529 0.62999 0.167 0.867377
## ConsL.d:gend.mf -0.20548 0.80768 -0.254 0.799355
## ConsSL.d:gend.mf -0.18276 0.86635 -0.211 0.833071
## ConsSC.d:cond.c 0.00754 0.72392 0.010 0.991697
## ConsM.d:cond.c -0.05620 0.62999 -0.089 0.928972
## ConsL.d:cond.c 0.29163 0.80768 0.361 0.718304
## ConsSL.d:cond.c 1.25375 0.86635 1.447 0.148904
## gend.mf:cond.c -2.36984 0.98738 -2.400 0.017005 *
## ConsSC.d:gend.mf:cond.c 1.11984 1.44783 0.773 0.439866
## ConsM.d:gend.mf:cond.c 2.19376 1.25999 1.741 0.082702 .
## ConsL.d:gend.mf:cond.c 3.05166 1.61537 1.889 0.059847 .
## ConsSL.d:gend.mf:cond.c 2.79408 1.73269 1.613 0.107901
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 297 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.0834, Adjusted R-squared: 0.02476
## F-statistic: 1.422 on 19 and 297 DF, p-value: 0.1144
aggregate(d$act27[d$ideology == "Conservative"], list(d$gend[d$ideology == "Conservative"], d$cond[d$ideology == "Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 Group.2 x
## 1 Female climate 0.95
## 2 Male climate 0.07
## 3 Female ctrl 0.40
## 4 Male ctrl 1.89
# Action 28
summary(lm(act28 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6250 -1.1321 0.2667 1.5522 3.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2872 0.2326 5.534 6.12e-08 ***
## ConsSC.d -0.4690 0.3431 -1.367 0.172
## ConsM.d -0.2902 0.2952 -0.983 0.326
## ConsL.d -0.4150 0.3821 -1.086 0.278
## ConsSL.d -0.2934 0.4653 -0.631 0.529
## gend.mf -0.2743 0.4652 -0.590 0.556
## cond.c -0.3669 0.4652 -0.789 0.431
## ConsSC.d:gend.mf 0.2107 0.6861 0.307 0.759
## ConsM.d:gend.mf 0.4027 0.5905 0.682 0.496
## ConsL.d:gend.mf -0.2414 0.7641 -0.316 0.752
## ConsSL.d:gend.mf -0.6299 0.9306 -0.677 0.499
## ConsSC.d:cond.c -0.5467 0.6861 -0.797 0.426
## ConsM.d:cond.c 0.2385 0.5905 0.404 0.687
## ConsL.d:cond.c -0.0774 0.7641 -0.101 0.919
## ConsSL.d:cond.c 0.7544 0.9306 0.811 0.418
## gend.mf:cond.c -0.6662 0.9303 -0.716 0.474
## ConsSC.d:gend.mf:cond.c 0.4390 1.3722 0.320 0.749
## ConsM.d:gend.mf:cond.c -0.3881 1.1809 -0.329 0.743
## ConsL.d:gend.mf:cond.c -1.7023 1.5283 -1.114 0.266
## ConsSL.d:gend.mf:cond.c 0.7246 1.8613 0.389 0.697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 352 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: -0.006203
## F-statistic: 0.8796 on 19 and 352 DF, p-value: 0.6089
# Action 29
summary(lm(act29 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6923 -1.0447 0.3077 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.94605 0.23266 4.066 5.91e-05 ***
## ConsSC.d 0.14237 0.34100 0.418 0.677
## ConsM.d 0.16381 0.29045 0.564 0.573
## ConsL.d 0.21633 0.36272 0.596 0.551
## ConsSL.d 0.40620 0.43954 0.924 0.356
## gend.mf -0.26184 0.46532 -0.563 0.574
## cond.c 0.13548 0.46532 0.291 0.771
## ConsSC.d:gend.mf 0.55773 0.68199 0.818 0.414
## ConsM.d:gend.mf 0.21205 0.58090 0.365 0.715
## ConsL.d:gend.mf 0.93709 0.72544 1.292 0.197
## ConsSL.d:gend.mf 0.10735 0.87909 0.122 0.903
## ConsSC.d:cond.c 0.12578 0.68199 0.184 0.854
## ConsM.d:cond.c -0.20409 0.58090 -0.351 0.726
## ConsL.d:cond.c 0.05237 0.72544 0.072 0.942
## ConsSL.d:cond.c 0.12670 0.87909 0.144 0.885
## gend.mf:cond.c 0.70383 0.93063 0.756 0.450
## ConsSC.d:gend.mf:cond.c -1.37180 1.36398 -1.006 0.315
## ConsM.d:gend.mf:cond.c -0.46203 1.16179 -0.398 0.691
## ConsL.d:gend.mf:cond.c -0.79382 1.45088 -0.547 0.585
## ConsSL.d:gend.mf:cond.c 0.87181 1.75817 0.496 0.620
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.791 on 348 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01904, Adjusted R-squared: -0.03452
## F-statistic: 0.3554 on 19 and 348 DF, p-value: 0.995
# Action 30
summary(lm(act30 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (ConsSC.d + ConsM.d + ConsL.d + ConsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.545 -1.059 0.400 1.466 3.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.88064 0.24033 3.664 0.000289 ***
## ConsSC.d 0.16329 0.35068 0.466 0.641766
## ConsM.d 0.08817 0.30976 0.285 0.776099
## ConsL.d 0.38735 0.38709 1.001 0.317720
## ConsSL.d 0.06822 0.45439 0.150 0.880752
## gend.mf -0.59462 0.48066 -1.237 0.216926
## cond.c -0.06014 0.48066 -0.125 0.900505
## ConsSC.d:gend.mf 0.08250 0.70135 0.118 0.906431
## ConsM.d:gend.mf 0.40813 0.61952 0.659 0.510497
## ConsL.d:gend.mf 0.89197 0.77418 1.152 0.250092
## ConsSL.d:gend.mf -0.05310 0.90879 -0.058 0.953437
## ConsSC.d:cond.c 1.23893 0.70135 1.766 0.078234 .
## ConsM.d:cond.c 0.12364 0.61952 0.200 0.841934
## ConsL.d:cond.c -0.26751 0.77418 -0.346 0.729907
## ConsSL.d:cond.c 0.66241 0.90879 0.729 0.466579
## gend.mf:cond.c 0.45361 0.96132 0.472 0.637334
## ConsSC.d:gend.mf:cond.c 0.70396 1.40270 0.502 0.616098
## ConsM.d:gend.mf:cond.c 0.15241 1.23904 0.123 0.902174
## ConsL.d:gend.mf:cond.c -2.13164 1.54837 -1.377 0.169532
## ConsSL.d:gend.mf:cond.c 1.84184 1.81758 1.013 0.311631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.04439, Adjusted R-squared: -0.0103
## F-statistic: 0.8117 on 19 and 332 DF, p-value: 0.6931
v. Strong Conservatives
# Action 1
scon.b1 <- lm(act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b1)
##
## Call:
## lm(formula = act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.646 -1.962 0.038 2.038 3.490
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.46154 0.26676 -1.730 0.0843 .
## SconsC.d -0.02846 0.34266 -0.083 0.9338
## SconsM.d 0.42349 0.31032 1.365 0.1730
## SconsL.d 1.10769 0.37726 2.936 0.0035 **
## SconsSL.d 0.63297 0.45091 1.404 0.1611
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.151 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.0298, Adjusted R-squared: 0.02106
## F-statistic: 3.409 on 4 and 444 DF, p-value: 0.00923
# Action 2
scon.b2 <- lm(act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b2) # yes, above 0
##
## Call:
## lm(formula = act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.2212 0.1077 1.7788 2.1077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.95652 0.26618 3.594 0.000384 ***
## SconsC.d -0.06421 0.34784 -0.185 0.853668
## SconsM.d 0.26472 0.31574 0.838 0.402514
## SconsL.d 0.61491 0.38529 1.596 0.111611
## SconsSL.d 0.08514 0.45459 0.187 0.851558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 285 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01519, Adjusted R-squared: 0.001372
## F-statistic: 1.099 on 4 and 285 DF, p-value: 0.3572
# Action 3
scon.b3 <- lm(act3 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b3) # yes, above 0
##
## Call:
## lm(formula = act3 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.9837 0.0163 1.4167 3.8852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8852 0.2573 -3.440 0.000637 ***
## SconsC.d 0.4686 0.3291 1.424 0.155175
## SconsM.d 0.8689 0.2969 2.926 0.003607 **
## SconsL.d 0.6941 0.3544 1.958 0.050825 .
## SconsSL.d 1.2567 0.4262 2.949 0.003361 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 439 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02777, Adjusted R-squared: 0.01891
## F-statistic: 3.134 on 4 and 439 DF, p-value: 0.01467
# Action 4
scon.b4 <- lm(act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b4) # no
##
## Call:
## lm(formula = act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.7938 0.2062 2.0051 3.2877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1961 0.3027 0.648 0.518
## SconsC.d -0.4837 0.3945 -1.226 0.221
## SconsM.d -0.4023 0.3476 -1.157 0.248
## SconsL.d 0.1832 0.4149 0.442 0.659
## SconsSL.d 0.2867 0.5027 0.570 0.569
##
## Residual standard error: 2.162 on 366 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01709, Adjusted R-squared: 0.006351
## F-statistic: 1.591 on 4 and 366 DF, p-value: 0.176
# Action 5
scon.b5 <- lm(act5 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b5) # yes, above 0
##
## Call:
## lm(formula = act5 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4048 -1.0917 0.2653 1.5952 2.5833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7347 0.2673 2.748 0.00636 **
## SconsC.d 0.2379 0.3456 0.688 0.49175
## SconsM.d 0.3570 0.3219 1.109 0.26820
## SconsL.d 0.6701 0.3935 1.703 0.08966 .
## SconsSL.d -0.3180 0.4662 -0.682 0.49570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 292 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.01867, Adjusted R-squared: 0.005229
## F-statistic: 1.389 on 4 and 292 DF, p-value: 0.2378
# Action 6
scon.b6 <- lm(act6 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b6) # yes, above 0
##
## Call:
## lm(formula = act6 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4348 -1.3099 0.6706 1.6706 2.1296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8704 0.2467 3.528 0.000474 ***
## SconsC.d 0.4590 0.3155 1.455 0.146535
## SconsM.d 0.4395 0.2898 1.516 0.130327
## SconsL.d 0.5644 0.3637 1.552 0.121629
## SconsSL.d 0.3171 0.4044 0.784 0.433482
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 354 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.00896, Adjusted R-squared: -0.002238
## F-statistic: 0.8001 on 4 and 354 DF, p-value: 0.5257
# Action 7
scon.b7 <- lm(act7 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b7) # yes, above 0
##
## Call:
## lm(formula = act7 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3714 -1.8652 0.1348 1.6286 3.3140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15789 0.27668 -0.571 0.569
## SconsC.d -0.15606 0.35677 -0.437 0.662
## SconsM.d 0.02306 0.31790 0.073 0.942
## SconsL.d 0.12400 0.38795 0.320 0.749
## SconsSL.d 0.52932 0.44857 1.180 0.239
##
## Residual standard error: 2.089 on 410 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.006798, Adjusted R-squared: -0.002892
## F-statistic: 0.7016 on 4 and 410 DF, p-value: 0.5912
# Action 8
scon.b8 <- lm(act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b8) # yes, above 0
##
## Call:
## lm(formula = act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.625 -1.855 -0.287 1.713 4.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.1449 0.2553 -4.484 9.19e-06 ***
## SconsC.d 0.4320 0.3269 1.321 0.1870
## SconsM.d 0.7021 0.2959 2.373 0.0181 *
## SconsL.d 1.6211 0.3696 4.386 1.42e-05 ***
## SconsSL.d 1.7699 0.4215 4.199 3.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 476 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.06121, Adjusted R-squared: 0.05332
## F-statistic: 7.759 on 4 and 476 DF, p-value: 4.609e-06
# Action 9
scon.b9 <- lm(act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b9) # yes, above 0
##
## Call:
## lm(formula = act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5781 -1.5781 0.2525 1.7167 3.7167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7167 0.2538 -2.823 0.004967 **
## SconsC.d 0.4641 0.3217 1.443 0.149776
## SconsM.d 0.9167 0.2912 3.148 0.001754 **
## SconsL.d 1.2948 0.3533 3.665 0.000278 ***
## SconsSL.d 0.9111 0.4145 2.198 0.028464 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.966 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03759, Adjusted R-squared: 0.02892
## F-statistic: 4.336 on 4 and 444 DF, p-value: 0.00189
# Action 10
scon.b10 <- lm(act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b10) # yes, above 0
##
## Call:
## lm(formula = act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6176 0.2516 -2.455 0.014462 *
## SconsC.d 0.3605 0.3230 1.116 0.264918
## SconsM.d 0.6980 0.2915 2.395 0.017009 *
## SconsL.d 1.2946 0.3599 3.597 0.000356 ***
## SconsSL.d 1.7676 0.4135 4.275 2.31e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
# Action 11
scon.b11 <- lm(act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b11) # yes, above 0
##
## Call:
## lm(formula = act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6585 -0.8154 0.2741 1.3415 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.734694 0.266751 2.754 0.00623 **
## SconsC.d 0.080691 0.353266 0.228 0.81948
## SconsM.d -0.008768 0.311421 -0.028 0.97756
## SconsL.d 0.923843 0.395216 2.338 0.02005 *
## SconsSL.d 0.806973 0.465223 1.735 0.08381 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 309 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03501, Adjusted R-squared: 0.02252
## F-statistic: 2.803 on 4 and 309 DF, p-value: 0.02604
# Action 12
scon.b12 <- lm(act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b12) # yes, above 0
##
## Call:
## lm(formula = act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.736 -2.158 0.000 2.000 3.842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8421 0.2842 -2.963 0.003238 **
## SconsC.d 0.2421 0.3632 0.667 0.505456
## SconsM.d 0.8421 0.3315 2.540 0.011480 *
## SconsL.d 1.5780 0.4094 3.854 0.000136 ***
## SconsSL.d 1.1754 0.5013 2.345 0.019548 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.146 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0525, Adjusted R-squared: 0.04253
## F-statistic: 5.264 on 4 and 380 DF, p-value: 0.0003892
# Action 13
scon.b13 <- lm(act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b13) # yes, above 0
##
## Call:
## lm(formula = act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3438 -1.9149 0.0851 1.6562 3.5781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5781 0.2599 -2.225 0.0266 *
## SconsC.d 0.3607 0.3384 1.066 0.2870
## SconsM.d 0.4930 0.3009 1.639 0.1020
## SconsL.d 0.9219 0.3675 2.508 0.0125 *
## SconsSL.d 0.8353 0.4371 1.911 0.0566 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.079 on 438 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01713, Adjusted R-squared: 0.008155
## F-statistic: 1.909 on 4 and 438 DF, p-value: 0.108
# Action 14
scon.b14 <- lm(act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b14) # no
##
## Call:
## lm(formula = act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9487 -1.4219 -0.0198 1.6780 2.9091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.50000 0.32119 1.557 0.121
## SconsC.d -0.17797 0.41606 -0.428 0.669
## SconsM.d -0.07812 0.36797 -0.212 0.832
## SconsL.d 0.44872 0.45714 0.982 0.327
## SconsSL.d -0.40909 0.53920 -0.759 0.449
##
## Residual standard error: 2.031 on 283 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.01158, Adjusted R-squared: -0.002388
## F-statistic: 0.829 on 4 and 283 DF, p-value: 0.5076
# Action 15
scon.b15 <- lm(act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b15) # yes, above 0
##
## Call:
## lm(formula = act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8889 -2.1024 0.1111 1.8916 3.3559
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3559 0.2667 -1.335 0.18273
## SconsC.d 0.4644 0.3488 1.331 0.18385
## SconsM.d 0.4583 0.3104 1.476 0.14066
## SconsL.d 1.2448 0.4054 3.071 0.00229 **
## SconsSL.d 0.6684 0.4497 1.487 0.13797
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.048 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.02508, Adjusted R-squared: 0.01482
## F-statistic: 2.444 on 4 and 380 DF, p-value: 0.0462
# Action 16
scon.b16 <- lm(act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b16) # yes, above 0
##
## Call:
## lm(formula = act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0698 -0.9861 0.0357 1.4375 2.4375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5625 0.2649 2.123 0.0345 *
## SconsC.d 0.4236 0.3420 1.239 0.2163
## SconsM.d 0.4018 0.3070 1.309 0.1915
## SconsL.d 0.5073 0.3854 1.316 0.1890
## SconsSL.d 0.4720 0.4316 1.093 0.2750
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 327 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.007238, Adjusted R-squared: -0.004905
## F-statistic: 0.5961 on 4 and 327 DF, p-value: 0.6657
# Action 17
scon.b17 <- lm(act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b17) # no
##
## Call:
## lm(formula = act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2059 -1.4798 -0.1685 1.6230 2.8315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3770 0.2561 1.472 0.1417
## SconsC.d -0.2085 0.3325 -0.627 0.5309
## SconsM.d 0.1027 0.2979 0.345 0.7304
## SconsL.d 0.1730 0.3637 0.476 0.6347
## SconsSL.d 0.8288 0.4281 1.936 0.0535 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2 on 412 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: 0.006815
## F-statistic: 1.714 on 4 and 412 DF, p-value: 0.146
# Action 18
scon.b18 <- lm(act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b18) # no
##
## Call:
## lm(formula = act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1196 0.1844 1.5135 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1887 0.2530 0.746 0.4563
## SconsC.d 0.2978 0.3314 0.899 0.3695
## SconsM.d 0.6269 0.2967 2.113 0.0353 *
## SconsL.d 0.7236 0.3514 2.059 0.0402 *
## SconsSL.d 0.5699 0.4254 1.340 0.1812
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01769, Adjusted R-squared: 0.006435
## F-statistic: 1.572 on 4 and 349 DF, p-value: 0.1814
# Action 19
scon.b19 <- lm(act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b19) # yes, above 0
##
## Call:
## lm(formula = act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.438 -1.050 0.093 1.704 2.093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9070 0.2747 3.302 0.00109 **
## SconsC.d 0.1430 0.3599 0.397 0.69139
## SconsM.d 0.3231 0.3227 1.001 0.31766
## SconsL.d 0.5305 0.4205 1.262 0.20819
## SconsSL.d 0.3893 0.4423 0.880 0.37951
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 270 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.00789, Adjusted R-squared: -0.006807
## F-statistic: 0.5368 on 4 and 270 DF, p-value: 0.7088
# Action 20
scon.b20 <- lm(act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b20) # yes, above 0
##
## Call:
## lm(formula = act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3566 -1.1957 0.6434 1.6434 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15094 0.24628 4.673 4.38e-06 ***
## SconsC.d -0.02051 0.32748 -0.063 0.950
## SconsM.d 0.20565 0.29253 0.703 0.483
## SconsL.d 0.04471 0.36130 0.124 0.902
## SconsSL.d -0.15094 0.42392 -0.356 0.722
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.793 on 319 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.004413, Adjusted R-squared: -0.008071
## F-statistic: 0.3535 on 4 and 319 DF, p-value: 0.8415
# Action 21
scon.b21 <- lm(act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b21) # yes, above 0
##
## Call:
## lm(formula = act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4407 -1.9401 0.0599 1.5806 3.5806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5806 0.2616 -2.219 0.0270 *
## SconsC.d 0.3124 0.3467 0.901 0.3682
## SconsM.d 0.5208 0.3064 1.700 0.0900 .
## SconsL.d 1.0213 0.3747 2.726 0.0067 **
## SconsSL.d 1.0049 0.4439 2.264 0.0241 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 398 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02474, Adjusted R-squared: 0.01494
## F-statistic: 2.524 on 4 and 398 DF, p-value: 0.04049
# Action 22
scon.b22 <- lm(act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b22) # yes, above 0
##
## Call:
## lm(formula = act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1351 -1.3415 -0.1351 1.7143 3.3279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3279 0.2528 -1.297 0.195483
## SconsC.d 0.6693 0.3339 2.005 0.045684 *
## SconsM.d 0.6136 0.2952 2.079 0.038302 *
## SconsL.d 0.9172 0.3655 2.509 0.012486 *
## SconsSL.d 1.4630 0.4115 3.555 0.000423 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.975 on 399 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03383, Adjusted R-squared: 0.02414
## F-statistic: 3.492 on 4 and 399 DF, p-value: 0.008087
# Action 23
scon.b23 <- lm(act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b23) # no
##
## Call:
## lm(formula = act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6154 -2.1138 0.1846 2.1846 3.1846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2683 0.3537 0.758 0.449
## SconsC.d -0.4529 0.4517 -1.003 0.317
## SconsM.d -0.1545 0.4085 -0.378 0.706
## SconsL.d 0.3471 0.5066 0.685 0.494
## SconsSL.d 0.2917 0.5748 0.508 0.612
##
## Residual standard error: 2.265 on 288 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.01368, Adjusted R-squared: -2.033e-05
## F-statistic: 0.9985 on 4 and 288 DF, p-value: 0.4087
# Action 24
scon.b24 <- lm(act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b24) # yes, above 0
##
## Call:
## lm(formula = act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9189 -1.8727 0.1273 1.6453 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.12727 0.28387 -0.448 0.654
## SconsC.d -0.37273 0.35883 -1.039 0.300
## SconsM.d -0.10261 0.32566 -0.315 0.753
## SconsL.d -0.01066 0.39623 -0.027 0.979
## SconsSL.d 0.04619 0.44762 0.103 0.918
##
## Residual standard error: 2.105 on 411 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.004608, Adjusted R-squared: -0.005079
## F-statistic: 0.4757 on 4 and 411 DF, p-value: 0.7536
# Action 25
scon.b25 <- lm(act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b25) # yes, above 0
##
## Call:
## lm(formula = act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3429 -0.8925 0.1167 1.5000 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1167 0.2367 -0.493 0.622329
## SconsC.d 0.6167 0.2983 2.067 0.039288 *
## SconsM.d 1.0091 0.2722 3.707 0.000236 ***
## SconsL.d 1.2437 0.3307 3.760 0.000193 ***
## SconsSL.d 1.4595 0.3900 3.743 0.000206 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 441 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.049, Adjusted R-squared: 0.04037
## F-statistic: 5.68 on 4 and 441 DF, p-value: 0.0001824
# Action 26
scon.b26 <- lm(act26 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b26) # yes, above 0
##
## Call:
## lm(formula = act26 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5686 -1.2581 0.4595 1.4314 2.0526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.54054 0.30047 5.127 6.4e-07 ***
## SconsC.d 0.02809 0.39470 0.071 0.943
## SconsM.d 0.07744 0.35752 0.217 0.829
## SconsL.d -0.28248 0.44502 -0.635 0.526
## SconsSL.d -0.59317 0.51585 -1.150 0.251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.828 on 222 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01216, Adjusted R-squared: -0.005638
## F-statistic: 0.6832 on 4 and 222 DF, p-value: 0.6042
# Action 27
scon.b27 <- lm(act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b27) # no
##
## Call:
## lm(formula = act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3871 -0.9483 0.2813 1.5577 2.5577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4423 0.2604 1.699 0.0904 .
## SconsC.d 0.2764 0.3506 0.789 0.4310
## SconsM.d 0.1089 0.3091 0.352 0.7249
## SconsL.d 0.7355 0.3823 1.924 0.0553 .
## SconsSL.d 0.9448 0.4261 2.217 0.0273 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 314 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02704, Adjusted R-squared: 0.01464
## F-statistic: 2.182 on 4 and 314 DF, p-value: 0.07092
# Action 28
scon.b28 <- lm(act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b28) # yes, above 0
##
## Call:
## lm(formula = act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3214 -0.9728 0.2105 1.6786 2.2105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7895 0.2417 3.267 0.00119 **
## SconsC.d 0.5320 0.3131 1.699 0.09018 .
## SconsM.d 0.1833 0.2847 0.644 0.52006
## SconsL.d 0.2105 0.3449 0.610 0.54195
## SconsSL.d 0.4041 0.4072 0.992 0.32168
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 369 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.009436, Adjusted R-squared: -0.001302
## F-statistic: 0.8787 on 4 and 369 DF, p-value: 0.4767
# Action 29
scon.b29 <- lm(act29 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b29) # yes, above 0
##
## Call:
## lm(formula = act29 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4828 -1.0893 0.0182 1.5172 2.0182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08929 0.23582 4.619 5.35e-06 ***
## SconsC.d -0.06519 0.30518 -0.214 0.831
## SconsM.d 0.05357 0.27713 0.193 0.847
## SconsL.d -0.10747 0.33502 -0.321 0.749
## SconsSL.d 0.39347 0.40374 0.975 0.330
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.765 on 365 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.005014, Adjusted R-squared: -0.00589
## F-statistic: 0.4598 on 4 and 365 DF, p-value: 0.7652
# Action 30
scon.b30 <- lm(act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d), data = d)
summary(scon.b30) # yes, above 0
##
## Call:
## lm(formula = act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1765 -1.0435 0.8235 1.8235 1.9875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.140351 0.248501 4.589 6.22e-06 ***
## SconsC.d -0.127851 0.325194 -0.393 0.694
## SconsM.d -0.096873 0.295396 -0.328 0.743
## SconsL.d 0.036120 0.361622 0.100 0.920
## SconsSL.d 0.002506 0.432970 0.006 0.995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.001091, Adjusted R-squared: -0.01036
## F-statistic: 0.09525 on 4 and 349 DF, p-value: 0.9839
Significantly above 0: 2, 5, 6, 11, 16, 19, 20, 26, 28, 29, 30 Not
different from 0: 1, 4, 7, 14, 15, 17, 18, 22, 23, 24, 25, 27
Significantly below 0: 3, 8, 9, 10, 12, 13, 21
1. Condition differences?
# Action 1
scon.c.b1 <- lm(act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b1) # no
##
## Call:
## lm(formula = act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.750 -2.200 0.250 1.765 3.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.485714 0.267215 -1.818 0.06979 .
## SconsC.d 0.006818 0.343826 0.020 0.98419
## SconsM.d 0.428643 0.310783 1.379 0.16853
## SconsL.d 1.133442 0.377363 3.004 0.00282 **
## SconsSL.d 0.559141 0.461043 1.213 0.22587
## cond.c 0.628571 0.534431 1.176 0.24017
## SconsC.d:cond.c -0.813636 0.687652 -1.183 0.23737
## SconsM.d:cond.c -1.212103 0.621567 -1.950 0.05180 .
## SconsL.d:cond.c -0.424026 0.754725 -0.562 0.57452
## SconsSL.d:cond.c -1.390809 0.922086 -1.508 0.13219
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.04314, Adjusted R-squared: 0.02353
## F-statistic: 2.199 on 9 and 439 DF, p-value: 0.02116
# Action 2
scon.c.b2 <- lm(act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b2) #no
##
## Call:
## lm(formula = act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -1.068 0.375 1.615 2.375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9786 0.2713 3.607 0.000367 ***
## SconsC.d -0.0903 0.3523 -0.256 0.797908
## SconsM.d 0.2137 0.3215 0.665 0.506635
## SconsL.d 0.5839 0.3917 1.491 0.137119
## SconsSL.d 0.0669 0.4597 0.146 0.884415
## cond.c -0.2534 0.5426 -0.467 0.640843
## SconsC.d:cond.c -0.2731 0.7046 -0.388 0.698624
## SconsM.d:cond.c -0.1312 0.6429 -0.204 0.838441
## SconsL.d:cond.c 0.1284 0.7833 0.164 0.869908
## SconsSL.d:cond.c 0.3443 0.9195 0.374 0.708343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.812 on 280 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -0.006049
## F-statistic: 0.8069 on 9 and 280 DF, p-value: 0.6102
# Action 4
scon.c.b4 <- lm(act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b4) # no
##
## Call:
## lm(formula = act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8400 -1.8941 0.1059 2.0378 3.3488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19798 0.30520 0.649 0.517
## SconsC.d -0.47240 0.39963 -1.182 0.238
## SconsM.d -0.41092 0.35024 -1.173 0.241
## SconsL.d 0.23717 0.41933 0.566 0.572
## SconsSL.d 0.26518 0.52218 0.508 0.612
## cond.c -0.03882 0.61040 -0.064 0.949
## SconsC.d:cond.c -0.11002 0.79926 -0.138 0.891
## SconsM.d:cond.c -0.17530 0.70047 -0.250 0.803
## SconsL.d:cond.c 0.84852 0.83865 1.012 0.312
## SconsSL.d:cond.c -0.08750 1.04436 -0.084 0.933
##
## Residual standard error: 2.169 on 361 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.0238, Adjusted R-squared: -0.0005384
## F-statistic: 0.9779 on 9 and 361 DF, p-value: 0.4579
# Action 8
scon.c.b8 <- lm(act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b8) # no
##
## Call:
## lm(formula = act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.125 -1.873 -0.125 1.800 4.233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.15513 0.25649 -4.504 8.44e-06 ***
## SconsC.d 0.52497 0.32907 1.595 0.1113
## SconsM.d 0.71480 0.29671 2.409 0.0164 *
## SconsL.d 1.66584 0.37082 4.492 8.87e-06 ***
## SconsSL.d 1.86346 0.42661 4.368 1.54e-05 ***
## cond.c 0.15641 0.51299 0.305 0.7606
## SconsC.d:cond.c -1.15006 0.65814 -1.747 0.0812 .
## SconsM.d:cond.c -0.04659 0.59341 -0.079 0.9375
## SconsL.d:cond.c 0.46502 0.74163 0.627 0.5309
## SconsSL.d:cond.c 0.67692 0.85322 0.793 0.4280
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.112 on 471 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.07857, Adjusted R-squared: 0.06097
## F-statistic: 4.463 on 9 and 471 DF, p-value: 1.237e-05
# Action 9
scon.c.b9 <- lm(act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b9) # yes, condition difference
##
## Call:
## lm(formula = act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.5893 0.0465 1.4286 4.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7907 0.2558 -3.091 0.002119 **
## SconsC.d 0.5621 0.3241 1.734 0.083565 .
## SconsM.d 0.9965 0.2930 3.402 0.000732 ***
## SconsL.d 1.3681 0.3558 3.845 0.000139 ***
## SconsSL.d 0.9157 0.4312 2.124 0.034243 *
## cond.c 1.1109 0.5116 2.172 0.030424 *
## SconsC.d:cond.c -1.4751 0.6482 -2.276 0.023355 *
## SconsM.d:cond.c -0.9542 0.5859 -1.629 0.104116
## SconsL.d:cond.c -1.1228 0.7117 -1.578 0.115368
## SconsSL.d:cond.c -1.5275 0.8623 -1.771 0.077191 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.964 on 439 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.05102, Adjusted R-squared: 0.03157
## F-statistic: 2.623 on 9 and 439 DF, p-value: 0.00582
# Action 10
scon.c.b10 <- lm(act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b10) # no
##
## Call:
## lm(formula = act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3750 -1.9896 0.0217 1.8350 3.6579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.61228 0.25401 -2.410 0.016317 *
## SconsC.d 0.38107 0.32614 1.168 0.243228
## SconsM.d 0.68960 0.29375 2.348 0.019313 *
## SconsL.d 1.32415 0.36385 3.639 0.000304 ***
## SconsSL.d 1.79978 0.42094 4.276 2.31e-05 ***
## cond.c -0.09123 0.50801 -0.180 0.857562
## SconsC.d:cond.c -0.32771 0.65228 -0.502 0.615617
## SconsM.d:cond.c -0.08424 0.58750 -0.143 0.886050
## SconsL.d:cond.c 0.59605 0.72769 0.819 0.413146
## SconsSL.d:cond.c 0.46623 0.84188 0.554 0.579986
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.08 on 467 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05853, Adjusted R-squared: 0.04038
## F-statistic: 3.226 on 9 and 467 DF, p-value: 0.000826
# Action 11
scon.c.b11 <- lm(act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b11) # no
##
## Call:
## lm(formula = act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -1.0299 0.3452 1.5429 2.5735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.730833 0.265754 2.750 0.00632 **
## SconsC.d 0.114405 0.352364 0.325 0.74565
## SconsM.d -0.002673 0.310242 -0.009 0.99313
## SconsL.d 0.923929 0.405495 2.279 0.02339 *
## SconsSL.d 0.762024 0.467842 1.629 0.10439
## cond.c 0.378333 0.531508 0.712 0.47713
## SconsC.d:cond.c -1.154524 0.704728 -1.638 0.10240
## SconsM.d:cond.c -0.981713 0.620485 -1.582 0.11465
## SconsL.d:cond.c -0.402143 0.810990 -0.496 0.62035
## SconsSL.d:cond.c -0.964048 0.935684 -1.030 0.30368
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 304 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.0581, Adjusted R-squared: 0.03021
## F-statistic: 2.083 on 9 and 304 DF, p-value: 0.03077
# Action 12
scon.c.b12 <- lm(act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b12) # no
##
## Call:
## lm(formula = act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1304 -1.8929 -0.1098 1.8696 4.1071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84667 0.28464 -2.975 0.00312 **
## SconsC.d 0.27805 0.36502 0.762 0.44670
## SconsM.d 0.84234 0.33208 2.537 0.01160 *
## SconsL.d 1.62856 0.41191 3.954 9.2e-05 ***
## SconsSL.d 1.23491 0.51412 2.402 0.01679 *
## cond.c 0.52094 0.56927 0.915 0.36073
## SconsC.d:cond.c -0.99152 0.73004 -1.358 0.17523
## SconsM.d:cond.c -0.74911 0.66416 -1.128 0.26008
## SconsL.d:cond.c 0.17617 0.82382 0.214 0.83079
## SconsSL.d:cond.c -0.09741 1.02825 -0.095 0.92458
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.149 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0624, Adjusted R-squared: 0.0399
## F-statistic: 2.773 on 9 and 375 DF, p-value: 0.003732
# Action 13
scon.c.b13 <- lm(act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b13) # no
##
## Call:
## lm(formula = act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4118 -1.9202 0.2474 1.7317 3.7105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5476 0.2643 -2.072 0.0389 *
## SconsC.d 0.3778 0.3425 1.103 0.2706
## SconsM.d 0.4678 0.3047 1.535 0.1254
## SconsL.d 0.8868 0.3709 2.391 0.0172 *
## SconsSL.d 0.7857 0.4453 1.764 0.0784 .
## cond.c -0.3259 0.5286 -0.617 0.5379
## SconsC.d:cond.c -0.5502 0.6850 -0.803 0.4223
## SconsM.d:cond.c 0.6612 0.6094 1.085 0.2785
## SconsL.d:cond.c 0.1808 0.7417 0.244 0.8075
## SconsSL.d:cond.c 0.1354 0.8905 0.152 0.8792
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 433 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: 0.009955
## F-statistic: 1.494 on 9 and 433 DF, p-value: 0.1475
# Action 14
scon.c.b14 <- lm(act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b14) # no
##
## Call:
## lm(formula = act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.3731 0.1429 1.6269 3.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.45013 0.32630 1.379 0.169
## SconsC.d -0.11564 0.42136 -0.274 0.784
## SconsM.d -0.02586 0.37292 -0.069 0.945
## SconsL.d 0.54444 0.46559 1.169 0.243
## SconsSL.d -0.27156 0.55759 -0.487 0.627
## cond.c 0.66496 0.65260 1.019 0.309
## SconsC.d:cond.c -0.95894 0.84272 -1.138 0.256
## SconsM.d:cond.c -0.56269 0.74583 -0.754 0.451
## SconsL.d:cond.c -0.15409 0.93117 -0.165 0.869
## SconsSL.d:cond.c -0.02210 1.11518 -0.020 0.984
##
## Residual standard error: 2.04 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.02046, Adjusted R-squared: -0.01125
## F-statistic: 0.6452 on 9 and 278 DF, p-value: 0.7579
# Action 15
scon.c.b15 <- lm(act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b15) # no
##
## Call:
## lm(formula = act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5600 -2.0213 -0.0213 1.8539 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.37529 0.26782 -1.401 0.16196
## SconsC.d 0.49704 0.35057 1.418 0.15708
## SconsM.d 0.47430 0.31144 1.523 0.12863
## SconsL.d 1.18029 0.40695 2.900 0.00395 **
## SconsSL.d 0.70078 0.45015 1.557 0.12036
## cond.c 0.32634 0.53565 0.609 0.54273
## SconsC.d:cond.c -0.52729 0.70114 -0.752 0.45250
## SconsM.d:cond.c -0.42046 0.62289 -0.675 0.50008
## SconsL.d:cond.c -1.83634 0.81391 -2.256 0.02463 *
## SconsSL.d:cond.c 0.08935 0.90029 0.099 0.92100
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 375 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04309, Adjusted R-squared: 0.02013
## F-statistic: 1.876 on 9 and 375 DF, p-value: 0.05411
# Action 16
scon.c.b16 <- lm(act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b16) # no
##
## Call:
## lm(formula = act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2105 -1.1000 0.2034 1.4500 2.4500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56071 0.26978 2.078 0.0385 *
## SconsC.d 0.41374 0.34655 1.194 0.2334
## SconsM.d 0.40357 0.31151 1.296 0.1961
## SconsL.d 0.52262 0.39232 1.332 0.1838
## SconsSL.d 0.39455 0.44987 0.877 0.3811
## cond.c 0.02143 0.53955 0.040 0.9683
## SconsC.d:cond.c 0.39808 0.69310 0.574 0.5661
## SconsM.d:cond.c 0.25000 0.62302 0.401 0.6885
## SconsL.d:cond.c 0.14524 0.78464 0.185 0.8533
## SconsSL.d:cond.c -0.53195 0.89973 -0.591 0.5548
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.843 on 322 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.01422, Adjusted R-squared: -0.01334
## F-statistic: 0.5159 on 9 and 322 DF, p-value: 0.8629
# Action 17
scon.c.b17 <- lm(act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b17) # no
##
## Call:
## lm(formula = act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7143 -1.3210 0.1698 1.5455 3.1698
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34307 0.25570 1.342 0.1804
## SconsC.d -0.09465 0.33403 -0.283 0.7771
## SconsM.d 0.12720 0.29728 0.428 0.6690
## SconsL.d 0.21753 0.36342 0.599 0.5498
## SconsSL.d 0.93907 0.43086 2.180 0.0299 *
## cond.c 0.82900 0.51140 1.621 0.1058
## SconsC.d:cond.c -1.66548 0.66807 -2.493 0.0131 *
## SconsM.d:cond.c -1.12758 0.59455 -1.897 0.0586 .
## SconsL.d:cond.c -0.61688 0.72684 -0.849 0.3965
## SconsSL.d:cond.c 0.03528 0.86172 0.041 0.9674
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 407 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.01661
## F-statistic: 1.781 on 9 and 407 DF, p-value: 0.06997
# Action 18
scon.c.b18 <- lm(act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b18) # no
##
## Call:
## lm(formula = act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.1538 0.2031 1.4211 3.0400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17643 0.25456 0.693 0.4887
## SconsC.d 0.30749 0.33331 0.923 0.3569
## SconsM.d 0.63759 0.29881 2.134 0.0336 *
## SconsL.d 0.75533 0.35401 2.134 0.0336 *
## SconsSL.d 0.59377 0.43606 1.362 0.1742
## cond.c 0.43286 0.50912 0.850 0.3958
## SconsC.d:cond.c -0.62292 0.66662 -0.934 0.3507
## SconsM.d:cond.c -0.46715 0.59762 -0.782 0.4349
## SconsL.d:cond.c 0.01131 0.70802 0.016 0.9873
## SconsSL.d:cond.c -0.33690 0.87212 -0.386 0.6995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.85 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.0227, Adjusted R-squared: -0.002867
## F-statistic: 0.8879 on 9 and 344 DF, p-value: 0.5362
# Action 19
scon.c.b19 <- lm(act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b19) # no
##
## Call:
## lm(formula = act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0164 0.3056 1.4679 2.3056
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.90046 0.28356 3.176 0.00167 **
## SconsC.d 0.23843 0.36946 0.645 0.51927
## SconsM.d 0.34812 0.33043 1.054 0.29306
## SconsL.d 0.50430 0.42777 1.179 0.23949
## SconsSL.d 0.39349 0.44749 0.879 0.38002
## cond.c 0.05093 0.56712 0.090 0.92852
## SconsC.d:cond.c -0.93981 0.73893 -1.272 0.20454
## SconsM.d:cond.c -0.51530 0.66086 -0.780 0.43624
## SconsL.d:cond.c -0.57474 0.85554 -0.672 0.50231
## SconsSL.d:cond.c -0.17730 0.89498 -0.198 0.84311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 265 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.03023, Adjusted R-squared: -0.002705
## F-statistic: 0.9179 on 9 and 265 DF, p-value: 0.51
# Action 20
scon.c.b20 <- lm(act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b20) # no
##
## Call:
## lm(formula = act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.589 -1.054 0.411 1.411 2.308
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.18913 0.24744 4.806 2.39e-06 ***
## SconsC.d -0.04428 0.32815 -0.135 0.893
## SconsM.d 0.13218 0.29391 0.450 0.653
## SconsL.d -0.02437 0.36203 -0.067 0.946
## SconsSL.d -0.20012 0.42365 -0.472 0.637
## cond.c -0.57826 0.49488 -1.168 0.243
## SconsC.d:cond.c 0.18046 0.65629 0.275 0.784
## SconsM.d:cond.c 0.04279 0.58781 0.073 0.942
## SconsL.d:cond.c -0.13222 0.72407 -0.183 0.855
## SconsSL.d:cond.c -0.01515 0.84730 -0.018 0.986
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.786 on 314 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.028, Adjusted R-squared: 0.0001354
## F-statistic: 1.005 on 9 and 314 DF, p-value: 0.4359
# Action 21
scon.c.b21 <- lm(act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b21) # no
##
## Call:
## lm(formula = act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5556 -1.8723 0.1609 1.9286 3.9286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6113 0.2637 -2.318 0.02094 *
## SconsC.d 0.3189 0.3504 0.910 0.36320
## SconsM.d 0.5559 0.3085 1.802 0.07229 .
## SconsL.d 1.0610 0.3774 2.811 0.00518 **
## SconsSL.d 1.0391 0.4472 2.323 0.02066 *
## cond.c 0.6345 0.5274 1.203 0.22968
## SconsC.d:cond.c -0.3050 0.7007 -0.435 0.66363
## SconsM.d:cond.c -0.4235 0.6169 -0.687 0.49278
## SconsL.d:cond.c -0.4226 0.7548 -0.560 0.57584
## SconsSL.d:cond.c -0.5567 0.8945 -0.622 0.53407
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.067 on 393 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.03105, Adjusted R-squared: 0.008857
## F-statistic: 1.399 on 9 and 393 DF, p-value: 0.1863
# Action 23
scon.c.b23 <- lm(act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b23) # no
##
## Call:
## lm(formula = act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.222 -2.250 0.125 1.870 3.297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26786 0.35364 0.757 0.449
## SconsC.d -0.43436 0.45325 -0.958 0.339
## SconsM.d -0.16245 0.40840 -0.398 0.691
## SconsL.d 0.23486 0.51072 0.460 0.646
## SconsSL.d 0.43700 0.58947 0.741 0.459
## cond.c 0.03571 0.70728 0.050 0.960
## SconsC.d:cond.c -0.29730 0.90651 -0.328 0.743
## SconsM.d:cond.c -0.44991 0.81680 -0.551 0.582
## SconsL.d:cond.c -1.29115 1.02143 -1.264 0.207
## SconsSL.d:cond.c 0.99901 1.17894 0.847 0.398
##
## Residual standard error: 2.264 on 283 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.03197, Adjusted R-squared: 0.001189
## F-statistic: 1.039 on 9 and 283 DF, p-value: 0.4092
# Action 24
scon.c.b24 <- lm(act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b24) # no
##
## Call:
## lm(formula = act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0761 -1.9412 -0.0761 1.7171 3.6481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.13172 0.28623 -0.460 0.646
## SconsC.d -0.33709 0.36278 -0.929 0.353
## SconsM.d -0.11682 0.32785 -0.356 0.722
## SconsL.d -0.02269 0.40087 -0.057 0.955
## SconsSL.d 0.04233 0.45407 0.093 0.926
## cond.c 0.06989 0.57245 0.122 0.903
## SconsC.d:cond.c -0.42857 0.72557 -0.591 0.555
## SconsM.d:cond.c -0.71915 0.65570 -1.097 0.273
## SconsL.d:cond.c -0.26107 0.80174 -0.326 0.745
## SconsSL.d:cond.c -0.15777 0.90815 -0.174 0.862
##
## Residual standard error: 2.105 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.01652, Adjusted R-squared: -0.005283
## F-statistic: 0.7577 on 9 and 406 DF, p-value: 0.6558
# Action 25
scon.c.b25 <- lm(act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b25) # no
##
## Call:
## lm(formula = act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7857 -0.9307 0.1529 1.3778 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1364 0.2377 -0.574 0.566463
## SconsC.d 0.6492 0.2998 2.166 0.030868 *
## SconsM.d 1.0252 0.2733 3.752 0.000199 ***
## SconsL.d 1.2699 0.3313 3.833 0.000145 ***
## SconsSL.d 1.5530 0.3954 3.927 9.98e-05 ***
## cond.c 0.3939 0.4754 0.829 0.407735
## SconsC.d:cond.c -0.6127 0.5995 -1.022 0.307399
## SconsM.d:cond.c -0.4776 0.5465 -0.874 0.382690
## SconsL.d:cond.c 0.4357 0.6627 0.658 0.511203
## SconsSL.d:cond.c 0.3442 0.7909 0.435 0.663665
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 436 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.06134, Adjusted R-squared: 0.04197
## F-statistic: 3.166 on 9 and 436 DF, p-value: 0.001022
# Action 28
scon.c.b28 <- lm(act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b28) # marginal
##
## Call:
## lm(formula = act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8282 0.2428 3.411 0.00072 ***
## SconsC.d 0.4933 0.3141 1.570 0.11717
## SconsM.d 0.1504 0.2859 0.526 0.59919
## SconsL.d 0.1902 0.3482 0.546 0.58528
## SconsSL.d 0.3911 0.4151 0.942 0.34666
## cond.c -0.8821 0.4856 -1.817 0.07010 .
## SconsC.d:cond.c 0.6202 0.6282 0.987 0.32412
## SconsM.d:cond.c 1.0700 0.5717 1.871 0.06208 .
## SconsL.d:cond.c 1.1063 0.6964 1.589 0.11302
## SconsSL.d:cond.c 1.1102 0.8302 1.337 0.18195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
# Action 30
scon.c.b30 <- lm(act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * cond.c, data = d)
summary(scon.c.b30) # yes, condition difference
##
## Call:
## lm(formula = act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07250 0.25027 4.285 2.37e-05 ***
## SconsC.d -0.04851 0.32716 -0.148 0.8822
## SconsM.d -0.02838 0.29686 -0.096 0.9239
## SconsL.d 0.11010 0.36457 0.302 0.7628
## SconsSL.d 0.08375 0.43685 0.192 0.8481
## cond.c 1.10500 0.50055 2.208 0.0279 *
## SconsC.d:cond.c -1.33480 0.65433 -2.040 0.0421 *
## SconsM.d:cond.c -1.19324 0.59371 -2.010 0.0452 *
## SconsL.d:cond.c -1.01566 0.72914 -1.393 0.1645
## SconsSL.d:cond.c -0.91750 0.87370 -1.050 0.2944
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
Significant condition difference: 9; 28; 30
a. Means for condition diffs
describeBy(d$act9[d$ideology=="Strong Conservative"], d$cond[d$ideology=="Strong Conservative"]) # marginal; both opposed, climate cond less opposed
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 -0.24 2.3 0 -0.29 2.97 -3 3 6 0.05 -1.56 0.39
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 -1.35 2.12 -3 -1.59 0 -3 3 6 0.85 -0.65 0.41
describeBy(d$act28[d$ideology=="Strong Conservative"], d$cond[d$ideology=="Strong Conservative"]) # both supported, ctrl supported more
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 0.39 2.11 0 0.48 2.97 -3 3 6 -0.21 -1.29 0.38
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 1.27 1.54 1 1.41 1.48 -3 3 6 -0.75 0.16 0.3
### is climate different from 0?
summary(lm(act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * clim.d, data = d))
##
## Call:
## lm(formula = act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3871 0.3280 1.180 0.2387
## SconsC.d 0.8034 0.4324 1.858 0.0640 .
## SconsM.d 0.6854 0.3948 1.736 0.0834 .
## SconsL.d 0.7433 0.5025 1.479 0.1400
## SconsSL.d 0.9462 0.6208 1.524 0.1283
## clim.d 0.8821 0.4856 1.817 0.0701 .
## SconsC.d:clim.d -0.6202 0.6282 -0.987 0.3241
## SconsM.d:clim.d -1.0700 0.5717 -1.871 0.0621 .
## SconsL.d:clim.d -1.1063 0.6964 -1.589 0.1130
## SconsSL.d:clim.d -1.1102 0.8302 -1.337 0.1820
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
### Not different from 0 in the climate condition
summary(lm(act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4524 -1.0725 0.1154 1.6129 2.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2692 0.3581 3.544 0.000445 ***
## SconsC.d 0.1832 0.4557 0.402 0.687970
## SconsM.d -0.3846 0.4135 -0.930 0.352932
## SconsL.d -0.3630 0.4821 -0.753 0.452014
## SconsSL.d -0.1640 0.5511 -0.298 0.766246
## ctrl.d -0.8821 0.4856 -1.817 0.070104 .
## SconsC.d:ctrl.d 0.6202 0.6282 0.987 0.324119
## SconsM.d:ctrl.d 1.0700 0.5717 1.871 0.062084 .
## SconsL.d:ctrl.d 1.1063 0.6964 1.589 0.113018
## SconsSL.d:ctrl.d 1.1102 0.8302 1.337 0.181951
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 364 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.02136, Adjusted R-squared: -0.002835
## F-statistic: 0.8828 on 9 and 364 DF, p-value: 0.5407
### Different in the ctrl condition
describeBy(d$act30[d$ideology=="Strong Conservative"], d$cond[d$ideology=="Strong Conservative"])
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 32 1.62 1.43 2 1.81 1.48 -2 3 5 -0.76 -0.47 0.25
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 0.52 1.98 1 0.62 2.97 -3 3 6 -0.31 -1.04 0.4
### is ctrl different from 0?
summary(lm(act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5200 0.3750 1.387 0.1665
## SconsC.d 0.6189 0.4882 1.268 0.2058
## SconsM.d 0.5682 0.4386 1.296 0.1960
## SconsL.d 0.6179 0.5118 1.207 0.2281
## SconsSL.d 0.5425 0.6004 0.904 0.3668
## ctrl.d 1.1050 0.5005 2.208 0.0279 *
## SconsC.d:ctrl.d -1.3348 0.6543 -2.040 0.0421 *
## SconsM.d:ctrl.d -1.1932 0.5937 -2.010 0.0452 *
## SconsL.d:ctrl.d -1.0157 0.7291 -1.393 0.1645
## SconsSL.d:ctrl.d -0.9175 0.8737 -1.050 0.2944
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
### Not different from 0 in the control condition
summary(lm(act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) * clim.d, data = d))
##
## Call:
## lm(formula = act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2500 -1.0882 0.4275 1.7670 2.4800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6250 0.3315 4.902 1.46e-06 ***
## SconsC.d -0.7159 0.4357 -1.643 0.1012
## SconsM.d -0.6250 0.4002 -1.562 0.1192
## SconsL.d -0.3977 0.5194 -0.766 0.4443
## SconsSL.d -0.3750 0.6348 -0.591 0.5551
## clim.d -1.1050 0.5005 -2.208 0.0279 *
## SconsC.d:clim.d 1.3348 0.6543 2.040 0.0421 *
## SconsM.d:clim.d 1.1932 0.5937 2.010 0.0452 *
## SconsL.d:clim.d 1.0157 0.7291 1.393 0.1645
## SconsSL.d:clim.d 0.9175 0.8737 1.050 0.2944
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.875 on 344 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: -0.009363
## F-statistic: 0.6362 on 9 and 344 DF, p-value: 0.766
### Different from 0 in the climate condition
2. Gender effects?
# Action 1
scon.g.b1 <- lm(act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b1)
##
## Call:
## lm(formula = act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8261 0.2263 2.1538 4.1538
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3965 0.2769 -1.432 0.1529
## SconsC.d -0.3088 0.3687 -0.838 0.4027
## SconsM.d 0.5333 0.3313 1.610 0.1082
## SconsL.d 1.0031 0.4189 2.395 0.0170 *
## SconsSL.d 0.2226 0.4794 0.464 0.6427
## gend.mf 0.4451 0.5538 0.804 0.4220
## SconsC.d:gend.mf -1.3422 0.7373 -1.820 0.0694 .
## SconsM.d:gend.mf 0.2811 0.6626 0.424 0.6716
## SconsL.d:gend.mf -0.5918 0.8377 -0.706 0.4803
## SconsSL.d:gend.mf -2.0973 0.9588 -2.187 0.0292 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.135 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.05646, Adjusted R-squared: 0.03703
## F-statistic: 2.906 on 9 and 437 DF, p-value: 0.002374
# Action 2
scon.g.b2 <- lm(act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b2) # yes, above 0
##
## Call:
## lm(formula = act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4375 -1.2184 0.5263 1.5625 2.6087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.03314 0.26998 3.827 0.00016 ***
## SconsC.d -0.25415 0.35719 -0.712 0.47734
## SconsM.d 0.15606 0.33874 0.461 0.64537
## SconsL.d 0.68561 0.42376 1.618 0.10681
## SconsSL.d -0.09147 0.47821 -0.191 0.84845
## gend.mf 0.88109 0.53995 1.632 0.10385
## SconsC.d:gend.mf -1.65645 0.71437 -2.319 0.02113 *
## SconsM.d:gend.mf -0.93948 0.67748 -1.387 0.16663
## SconsL.d:gend.mf -0.31859 0.84752 -0.376 0.70727
## SconsSL.d:gend.mf -1.26442 0.95642 -1.322 0.18724
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.803 on 278 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.03738, Adjusted R-squared: 0.006217
## F-statistic: 1.199 on 9 and 278 DF, p-value: 0.2951
# Action 3
scon.g.b3 <- lm(act3 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b3) # yes, above 0
##
## Call:
## lm(formula = act3 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5833 -1.8390 -0.0368 1.4167 4.1579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7963 0.2666 -2.987 0.00297 **
## SconsC.d 0.3825 0.3515 1.088 0.27706
## SconsM.d 0.7296 0.3165 2.305 0.02165 *
## SconsL.d 0.6841 0.3847 1.778 0.07604 .
## SconsSL.d 1.0380 0.4640 2.237 0.02579 *
## gend.mf 0.7231 0.5331 1.356 0.17569
## SconsC.d:gend.mf -0.7102 0.7029 -1.010 0.31286
## SconsM.d:gend.mf -0.9301 0.6331 -1.469 0.14253
## SconsL.d:gend.mf -0.3876 0.7694 -0.504 0.61470
## SconsSL.d:gend.mf -1.4064 0.9280 -1.516 0.13035
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.03535, Adjusted R-squared: 0.01525
## F-statistic: 1.759 on 9 and 432 DF, p-value: 0.07405
# Action 4
scon.g.b4 <- lm(act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b4) # no
##
## Call:
## lm(formula = act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.944 -1.904 0.200 2.056 3.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2135 0.3053 0.699 0.485
## SconsC.d -0.6425 0.4146 -1.550 0.122
## SconsM.d -0.4312 0.3705 -1.164 0.245
## SconsL.d 0.2419 0.4414 0.548 0.584
## SconsSL.d 0.1087 0.5256 0.207 0.836
## gend.mf 0.3556 0.6106 0.582 0.561
## SconsC.d:gend.mf -1.0213 0.8292 -1.232 0.219
## SconsM.d:gend.mf -0.3909 0.7409 -0.528 0.598
## SconsL.d:gend.mf -0.0163 0.8827 -0.018 0.985
## SconsSL.d:gend.mf -1.6000 1.0513 -1.522 0.129
##
## Residual standard error: 2.17 on 359 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02849, Adjusted R-squared: 0.004137
## F-statistic: 1.17 on 9 and 359 DF, p-value: 0.3132
# Action 5
scon.g.b5 <- lm(act5 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b5) # yes, above 0
##
## Call:
## lm(formula = act5 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3000 -1.2128 0.4615 1.7000 2.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7199 0.2690 2.676 0.00788 **
## SconsC.d 0.1557 0.3537 0.440 0.66010
## SconsM.d 0.3665 0.3405 1.076 0.28270
## SconsL.d 0.7634 0.4188 1.823 0.06936 .
## SconsSL.d -0.3391 0.4781 -0.709 0.47871
## gend.mf -0.4833 0.5380 -0.898 0.36978
## SconsC.d:gend.mf -0.1910 0.7074 -0.270 0.78733
## SconsM.d:gend.mf 0.5327 0.6811 0.782 0.43481
## SconsL.d:gend.mf 0.8499 0.8376 1.015 0.31108
## SconsSL.d:gend.mf 0.3217 0.9562 0.336 0.73677
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 285 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.03011, Adjusted R-squared: -0.0005149
## F-statistic: 0.9832 on 9 and 285 DF, p-value: 0.454
# Action 6
scon.g.b6 <- lm(act6 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b6) # yes, above 0
##
## Call:
## lm(formula = act6 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5455 -1.2424 0.5667 1.5667 2.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.82468 0.25312 3.258 0.00123 **
## SconsC.d 0.43199 0.33265 1.299 0.19494
## SconsM.d 0.53355 0.31194 1.710 0.08808 .
## SconsL.d 0.75808 0.39017 1.943 0.05283 .
## SconsSL.d 0.11472 0.43909 0.261 0.79404
## gend.mf -0.41126 0.50623 -0.812 0.41713
## SconsC.d:gend.mf 0.05792 0.66531 0.087 0.93067
## SconsM.d:gend.mf 0.63230 0.62387 1.014 0.31152
## SconsL.d:gend.mf 1.09191 0.78033 1.399 0.16262
## SconsSL.d:gend.mf -0.80087 0.87817 -0.912 0.36242
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 347 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.02528, Adjusted R-squared: -1.033e-06
## F-statistic: 1 on 9 and 347 DF, p-value: 0.4397
# Action 7
scon.g.b7 <- lm(act7 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b7) # yes, above 0
##
## Call:
## lm(formula = act7 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6800 -1.8433 0.1567 1.6364 3.6364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.11169 0.28533 -0.391 0.696
## SconsC.d -0.30806 0.38548 -0.799 0.425
## SconsM.d 0.01007 0.33941 0.030 0.976
## SconsL.d 0.15487 0.42395 0.365 0.715
## SconsSL.d 0.22947 0.49761 0.461 0.645
## gend.mf 0.40519 0.57067 0.710 0.478
## SconsC.d:gend.mf -0.83843 0.77095 -1.088 0.277
## SconsM.d:gend.mf -0.29499 0.67882 -0.435 0.664
## SconsL.d:gend.mf -0.09156 0.84790 -0.108 0.914
## SconsSL.d:gend.mf -1.52964 0.99521 -1.537 0.125
##
## Residual standard error: 2.097 on 403 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: -0.006717
## F-statistic: 0.6946 on 9 and 403 DF, p-value: 0.714
# Action 8
scon.g.b8 <- lm(act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b8) # yes, above 0
##
## Call:
## lm(formula = act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9286 -1.9091 -0.2143 1.6875 4.5319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9250 0.2738 -3.379 0.000789 ***
## SconsC.d 0.1884 0.3593 0.524 0.600246
## SconsM.d 0.5417 0.3259 1.662 0.097174 .
## SconsL.d 1.4863 0.4221 3.521 0.000471 ***
## SconsSL.d 1.3439 0.4661 2.883 0.004114 **
## gend.mf 1.2137 0.5476 2.216 0.027138 *
## SconsC.d:gend.mf -1.3119 0.7187 -1.825 0.068565 .
## SconsM.d:gend.mf -1.0001 0.6518 -1.534 0.125599
## SconsL.d:gend.mf -0.9076 0.8441 -1.075 0.282829
## SconsSL.d:gend.mf -2.2332 0.9321 -2.396 0.016973 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 469 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.07584, Adjusted R-squared: 0.05811
## F-statistic: 4.276 on 9 and 469 DF, p-value: 2.361e-05
aggregate(d$act8[d$ideology == "Strong Conservative"], list(d$gend[d$ideology == "Strong Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female -1.53
## 2 Male -0.32
# Action 9
scon.g.b9 <- lm(act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b9) # yes, above 0
##
## Call:
## lm(formula = act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5882 -1.5882 0.1481 1.5417 3.8261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7374 0.2616 -2.819 0.005041 **
## SconsC.d 0.5175 0.3433 1.507 0.132470
## SconsM.d 0.9047 0.3110 2.909 0.003814 **
## SconsL.d 1.3187 0.3823 3.449 0.000617 ***
## SconsSL.d 0.6938 0.4440 1.563 0.118847
## gend.mf -0.1774 0.5232 -0.339 0.734668
## SconsC.d:gend.mf 0.3210 0.6866 0.467 0.640420
## SconsM.d:gend.mf 0.1094 0.6221 0.176 0.860505
## SconsL.d:gend.mf 0.1912 0.7647 0.250 0.802668
## SconsSL.d:gend.mf -0.8263 0.8880 -0.931 0.352566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.97 on 437 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.04187, Adjusted R-squared: 0.02214
## F-statistic: 2.122 on 9 and 437 DF, p-value: 0.02658
# Action 10
scon.g.b10 <- lm(act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b10) # yes, above 0
##
## Call:
## lm(formula = act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5862 -2.0719 0.1948 1.5714 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5411 0.2651 -2.041 0.041829 *
## SconsC.d 0.2294 0.3498 0.656 0.512369
## SconsM.d 0.6314 0.3171 1.991 0.047042 *
## SconsL.d 1.4741 0.3987 3.697 0.000244 ***
## SconsSL.d 1.2842 0.4628 2.775 0.005743 **
## gend.mf 0.4734 0.5302 0.893 0.372387
## SconsC.d:gend.mf -0.7072 0.6997 -1.011 0.312664
## SconsM.d:gend.mf -0.4366 0.6341 -0.689 0.491461
## SconsL.d:gend.mf 0.5355 0.7975 0.672 0.502227
## SconsSL.d:gend.mf -2.1596 0.9255 -2.333 0.020053 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 466 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07046, Adjusted R-squared: 0.05251
## F-statistic: 3.925 on 9 and 466 DF, p-value: 7.905e-05
# Action 11
scon.g.b11 <- lm(act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b11) # yes, above 0
##
## Call:
## lm(formula = act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5625 -1.0000 0.2834 1.4375 2.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.79293 0.26841 2.954 0.00338 **
## SconsC.d -0.06566 0.36339 -0.181 0.85674
## SconsM.d -0.07633 0.32529 -0.235 0.81463
## SconsL.d 0.93647 0.41281 2.269 0.02400 *
## SconsSL.d 0.70261 0.50138 1.401 0.16214
## gend.mf 1.14141 0.53681 2.126 0.03429 *
## SconsC.d:gend.mf -1.68687 0.72677 -2.321 0.02095 *
## SconsM.d:gend.mf -1.20317 0.65059 -1.849 0.06538 .
## SconsL.d:gend.mf -0.75405 0.82562 -0.913 0.36180
## SconsSL.d:gend.mf -1.27534 1.00277 -1.272 0.20442
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 302 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.05336, Adjusted R-squared: 0.02515
## F-statistic: 1.891 on 9 and 302 DF, p-value: 0.05276
aggregate(d$act11[d$ideology == "Strong Conservative"], list(d$gend[d$ideology == "Strong Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female 0.22
## 2 Male 1.36
# Action 12
scon.g.b12 <- lm(act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b12) # yes, above 0
##
## Call:
## lm(formula = act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5625 -1.8571 -0.1345 1.8655 4.3043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.75325 0.28957 -2.601 0.00966 **
## SconsC.d -0.07803 0.38731 -0.201 0.84044
## SconsM.d 0.59679 0.35097 1.700 0.08989 .
## SconsL.d 1.87723 0.45373 4.137 4.35e-05 ***
## SconsSL.d 0.93450 0.51761 1.805 0.07182 .
## gend.mf 0.77922 0.57914 1.345 0.17929
## SconsC.d:gend.mf -1.72536 0.77462 -2.227 0.02652 *
## SconsM.d:gend.mf -1.36104 0.70194 -1.939 0.05326 .
## SconsL.d:gend.mf 0.63948 0.90747 0.705 0.48145
## SconsSL.d:gend.mf -1.54172 1.03522 -1.489 0.13726
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.129 on 373 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.08175, Adjusted R-squared: 0.0596
## F-statistic: 3.69 on 9 and 373 DF, p-value: 0.0001907
# Action 13
scon.g.b13 <- lm(act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b13) # yes, above 0
##
## Call:
## lm(formula = act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.8095 0.1884 1.9558 3.3636
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.29978 0.27109 -1.106 0.26942
## SconsC.d 0.05341 0.36743 0.145 0.88450
## SconsM.d 0.14792 0.32254 0.459 0.64675
## SconsL.d 0.77693 0.41292 1.882 0.06057 .
## SconsSL.d 0.42231 0.46485 0.908 0.36412
## gend.mf 1.78139 0.54219 3.286 0.00110 **
## SconsC.d:gend.mf -1.89733 0.73485 -2.582 0.01015 *
## SconsM.d:gend.mf -2.04287 0.64507 -3.167 0.00165 **
## SconsL.d:gend.mf -1.30710 0.82584 -1.583 0.11421
## SconsSL.d:gend.mf -2.75372 0.92969 -2.962 0.00323 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 432 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.04764, Adjusted R-squared: 0.0278
## F-statistic: 2.401 on 9 and 432 DF, p-value: 0.01156
aggregate(d$act13[d$ideology == "Strong Conservative"], list(d$gend[d$ideology == "Strong Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female -1.19
## 2 Male 0.59
# Action 14
scon.g.b14 <- lm(act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b14) # no
##
## Call:
## lm(formula = act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8235 -1.2778 0.2195 1.5455 3.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5422 0.3225 1.681 0.0938 .
## SconsC.d -0.5131 0.4304 -1.192 0.2343
## SconsM.d -0.1544 0.3827 -0.403 0.6870
## SconsL.d 0.5601 0.4824 1.161 0.2466
## SconsSL.d -0.6851 0.5673 -1.208 0.2282
## gend.mf 0.5627 0.6450 0.872 0.3838
## SconsC.d:gend.mf -2.0654 0.8609 -2.399 0.0171 *
## SconsM.d:gend.mf -0.7133 0.7654 -0.932 0.3522
## SconsL.d:gend.mf 0.1419 0.9648 0.147 0.8832
## SconsSL.d:gend.mf -1.9912 1.1346 -1.755 0.0804 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.017 on 276 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.04977, Adjusted R-squared: 0.01878
## F-statistic: 1.606 on 9 and 276 DF, p-value: 0.1132
# Action 15
scon.g.b15 <- lm(act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b15) # yes, above 0
##
## Call:
## lm(formula = act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6562 -1.7674 0.4444 1.6917 3.5714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3065 0.2703 -1.134 0.25746
## SconsC.d 0.3102 0.3608 0.860 0.39045
## SconsM.d 0.2385 0.3238 0.737 0.46184
## SconsL.d 1.3654 0.4308 3.170 0.00165 **
## SconsSL.d 0.5399 0.4602 1.173 0.24143
## gend.mf 0.5298 0.5406 0.980 0.32772
## SconsC.d:gend.mf -1.1296 0.7215 -1.566 0.11829
## SconsM.d:gend.mf -1.2825 0.6476 -1.981 0.04838 *
## SconsL.d:gend.mf 0.2755 0.8616 0.320 0.74930
## SconsSL.d:gend.mf -1.1631 0.9203 -1.264 0.20708
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 374 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.04838, Adjusted R-squared: 0.02548
## F-statistic: 2.113 on 9 and 374 DF, p-value: 0.0277
# Action 16
scon.g.b16 <- lm(act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b16) # yes, above 0
##
## Call:
## lm(formula = act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3636 -1.1400 0.1589 1.6364 2.7586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6470 0.2704 2.393 0.0173 *
## SconsC.d 0.2412 0.3578 0.674 0.5007
## SconsM.d 0.4554 0.3261 1.396 0.1636
## SconsL.d 0.3248 0.4124 0.788 0.4316
## SconsSL.d 0.2974 0.4588 0.648 0.5172
## gend.mf 0.8113 0.5407 1.500 0.1345
## SconsC.d:gend.mf -1.3149 0.7156 -1.838 0.0670 .
## SconsM.d:gend.mf -0.2887 0.6522 -0.443 0.6583
## SconsL.d:gend.mf -1.2548 0.8248 -1.521 0.1292
## SconsSL.d:gend.mf -0.9224 0.9175 -1.005 0.3155
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 321 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.02518, Adjusted R-squared: -0.002148
## F-statistic: 0.9214 on 9 and 321 DF, p-value: 0.5066
# Action 17
scon.g.b17 <- lm(act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b17) # no
##
## Call:
## lm(formula = act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.391 -1.477 -0.033 1.630 3.077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38844 0.26525 1.464 0.144
## SconsC.d -0.29198 0.35374 -0.825 0.410
## SconsM.d 0.09420 0.31868 0.296 0.768
## SconsL.d 0.36777 0.40532 0.907 0.365
## SconsSL.d 0.70721 0.46368 1.525 0.128
## gend.mf 0.09268 0.53051 0.175 0.861
## SconsC.d:gend.mf -0.43944 0.70748 -0.621 0.535
## SconsM.d:gend.mf -0.08123 0.63736 -0.127 0.899
## SconsL.d:gend.mf 0.68061 0.81063 0.840 0.402
## SconsSL.d:gend.mf -0.68398 0.92736 -0.738 0.461
##
## Residual standard error: 2.008 on 406 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.02291, Adjusted R-squared: 0.001247
## F-statistic: 1.058 on 9 and 406 DF, p-value: 0.3934
# Action 18
scon.g.b18 <- lm(act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b18) # no
##
## Call:
## lm(formula = act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.1369 0.1776 1.4528 3.1000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2326 0.2562 0.908 0.3646
## SconsC.d 0.2076 0.3499 0.593 0.5533
## SconsM.d 0.5422 0.3155 1.719 0.0866 .
## SconsL.d 0.7333 0.3828 1.916 0.0562 .
## SconsSL.d 0.5569 0.4534 1.228 0.2202
## gend.mf 0.6652 0.5124 1.298 0.1951
## SconsC.d:gend.mf -0.8791 0.6999 -1.256 0.2100
## SconsM.d:gend.mf -0.7604 0.6309 -1.205 0.2290
## SconsL.d:gend.mf -0.4543 0.7656 -0.593 0.5534
## SconsSL.d:gend.mf -0.2442 0.9068 -0.269 0.7879
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.02394, Adjusted R-squared: -0.001748
## F-statistic: 0.9319 on 9 and 342 DF, p-value: 0.4973
# Action 19
scon.g.b19 <- lm(act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b19) # yes, above 0
##
## Call:
## lm(formula = act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1622 0.3462 1.6250 2.3462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97398 0.28169 3.458 0.000635 ***
## SconsC.d 0.04188 0.36994 0.113 0.909948
## SconsM.d 0.15697 0.34379 0.457 0.648339
## SconsL.d 0.52602 0.46399 1.134 0.257957
## SconsSL.d 0.16418 0.47353 0.347 0.729088
## gend.mf 0.64027 0.56338 1.136 0.256785
## SconsC.d:gend.mf -0.93287 0.73988 -1.261 0.208481
## SconsM.d:gend.mf -0.97360 0.68757 -1.416 0.157953
## SconsL.d:gend.mf -0.39027 0.92798 -0.421 0.674419
## SconsSL.d:gend.mf -1.41659 0.94706 -1.496 0.135908
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.806 on 264 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.0208, Adjusted R-squared: -0.01258
## F-statistic: 0.6232 on 9 and 264 DF, p-value: 0.7769
# Action 20
scon.g.b20 <- lm(act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b20) # yes, above 0
##
## Call:
## lm(formula = act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.398 -1.200 0.602 1.602 2.391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.16307 0.24835 4.683 4.22e-06 ***
## SconsC.d -0.16307 0.33838 -0.482 0.630
## SconsM.d 0.13590 0.31136 0.436 0.663
## SconsL.d 0.10408 0.39115 0.266 0.790
## SconsSL.d -0.27092 0.44645 -0.607 0.544
## gend.mf 0.25718 0.49671 0.518 0.605
## SconsC.d:gend.mf -1.03979 0.67677 -1.536 0.125
## SconsM.d:gend.mf -0.45514 0.62271 -0.731 0.465
## SconsL.d:gend.mf 0.04184 0.78230 0.053 0.957
## SconsSL.d:gend.mf -0.70816 0.89291 -0.793 0.428
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.8 on 312 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.01743, Adjusted R-squared: -0.01091
## F-statistic: 0.615 on 9 and 312 DF, p-value: 0.7842
# Action 21
scon.g.b21 <- lm(act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b21) # yes, above 0
##
## Call:
## lm(formula = act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.556 -1.840 0.160 1.696 3.818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.63409 0.27449 -2.310 0.02141 *
## SconsC.d 0.27346 0.37195 0.735 0.46265
## SconsM.d 0.65165 0.33164 1.965 0.05013 .
## SconsL.d 1.10530 0.41346 2.673 0.00783 **
## SconsSL.d 1.06404 0.49058 2.169 0.03069 *
## gend.mf -0.36818 0.54899 -0.671 0.50284
## SconsC.d:gend.mf -0.07722 0.74390 -0.104 0.91738
## SconsM.d:gend.mf 0.72330 0.66328 1.090 0.27617
## SconsL.d:gend.mf 0.49242 0.82692 0.595 0.55186
## SconsSL.d:gend.mf 0.61939 0.98116 0.631 0.52823
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.068 on 391 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.0295, Adjusted R-squared: 0.007162
## F-statistic: 1.321 on 9 and 391 DF, p-value: 0.2241
# Action 22
scon.g.b22 <- lm(act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b22) # yes, above 0
##
## Call:
## lm(formula = act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1538 -1.4912 -0.1538 1.6410 3.6410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2069 0.2631 -0.786 0.43210
## SconsC.d 0.4525 0.3539 1.279 0.20175
## SconsM.d 0.6041 0.3199 1.888 0.05976 .
## SconsL.d 0.8321 0.4083 2.038 0.04223 *
## SconsSL.d 1.2838 0.4516 2.843 0.00471 **
## gend.mf 0.8683 0.5261 1.650 0.09967 .
## SconsC.d:gend.mf -1.3595 0.7077 -1.921 0.05546 .
## SconsM.d:gend.mf -0.3995 0.6399 -0.624 0.53277
## SconsL.d:gend.mf -0.7341 0.8166 -0.899 0.36921
## SconsSL.d:gend.mf -1.0221 0.9033 -1.132 0.25850
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.973 on 392 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.04639, Adjusted R-squared: 0.02449
## F-statistic: 2.119 on 9 and 392 DF, p-value: 0.02709
# Action 23
scon.g.b23 <- lm(act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b23) # no
##
## Call:
## lm(formula = act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9474 -2.0103 0.1875 2.0227 3.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.31459 0.35387 0.889 0.3748
## SconsC.d -0.58786 0.46371 -1.268 0.2059
## SconsM.d -0.05944 0.43299 -0.137 0.8909
## SconsL.d 0.27291 0.51335 0.532 0.5954
## SconsSL.d -0.03334 0.60381 -0.055 0.9560
## gend.mf 1.26555 0.70773 1.788 0.0748 .
## SconsC.d:gend.mf -1.76663 0.92742 -1.905 0.0578 .
## SconsM.d:gend.mf -0.77586 0.86599 -0.896 0.3711
## SconsL.d:gend.mf -1.50722 1.02669 -1.468 0.1432
## SconsSL.d:gend.mf -2.32805 1.20763 -1.928 0.0549 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.26 on 282 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03359, Adjusted R-squared: 0.002749
## F-statistic: 1.089 on 9 and 282 DF, p-value: 0.3707
# Action 24
scon.g.b24 <- lm(act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b24) # yes, above 0
##
## Call:
## lm(formula = act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5455 -1.8425 0.1575 1.8214 3.8214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01515 0.28872 -0.052 0.9582
## SconsC.d -0.57525 0.37396 -1.538 0.1248
## SconsM.d -0.31359 0.34050 -0.921 0.3576
## SconsL.d -0.02706 0.43239 -0.063 0.9501
## SconsSL.d -0.19781 0.48388 -0.409 0.6829
## gend.mf 1.12121 0.57743 1.942 0.0529 .
## SconsC.d:gend.mf -1.58327 0.74792 -2.117 0.0349 *
## SconsM.d:gend.mf -1.46373 0.68100 -2.149 0.0322 *
## SconsL.d:gend.mf -0.75108 0.86477 -0.869 0.3856
## SconsSL.d:gend.mf -1.69529 0.96776 -1.752 0.0806 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.098 on 405 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.02029, Adjusted R-squared: -0.001484
## F-statistic: 0.9318 on 9 and 405 DF, p-value: 0.4971
aggregate(d$act24[d$ideology == "Strong Conservative"], list(d$gend[d$ideology == "Strong Conservative"]), FUN = function(x) round(mean(x, na.rm = T), 2))
## Group.1 x
## 1 Female -0.58
## 2 Male 0.55
# Action 25
scon.g.b25 <- lm(act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b25) # yes, above 0
##
## Call:
## lm(formula = act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -0.8936 0.1642 1.4389 3.2051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07875 0.24926 -0.316 0.752190
## SconsC.d 0.48987 0.32380 1.513 0.131047
## SconsM.d 0.96397 0.29380 3.281 0.001118 **
## SconsL.d 1.28753 0.36494 3.528 0.000463 ***
## SconsSL.d 1.44098 0.43622 3.303 0.001035 **
## gend.mf 0.25275 0.49852 0.507 0.612417
## SconsC.d:gend.mf -0.63053 0.64761 -0.974 0.330788
## SconsM.d:gend.mf -0.23594 0.58761 -0.402 0.688228
## SconsL.d:gend.mf 0.07970 0.72988 0.109 0.913098
## SconsSL.d:gend.mf -0.08830 0.87244 -0.101 0.919427
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 434 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.05138, Adjusted R-squared: 0.03171
## F-statistic: 2.612 on 9 and 434 DF, p-value: 0.006027
# Action 26
scon.g.b26 <- lm(act26 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b26) # yes, above 0
##
## Call:
## lm(formula = act26 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.0000 0.5278 1.3433 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.544118 0.302509 5.104 7.27e-07 ***
## SconsC.d -0.016340 0.404614 -0.040 0.968
## SconsM.d -0.001474 0.379614 -0.004 0.997
## SconsL.d 0.027311 0.496671 0.055 0.956
## SconsSL.d -0.571895 0.518690 -1.103 0.271
## gend.mf 0.088235 0.605019 0.146 0.884
## SconsC.d:gend.mf -0.366013 0.809227 -0.452 0.652
## SconsM.d:gend.mf -0.316380 0.759228 -0.417 0.677
## SconsL.d:gend.mf 1.054622 0.993342 1.062 0.290
## SconsSL.d:gend.mf 0.856209 1.037381 0.825 0.410
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 216 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.02923, Adjusted R-squared: -0.01122
## F-statistic: 0.7225 on 9 and 216 DF, p-value: 0.688
# Action 27
scon.g.b27 <- lm(act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b27) # no
##
## Call:
## lm(formula = act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4545 -1.1667 0.2174 1.5521 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4792 0.2613 1.834 0.0676 .
## SconsC.d 0.2536 0.3580 0.708 0.4792
## SconsM.d 0.1448 0.3269 0.443 0.6581
## SconsL.d 0.6951 0.4105 1.693 0.0914 .
## SconsSL.d 0.8797 0.4415 1.993 0.0472 *
## gend.mf 0.9583 0.5225 1.834 0.0676 .
## SconsC.d:gend.mf -0.8587 0.7159 -1.199 0.2313
## SconsM.d:gend.mf -0.6063 0.6538 -0.927 0.3545
## SconsL.d:gend.mf -0.9735 0.8210 -1.186 0.2366
## SconsSL.d:gend.mf -0.7669 0.8829 -0.869 0.3857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 307 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.03928, Adjusted R-squared: 0.01112
## F-statistic: 1.395 on 9 and 307 DF, p-value: 0.1895
# Action 28
scon.g.b28 <- lm(act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b28) # yes, above 0
##
## Call:
## lm(formula = act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4262 -0.9511 0.1944 1.5738 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.78373 0.25169 3.114 0.00199 **
## SconsC.d 0.45112 0.33712 1.338 0.18168
## SconsM.d 0.22190 0.31023 0.715 0.47489
## SconsL.d 0.12615 0.39102 0.323 0.74717
## SconsSL.d 0.19764 0.46893 0.421 0.67367
## gend.mf -0.04365 0.50337 -0.087 0.93094
## SconsC.d:gend.mf -0.33910 0.67424 -0.503 0.61531
## SconsM.d:gend.mf 0.21421 0.62045 0.345 0.73011
## SconsL.d:gend.mf -0.27612 0.78205 -0.353 0.72424
## SconsSL.d:gend.mf -0.77622 0.93787 -0.828 0.40842
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 362 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.01604, Adjusted R-squared: -0.008426
## F-statistic: 0.6556 on 9 and 362 DF, p-value: 0.749
# Action 29
scon.g.b29 <- lm(act29 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b29) # yes, above 0
##
## Call:
## lm(formula = act29 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5263 -1.1003 0.1951 1.5000 2.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.119048 0.244817 4.571 6.69e-06 ***
## SconsC.d -0.126816 0.325646 -0.389 0.697
## SconsM.d -0.004118 0.299162 -0.014 0.989
## SconsL.d 0.033391 0.367847 0.091 0.928
## SconsSL.d 0.310777 0.434446 0.715 0.475
## gend.mf 0.238095 0.489634 0.486 0.627
## SconsC.d:gend.mf -0.389225 0.651293 -0.598 0.550
## SconsM.d:gend.mf -0.296525 0.598324 -0.496 0.620
## SconsL.d:gend.mf 0.457027 0.735694 0.621 0.535
## SconsSL.d:gend.mf -0.431078 0.868893 -0.496 0.620
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.774 on 358 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01019, Adjusted R-squared: -0.0147
## F-statistic: 0.4093 on 9 and 358 DF, p-value: 0.93
# Action 30
scon.g.b30 <- lm(act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf, data = d)
summary(scon.g.b30) # yes, above 0
##
## Call:
## lm(formula = act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3529 -1.0654 0.5928 1.6471 2.3913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08951 0.25407 4.288 2.35e-05 ***
## SconsC.d -0.19745 0.34437 -0.573 0.567
## SconsM.d -0.10680 0.31992 -0.334 0.739
## SconsL.d 0.18073 0.39494 0.458 0.648
## SconsSL.d -0.01304 0.45300 -0.029 0.977
## gend.mf -0.52685 0.50814 -1.037 0.301
## SconsC.d:gend.mf -0.03989 0.68875 -0.058 0.954
## SconsM.d:gend.mf 0.36143 0.63984 0.565 0.573
## SconsL.d:gend.mf 0.90945 0.78989 1.151 0.250
## SconsSL.d:gend.mf -0.02609 0.90600 -0.029 0.977
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.882 on 342 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.01188, Adjusted R-squared: -0.01412
## F-statistic: 0.4569 on 9 and 342 DF, p-value: 0.9027
a. Gender x condition
None
# Action 1
summary(lm(act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.960 0.080 2.000 5.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4021 0.2767 -1.453 0.1469
## SconsC.d -0.2720 0.3739 -0.727 0.4673
## SconsM.d 0.5111 0.3310 1.544 0.1233
## SconsL.d 0.9966 0.4179 2.385 0.0175 *
## SconsSL.d 0.1292 0.4838 0.267 0.7895
## gend.mf 0.5013 0.5534 0.906 0.3656
## cond.c 0.7513 0.5534 1.358 0.1753
## SconsC.d:gend.mf -1.3360 0.7478 -1.787 0.0747 .
## SconsM.d:gend.mf 0.2009 0.6620 0.304 0.7616
## SconsL.d:gend.mf -0.6723 0.8359 -0.804 0.4216
## SconsSL.d:gend.mf -1.7554 0.9676 -1.814 0.0703 .
## SconsC.d:cond.c -0.9535 0.7478 -1.275 0.2029
## SconsM.d:cond.c -1.4535 0.6620 -2.196 0.0287 *
## SconsL.d:cond.c -0.8773 0.8359 -1.050 0.2945
## SconsSL.d:cond.c -0.6304 0.9676 -0.652 0.5150
## gend.mf:cond.c 0.5581 1.1068 0.504 0.6144
## SconsC.d:gend.mf:cond.c -0.9640 1.4955 -0.645 0.5195
## SconsM.d:gend.mf:cond.c -0.9937 1.3239 -0.751 0.4533
## SconsL.d:gend.mf:cond.c -1.7702 1.6718 -1.059 0.2902
## SconsSL.d:gend.mf:cond.c 3.6003 1.9351 1.860 0.0635 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.124 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.0873, Adjusted R-squared: 0.04669
## F-statistic: 2.15 on 19 and 427 DF, p-value: 0.003504
# Action 2
summary(lm(act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6000 -1.0000 0.3485 1.5192 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.049716 0.273571 3.837 0.000155 ***
## SconsC.d -0.253504 0.359852 -0.704 0.481754
## SconsM.d 0.110953 0.342057 0.324 0.745912
## SconsL.d 0.621117 0.431620 1.439 0.151307
## SconsSL.d -0.241383 0.489090 -0.494 0.622040
## gend.mf 0.786932 0.547141 1.438 0.151527
## cond.c -0.150568 0.547141 -0.275 0.783382
## SconsC.d:gend.mf -1.530871 0.719705 -2.127 0.034327 *
## SconsM.d:gend.mf -0.774935 0.684114 -1.133 0.258329
## SconsL.d:gend.mf -0.211932 0.863241 -0.246 0.806252
## SconsSL.d:gend.mf -1.336932 0.978180 -1.367 0.172848
## SconsC.d:cond.c -0.575189 0.719705 -0.799 0.424881
## SconsM.d:cond.c -0.008864 0.684114 -0.013 0.989672
## SconsL.d:cond.c 0.142235 0.863241 0.165 0.869250
## SconsSL.d:cond.c 0.767235 0.978180 0.784 0.433528
## gend.mf:cond.c 1.073864 1.094282 0.981 0.327310
## SconsC.d:gend.mf:cond.c -2.652652 1.439410 -1.843 0.066452 .
## SconsM.d:gend.mf:cond.c -0.088333 1.368228 -0.065 0.948573
## SconsL.d:gend.mf:cond.c -0.223864 1.726481 -0.130 0.896929
## SconsSL.d:gend.mf:cond.c 1.159470 1.956361 0.593 0.553904
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.801 on 268 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.07459, Adjusted R-squared: 0.008984
## F-statistic: 1.137 on 19 and 268 DF, p-value: 0.3138
# Action 3
summary(lm(act3 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7059 -1.8261 0.0278 1.7143 3.9412
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.790218 0.267343 -2.956 0.00329 **
## SconsC.d 0.463829 0.358749 1.293 0.19675
## SconsM.d 0.725473 0.317283 2.287 0.02272 *
## SconsL.d 0.727718 0.389443 1.869 0.06237 .
## SconsSL.d 0.988118 0.474006 2.085 0.03771 *
## gend.mf 0.694073 0.534686 1.298 0.19496
## cond.c -0.002897 0.534686 -0.005 0.99568
## SconsC.d:gend.mf -0.485740 0.717498 -0.677 0.49878
## SconsM.d:gend.mf -0.905162 0.634566 -1.426 0.15448
## SconsL.d:gend.mf -0.426216 0.778886 -0.547 0.58452
## SconsSL.d:gend.mf -1.289871 0.948011 -1.361 0.17436
## SconsC.d:cond.c -0.316548 0.717498 -0.441 0.65931
## SconsM.d:cond.c 0.067850 0.634566 0.107 0.91490
## SconsL.d:cond.c 0.770754 0.778886 0.990 0.32296
## SconsSL.d:cond.c 0.092813 0.948011 0.098 0.92206
## gend.mf:cond.c 0.778520 1.069372 0.728 0.46701
## SconsC.d:gend.mf:cond.c -2.361854 1.434996 -1.646 0.10053
## SconsM.d:gend.mf:cond.c -0.922920 1.269132 -0.727 0.46750
## SconsL.d:gend.mf:cond.c -2.028520 1.557772 -1.302 0.19356
## SconsSL.d:gend.mf:cond.c 0.241648 1.896023 0.127 0.89865
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.05725, Adjusted R-squared: 0.01481
## F-statistic: 1.349 on 19 and 422 DF, p-value: 0.1485
# Action 4
summary(lm(act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2000 -1.8551 0.1449 2.0909 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.199866 0.310692 0.643 0.520
## SconsC.d -0.558418 0.424462 -1.316 0.189
## SconsM.d -0.412437 0.375956 -1.097 0.273
## SconsL.d 0.314893 0.452349 0.696 0.487
## SconsSL.d 0.161672 0.546096 0.296 0.767
## gend.mf 0.372995 0.621383 0.600 0.549
## cond.c -0.009358 0.621383 -0.015 0.988
## SconsC.d:gend.mf -0.838583 0.848924 -0.988 0.324
## SconsM.d:gend.mf -0.385352 0.751912 -0.512 0.609
## SconsL.d:gend.mf -0.002514 0.904698 -0.003 0.998
## SconsSL.d:gend.mf -1.696072 1.092191 -1.553 0.121
## SconsC.d:cond.c -0.514564 0.848924 -0.606 0.545
## SconsM.d:cond.c -0.333357 0.751912 -0.443 0.658
## SconsL.d:cond.c 0.769313 0.904698 0.850 0.396
## SconsSL.d:cond.c 0.086281 1.092191 0.079 0.937
## gend.mf:cond.c -0.435829 1.242766 -0.351 0.726
## SconsC.d:gend.mf:cond.c -1.381712 1.697848 -0.814 0.416
## SconsM.d:gend.mf:cond.c -0.003742 1.503824 -0.002 0.998
## SconsL.d:gend.mf:cond.c 0.115920 1.809396 0.064 0.949
## SconsSL.d:gend.mf:cond.c -0.118017 2.184382 -0.054 0.957
##
## Residual standard error: 2.183 on 349 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.04372, Adjusted R-squared: -0.008345
## F-statistic: 0.8397 on 19 and 349 DF, p-value: 0.6588
# Action 5
summary(lm(act5 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4800 -1.2500 0.1622 1.5200 3.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.72961 0.27629 2.641 0.00874 **
## SconsC.d 0.23041 0.36466 0.632 0.52802
## SconsM.d 0.34454 0.34680 0.993 0.32135
## SconsL.d 0.74178 0.42718 1.736 0.08360 .
## SconsSL.d -0.45878 0.49884 -0.920 0.35854
## gend.mf -0.48195 0.55258 -0.872 0.38387
## cond.c -0.26805 0.55258 -0.485 0.62800
## SconsC.d:gend.mf 0.01290 0.72932 0.018 0.98590
## SconsM.d:gend.mf 0.54243 0.69361 0.782 0.43486
## SconsL.d:gend.mf 0.96773 0.85437 1.133 0.25833
## SconsSL.d:gend.mf 0.35695 0.99768 0.358 0.72078
## SconsC.d:cond.c -0.05434 0.72932 -0.075 0.94066
## SconsM.d:cond.c -0.11935 0.69361 -0.172 0.86351
## SconsL.d:cond.c -0.55387 0.85437 -0.648 0.51735
## SconsSL.d:cond.c 0.39305 0.99768 0.394 0.69391
## gend.mf:cond.c -0.41845 1.10515 -0.379 0.70525
## SconsC.d:gend.mf:cond.c -1.36815 1.45865 -0.938 0.34909
## SconsM.d:gend.mf:cond.c 0.46797 1.38722 0.337 0.73611
## SconsL.d:gend.mf:cond.c 0.91942 1.70873 0.538 0.59096
## SconsSL.d:gend.mf:cond.c 2.00178 1.99535 1.003 0.31664
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.884 on 275 degrees of freedom
## (250 observations deleted due to missingness)
## Multiple R-squared: 0.0598, Adjusted R-squared: -0.005162
## F-statistic: 0.9205 on 19 and 275 DF, p-value: 0.5577
# Action 6
summary(lm(act6 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5714 -1.0816 0.5333 1.5294 2.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.84363 0.25546 3.302 0.00106 **
## SconsC.d 0.46939 0.33707 1.393 0.16468
## SconsM.d 0.50693 0.31455 1.612 0.10798
## SconsL.d 0.72561 0.39382 1.842 0.06628 .
## SconsSL.d 0.08673 0.44631 0.194 0.84604
## gend.mf -0.47816 0.51092 -0.936 0.35000
## cond.c -0.04132 0.51092 -0.081 0.93559
## SconsC.d:gend.mf 0.25213 0.67415 0.374 0.70864
## SconsM.d:gend.mf 0.71431 0.62910 1.135 0.25699
## SconsL.d:gend.mf 1.10159 0.78764 1.399 0.16285
## SconsSL.d:gend.mf -0.73255 0.89262 -0.821 0.41241
## SconsC.d:cond.c -0.33955 0.67415 -0.504 0.61482
## SconsM.d:cond.c -0.11149 0.62910 -0.177 0.85944
## SconsL.d:cond.c -0.40668 0.78764 -0.516 0.60597
## SconsSL.d:cond.c 0.08060 0.89262 0.090 0.92810
## gend.mf:cond.c 1.30082 1.02183 1.273 0.20388
## SconsC.d:gend.mf:cond.c -2.93908 1.34829 -2.180 0.02996 *
## SconsM.d:gend.mf:cond.c -1.00304 1.25819 -0.797 0.42589
## SconsL.d:gend.mf:cond.c -2.59531 1.57527 -1.648 0.10038
## SconsSL.d:gend.mf:cond.c -1.07939 1.78524 -0.605 0.54584
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 337 degrees of freedom
## (188 observations deleted due to missingness)
## Multiple R-squared: 0.04582, Adjusted R-squared: -0.00798
## F-statistic: 0.8517 on 19 and 337 DF, p-value: 0.6439
# Action 7
summary(lm(act7 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0625 -1.8571 0.0625 1.7143 3.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.10175 0.28349 -0.359 0.7199
## SconsC.d -0.23470 0.38796 -0.605 0.5456
## SconsM.d 0.00593 0.33712 0.018 0.9860
## SconsL.d 0.18230 0.42468 0.429 0.6680
## SconsSL.d 0.07571 0.51252 0.148 0.8826
## gend.mf 0.38532 0.56698 0.680 0.4972
## cond.c 0.13173 0.56698 0.232 0.8164
## SconsC.d:gend.mf -0.60528 0.77592 -0.780 0.4358
## SconsM.d:gend.mf -0.27160 0.67425 -0.403 0.6873
## SconsL.d:gend.mf -0.15754 0.84936 -0.185 0.8529
## SconsSL.d:gend.mf -1.49990 1.02504 -1.463 0.1442
## SconsC.d:cond.c -0.45463 0.77592 -0.586 0.5583
## SconsM.d:cond.c 0.28313 0.67425 0.420 0.6748
## SconsL.d:cond.c 0.72383 0.84936 0.852 0.3946
## SconsSL.d:cond.c -0.24631 1.02504 -0.240 0.8102
## gend.mf:cond.c 1.19109 1.13397 1.050 0.2942
## SconsC.d:gend.mf:cond.c -3.33100 1.55183 -2.147 0.0324 *
## SconsM.d:gend.mf:cond.c -0.72210 1.34849 -0.535 0.5926
## SconsL.d:gend.mf:cond.c -3.01331 1.69873 -1.774 0.0769 .
## SconsSL.d:gend.mf:cond.c 0.70474 2.05008 0.344 0.7312
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.081 on 393 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.05477, Adjusted R-squared: 0.009077
## F-statistic: 1.199 on 19 and 393 DF, p-value: 0.2548
# Action 8
summary(lm(act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4000 -1.6786 -0.1429 1.5466 4.8421
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9500 0.2731 -3.478 0.000553 ***
## SconsC.d 0.4874 0.3657 1.333 0.183355
## SconsM.d 0.5639 0.3246 1.737 0.083015 .
## SconsL.d 1.5333 0.4201 3.650 0.000293 ***
## SconsSL.d 1.3833 0.4678 2.957 0.003265 **
## gend.mf 1.2636 0.5463 2.313 0.021159 *
## cond.c 0.1240 0.5463 0.227 0.820567
## SconsC.d:gend.mf -0.8530 0.7315 -1.166 0.244191
## SconsM.d:gend.mf -1.0549 0.6492 -1.625 0.104877
## SconsL.d:gend.mf -1.0017 0.8403 -1.192 0.233843
## SconsSL.d:gend.mf -2.4636 0.9355 -2.633 0.008741 **
## SconsC.d:cond.c -1.7992 0.7315 -2.460 0.014274 *
## SconsM.d:cond.c 0.1135 0.6492 0.175 0.861314
## SconsL.d:cond.c 0.4713 0.8403 0.561 0.575177
## SconsSL.d:cond.c 1.0760 0.9355 1.150 0.250680
## gend.mf:cond.c -0.7934 1.0926 -0.726 0.468091
## SconsC.d:gend.mf:cond.c -1.7742 1.4630 -1.213 0.225842
## SconsM.d:gend.mf:cond.c 1.2786 1.2985 0.985 0.325274
## SconsL.d:gend.mf:cond.c 0.7458 1.6805 0.444 0.657414
## SconsSL.d:gend.mf:cond.c 1.7267 1.8711 0.923 0.356572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.102 on 459 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1107, Adjusted R-squared: 0.07388
## F-statistic: 3.007 on 19 and 459 DF, p-value: 2.47e-05
# Action 9
summary(lm(act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8000 -1.5455 0.0455 1.5000 4.4545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.79962 0.26330 -3.037 0.002537 **
## SconsC.d 0.73551 0.35095 2.096 0.036693 *
## SconsM.d 0.96669 0.31252 3.093 0.002110 **
## SconsL.d 1.36272 0.38596 3.531 0.000459 ***
## SconsSL.d 0.73295 0.46032 1.592 0.112064
## gend.mf -0.10530 0.52660 -0.200 0.841601
## cond.c 1.12197 0.52660 2.131 0.033694 *
## SconsC.d:gend.mf 0.56686 0.70191 0.808 0.419769
## SconsM.d:gend.mf 0.03006 0.62503 0.048 0.961661
## SconsL.d:gend.mf 0.06483 0.77191 0.084 0.933110
## SconsSL.d:gend.mf -0.86136 0.92064 -0.936 0.350001
## SconsC.d:cond.c -2.00836 0.70191 -2.861 0.004426 **
## SconsM.d:cond.c -0.91738 0.62503 -1.468 0.142913
## SconsL.d:cond.c -1.29578 0.77191 -1.679 0.093949 .
## SconsSL.d:cond.c -1.15530 0.92064 -1.255 0.210205
## gend.mf:cond.c 0.16515 1.05320 0.157 0.875470
## SconsC.d:gend.mf:cond.c -2.17014 1.40381 -1.546 0.122872
## SconsM.d:gend.mf:cond.c 0.12528 1.25006 0.100 0.920220
## SconsL.d:gend.mf:cond.c -0.84610 1.54382 -0.548 0.583938
## SconsSL.d:gend.mf:cond.c 0.10152 1.84128 0.055 0.956058
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 427 degrees of freedom
## (98 observations deleted due to missingness)
## Multiple R-squared: 0.06597, Adjusted R-squared: 0.02441
## F-statistic: 1.587 on 19 and 427 DF, p-value: 0.05552
# Action 10
summary(lm(act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6667 -1.8630 0.1739 1.7370 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.53765 0.26589 -2.022 0.043756 *
## SconsC.d 0.34026 0.35503 0.958 0.338378
## SconsM.d 0.62338 0.31757 1.963 0.050259 .
## SconsL.d 1.50338 0.39978 3.761 0.000192 ***
## SconsSL.d 1.26795 0.46509 2.726 0.006652 **
## gend.mf 0.46924 0.53179 0.882 0.378039
## cond.c -0.06573 0.53179 -0.124 0.901688
## SconsC.d:gend.mf -0.47445 0.71007 -0.668 0.504355
## SconsM.d:gend.mf -0.42330 0.63514 -0.666 0.505451
## SconsL.d:gend.mf 0.47430 0.79956 0.593 0.553343
## SconsSL.d:gend.mf -2.12984 0.93018 -2.290 0.022494 *
## SconsC.d:cond.c -0.73461 0.71007 -1.035 0.301420
## SconsM.d:cond.c 0.14859 0.63514 0.234 0.815125
## SconsL.d:cond.c 0.23426 0.79956 0.293 0.769664
## SconsSL.d:cond.c 1.25967 0.93018 1.354 0.176336
## gend.mf:cond.c 0.01024 1.06358 0.010 0.992319
## SconsC.d:gend.mf:cond.c -1.60957 1.42013 -1.133 0.257645
## SconsM.d:gend.mf:cond.c 0.95446 1.27028 0.751 0.452813
## SconsL.d:gend.mf:cond.c -1.09731 1.59912 -0.686 0.492937
## SconsSL.d:gend.mf:cond.c 2.80188 1.86036 1.506 0.132734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 456 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.0938, Adjusted R-squared: 0.05604
## F-statistic: 2.484 on 19 and 456 DF, p-value: 0.0005392
# Action 11
summary(lm(act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9000 -1.0292 0.3902 1.5200 3.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.79033 0.26693 2.961 0.00332 **
## SconsC.d -0.01624 0.36192 -0.045 0.96424
## SconsM.d -0.07781 0.32350 -0.241 0.81008
## SconsL.d 0.98169 0.41930 2.341 0.01989 *
## SconsSL.d 0.64300 0.50466 1.274 0.20364
## gend.mf 1.14660 0.53386 2.148 0.03256 *
## cond.c 0.41284 0.53386 0.773 0.43997
## SconsC.d:gend.mf -1.61146 0.72385 -2.226 0.02676 *
## SconsM.d:gend.mf -1.22197 0.64701 -1.889 0.05993 .
## SconsL.d:gend.mf -0.95256 0.83860 -1.136 0.25694
## SconsSL.d:gend.mf -1.17994 1.00933 -1.169 0.24334
## SconsC.d:cond.c -1.46465 0.72385 -2.023 0.04394 *
## SconsM.d:cond.c -1.06376 0.64701 -1.644 0.10123
## SconsL.d:cond.c -0.79022 0.83860 -0.942 0.34682
## SconsSL.d:cond.c -0.77950 1.00933 -0.772 0.44056
## gend.mf:cond.c 0.26523 1.06772 0.248 0.80399
## SconsC.d:gend.mf:cond.c -1.99494 1.44769 -1.378 0.16925
## SconsM.d:gend.mf:cond.c -0.48626 1.29402 -0.376 0.70735
## SconsL.d:gend.mf:cond.c -2.32000 1.67720 -1.383 0.16764
## SconsSL.d:gend.mf:cond.c 0.80143 2.01865 0.397 0.69165
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.858 on 292 degrees of freedom
## (233 observations deleted due to missingness)
## Multiple R-squared: 0.09531, Adjusted R-squared: 0.03644
## F-statistic: 1.619 on 19 and 292 DF, p-value: 0.05071
# Action 12
summary(lm(act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.000 -1.875 0.125 1.635 4.235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.75453 0.28810 -2.619 0.00919 **
## SconsC.d 0.18333 0.39662 0.462 0.64420
## SconsM.d 0.59087 0.34921 1.692 0.09150 .
## SconsL.d 1.90833 0.45229 4.219 3.1e-05 ***
## SconsSL.d 0.99544 0.52593 1.893 0.05919 .
## gend.mf 0.78179 0.57619 1.357 0.17568
## cond.c 0.63532 0.57619 1.103 0.27092
## SconsC.d:gend.mf -1.19295 0.79324 -1.504 0.13348
## SconsM.d:gend.mf -1.34920 0.69842 -1.932 0.05416 .
## SconsL.d:gend.mf 0.57728 0.90457 0.638 0.52376
## SconsSL.d:gend.mf -1.66361 1.05186 -1.582 0.11462
## SconsC.d:cond.c -1.81791 0.79324 -2.292 0.02249 *
## SconsM.d:cond.c -0.59089 0.69842 -0.846 0.39809
## SconsL.d:cond.c -0.11939 0.90457 -0.132 0.89507
## SconsSL.d:cond.c 0.08286 1.05186 0.079 0.93726
## gend.mf:cond.c 0.91117 1.15238 0.791 0.42965
## SconsC.d:gend.mf:cond.c -3.93885 1.58648 -2.483 0.01349 *
## SconsM.d:gend.mf:cond.c 0.15786 1.39684 0.113 0.91009
## SconsL.d:gend.mf:cond.c -1.27637 1.80915 -0.706 0.48095
## SconsSL.d:gend.mf:cond.c -0.74753 2.10372 -0.355 0.72254
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.117 on 363 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.06946
## F-statistic: 2.501 on 19 and 363 DF, p-value: 0.0005499
# Action 13
summary(lm(act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1333 -1.8000 0.1852 1.8235 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3008 0.2733 -1.101 0.27170
## SconsC.d 0.2125 0.3743 0.568 0.57056
## SconsM.d 0.1530 0.3238 0.472 0.63686
## SconsL.d 0.8024 0.4147 1.935 0.05368 .
## SconsSL.d 0.2488 0.4699 0.529 0.59683
## gend.mf 1.7835 0.5467 3.262 0.00119 **
## cond.c -0.1290 0.5467 -0.236 0.81363
## SconsC.d:gend.mf -1.6067 0.7485 -2.147 0.03240 *
## SconsM.d:gend.mf -2.0530 0.6476 -3.170 0.00164 **
## SconsL.d:gend.mf -1.2450 0.8295 -1.501 0.13410
## SconsSL.d:gend.mf -2.6460 0.9398 -2.815 0.00510 **
## SconsC.d:cond.c -1.1387 0.7485 -1.521 0.12893
## SconsM.d:cond.c 0.4272 0.6476 0.660 0.50981
## SconsL.d:cond.c 0.3341 0.8295 0.403 0.68733
## SconsSL.d:cond.c 0.6915 0.9398 0.736 0.46231
## gend.mf:cond.c -0.2875 1.0934 -0.263 0.79269
## SconsC.d:gend.mf:cond.c -1.1771 1.4970 -0.786 0.43214
## SconsM.d:gend.mf:cond.c 0.1258 1.2953 0.097 0.92270
## SconsL.d:gend.mf:cond.c 1.4606 1.6590 0.880 0.37912
## SconsSL.d:gend.mf:cond.c 4.4292 1.8797 2.356 0.01891 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 422 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.08224, Adjusted R-squared: 0.04091
## F-statistic: 1.99 on 19 and 422 DF, p-value: 0.008085
# Action 14
summary(lm(act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1818 -1.2411 0.3129 1.5849 3.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.501648 0.329369 1.523 0.1289
## SconsC.d -0.457510 0.438154 -1.044 0.2974
## SconsM.d -0.116129 0.390294 -0.298 0.7663
## SconsL.d 0.636453 0.491871 1.294 0.1968
## SconsSL.d -0.709982 0.591342 -1.201 0.2310
## gend.mf 0.610989 0.658737 0.928 0.3545
## cond.c 0.589011 0.658737 0.894 0.3720
## SconsC.d:gend.mf -2.099267 0.876308 -2.396 0.0173 *
## SconsM.d:gend.mf -0.778854 0.780588 -0.998 0.3193
## SconsL.d:gend.mf 0.012808 0.983741 0.013 0.9896
## SconsSL.d:gend.mf -2.277656 1.182683 -1.926 0.0552 .
## SconsC.d:cond.c -0.895470 0.876308 -1.022 0.3078
## SconsM.d:cond.c -0.447352 0.780588 -0.573 0.5671
## SconsL.d:cond.c -0.283396 0.983741 -0.288 0.7735
## SconsSL.d:cond.c 0.827656 1.182683 0.700 0.4847
## gend.mf:cond.c -0.806593 1.317475 -0.612 0.5409
## SconsC.d:gend.mf:cond.c 0.619512 1.752616 0.353 0.7240
## SconsM.d:gend.mf:cond.c 0.872481 1.561176 0.559 0.5767
## SconsL.d:gend.mf:cond.c -0.004637 1.967483 -0.002 0.9981
## SconsSL.d:gend.mf:cond.c 3.139927 2.365366 1.327 0.1855
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.033 on 266 degrees of freedom
## (259 observations deleted due to missingness)
## Multiple R-squared: 0.06875, Adjusted R-squared: 0.002233
## F-statistic: 1.034 on 19 and 266 DF, p-value: 0.4224
# Action 15
summary(lm(act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5294 -1.7357 0.3167 1.4947 4.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3423 0.2701 -1.267 0.20595
## SconsC.d 0.4396 0.3631 1.211 0.22683
## SconsM.d 0.2629 0.3230 0.814 0.41616
## SconsL.d 1.3475 0.4336 3.108 0.00203 **
## SconsSL.d 0.4812 0.4623 1.041 0.29859
## gend.mf 0.6012 0.5403 1.113 0.26654
## cond.c 0.3155 0.5403 0.584 0.55963
## SconsC.d:gend.mf -0.9783 0.7263 -1.347 0.17883
## SconsM.d:gend.mf -1.3437 0.6460 -2.080 0.03821 *
## SconsL.d:gend.mf 0.2133 0.8672 0.246 0.80588
## SconsSL.d:gend.mf -1.3649 0.9246 -1.476 0.14078
## SconsC.d:cond.c -0.8592 0.7263 -1.183 0.23756
## SconsM.d:cond.c -0.1797 0.6460 -0.278 0.78097
## SconsL.d:cond.c -1.4593 0.8672 -1.683 0.09328 .
## SconsSL.d:cond.c 0.4958 0.9246 0.536 0.59212
## gend.mf:cond.c -0.7976 1.0805 -0.738 0.46088
## SconsC.d:gend.mf:cond.c -1.2796 1.4525 -0.881 0.37893
## SconsM.d:gend.mf:cond.c 1.6329 1.2919 1.264 0.20707
## SconsL.d:gend.mf:cond.c 2.2354 1.7345 1.289 0.19829
## SconsSL.d:gend.mf:cond.c 3.0036 1.8493 1.624 0.10520
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.021 on 364 degrees of freedom
## (161 observations deleted due to missingness)
## Multiple R-squared: 0.09033, Adjusted R-squared: 0.04285
## F-statistic: 1.902 on 19 and 364 DF, p-value: 0.013
# Action 16
summary(lm(act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -0.9811 0.2963 1.4800 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.63384 0.27284 2.323 0.0208 *
## SconsC.d 0.26522 0.36089 0.735 0.4629
## SconsM.d 0.46752 0.32784 1.426 0.1549
## SconsL.d 0.38919 0.41490 0.938 0.3490
## SconsSL.d -0.11717 0.49442 -0.237 0.8128
## gend.mf 0.84343 0.54567 1.546 0.1232
## cond.c 0.06566 0.54567 0.120 0.9043
## SconsC.d:gend.mf -1.32531 0.72177 -1.836 0.0673 .
## SconsM.d:gend.mf -0.32556 0.65568 -0.497 0.6199
## SconsL.d:gend.mf -1.38949 0.82979 -1.675 0.0950 .
## SconsSL.d:gend.mf -0.71010 0.98885 -0.718 0.4732
## SconsC.d:cond.c 0.19469 0.72177 0.270 0.7875
## SconsM.d:cond.c 0.18335 0.65568 0.280 0.7799
## SconsL.d:cond.c -0.36171 0.82979 -0.436 0.6632
## SconsSL.d:cond.c -0.09899 0.98885 -0.100 0.9203
## gend.mf:cond.c -0.35354 1.09135 -0.324 0.7462
## SconsC.d:gend.mf:cond.c -0.64578 1.44355 -0.447 0.6549
## SconsM.d:gend.mf:cond.c 0.29670 1.31137 0.226 0.8212
## SconsL.d:gend.mf:cond.c -2.05436 1.65958 -1.238 0.2167
## SconsSL.d:gend.mf:cond.c 4.08687 1.97769 2.066 0.0396 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 311 degrees of freedom
## (214 observations deleted due to missingness)
## Multiple R-squared: 0.06263, Adjusted R-squared: 0.005359
## F-statistic: 1.094 on 19 and 311 DF, p-value: 0.3561
# Action 17
summary(lm(act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4286 -1.3889 -0.0571 1.6000 4.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.35417 0.26426 1.340 0.18095
## SconsC.d -0.07748 0.36114 -0.215 0.83024
## SconsM.d 0.12899 0.31709 0.407 0.68438
## SconsL.d 0.41534 0.40303 1.031 0.30338
## SconsSL.d 0.56875 0.46944 1.212 0.22641
## gend.mf 0.18561 0.52853 0.351 0.72564
## cond.c 0.79167 0.52853 1.498 0.13496
## SconsC.d:gend.mf -0.22509 0.72229 -0.312 0.75548
## SconsM.d:gend.mf -0.15842 0.63418 -0.250 0.80288
## SconsL.d:gend.mf 0.56110 0.80606 0.696 0.48677
## SconsSL.d:gend.mf -1.11477 0.93889 -1.187 0.23581
## SconsC.d:cond.c -1.89901 0.72229 -2.629 0.00889 **
## SconsM.d:cond.c -1.23179 0.63418 -1.942 0.05281 .
## SconsL.d:cond.c -0.87353 0.80606 -1.084 0.27915
## SconsSL.d:cond.c 0.90417 0.93889 0.963 0.33613
## gend.mf:cond.c -0.46212 1.05705 -0.437 0.66222
## SconsC.d:gend.mf:cond.c -0.79542 1.44458 -0.551 0.58220
## SconsM.d:gend.mf:cond.c -0.09919 1.26837 -0.078 0.93770
## SconsL.d:gend.mf:cond.c -0.51700 1.61211 -0.321 0.74861
## SconsSL.d:gend.mf:cond.c 3.90379 1.87778 2.079 0.03827 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.99 on 396 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.0642, Adjusted R-squared: 0.0193
## F-statistic: 1.43 on 19 and 396 DF, p-value: 0.1086
# Action 18
summary(lm(act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.2632 0.2372 1.3333 3.3846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22114 0.25743 0.859 0.3909
## SconsC.d 0.26593 0.35230 0.755 0.4509
## SconsM.d 0.54935 0.31679 1.734 0.0838 .
## SconsL.d 0.76578 0.38406 1.994 0.0470 *
## SconsSL.d 0.40547 0.46318 0.875 0.3820
## gend.mf 0.70924 0.51485 1.378 0.1693
## cond.c 0.49356 0.51485 0.959 0.3384
## SconsC.d:gend.mf -0.85005 0.70460 -1.206 0.2285
## SconsM.d:gend.mf -0.79800 0.63358 -1.260 0.2087
## SconsL.d:gend.mf -0.54023 0.76813 -0.703 0.4824
## SconsSL.d:gend.mf -0.21245 0.92637 -0.229 0.8188
## SconsC.d:cond.c -0.96769 0.70460 -1.373 0.1706
## SconsM.d:cond.c -0.50894 0.63358 -0.803 0.4224
## SconsL.d:cond.c -0.34710 0.76813 -0.452 0.6517
## SconsSL.d:cond.c 0.08657 0.92637 0.093 0.9256
## gend.mf:cond.c -0.01741 1.02970 -0.017 0.9865
## SconsC.d:gend.mf:cond.c -1.36764 1.40919 -0.971 0.3325
## SconsM.d:gend.mf:cond.c 0.20260 1.26716 0.160 0.8731
## SconsL.d:gend.mf:cond.c -1.13265 1.53625 -0.737 0.4615
## SconsSL.d:gend.mf:cond.c 3.35716 1.85274 1.812 0.0709 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.05189, Adjusted R-squared: -0.002371
## F-statistic: 0.9563 on 19 and 332 DF, p-value: 0.5132
# Action 19
summary(lm(act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6364 -1.0465 0.3693 1.4390 2.8750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.90972 0.29187 3.117 0.00204 **
## SconsC.d 0.21145 0.38136 0.554 0.57974
## SconsM.d 0.24349 0.35433 0.687 0.49259
## SconsL.d 0.63472 0.48019 1.322 0.18742
## SconsSL.d 0.17645 0.48824 0.361 0.71810
## gend.mf 0.80556 0.58375 1.380 0.16881
## cond.c 0.06944 0.58375 0.119 0.90540
## SconsC.d:gend.mf -0.98442 0.76272 -1.291 0.19800
## SconsM.d:gend.mf -1.10663 0.70865 -1.562 0.11963
## SconsL.d:gend.mf -0.36111 0.96038 -0.376 0.70722
## SconsSL.d:gend.mf -1.64457 0.97648 -1.684 0.09338 .
## SconsC.d:cond.c -1.07154 0.76272 -1.405 0.16128
## SconsM.d:cond.c -0.50582 0.70865 -0.714 0.47602
## SconsL.d:cond.c -0.84722 0.96038 -0.882 0.37852
## SconsSL.d:cond.c 0.13321 0.97648 0.136 0.89160
## gend.mf:cond.c -1.38889 1.16750 -1.190 0.23530
## SconsC.d:gend.mf:cond.c 0.40895 1.52544 0.268 0.78885
## SconsM.d:gend.mf:cond.c 1.54506 1.41730 1.090 0.27668
## SconsL.d:gend.mf:cond.c 0.67778 1.92076 0.353 0.72448
## SconsSL.d:gend.mf:cond.c 2.31692 1.95296 1.186 0.23659
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.809 on 254 degrees of freedom
## (271 observations deleted due to missingness)
## Multiple R-squared: 0.05536, Adjusted R-squared: -0.0153
## F-statistic: 0.7834 on 19 and 254 DF, p-value: 0.7262
# Action 20
summary(lm(act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7000 -1.1616 0.4211 1.4211 3.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20391 0.25114 4.794 2.57e-06 ***
## SconsC.d -0.17907 0.34097 -0.525 0.600
## SconsM.d 0.06223 0.31384 0.198 0.843
## SconsL.d 0.04652 0.39274 0.118 0.906
## SconsSL.d -0.49915 0.46120 -1.082 0.280
## gend.mf 0.17551 0.50229 0.349 0.727
## cond.c -0.54672 0.50229 -1.088 0.277
## SconsC.d:gend.mf -0.91749 0.68193 -1.345 0.179
## SconsM.d:gend.mf -0.36851 0.62768 -0.587 0.558
## SconsL.d:gend.mf 0.15695 0.78548 0.200 0.842
## SconsSL.d:gend.mf -0.75170 0.92240 -0.815 0.416
## SconsC.d:cond.c 0.09640 0.68193 0.141 0.888
## SconsM.d:cond.c -0.12494 0.62768 -0.199 0.842
## SconsL.d:cond.c -0.32083 0.78548 -0.408 0.683
## SconsSL.d:cond.c 0.58957 0.92240 0.639 0.523
## gend.mf:cond.c 0.26010 1.00457 0.259 0.796
## SconsC.d:gend.mf:cond.c -0.74408 1.36387 -0.546 0.586
## SconsM.d:gend.mf:cond.c -0.73821 1.25536 -0.588 0.557
## SconsL.d:gend.mf:cond.c -0.85835 1.57096 -0.546 0.585
## SconsSL.d:gend.mf:cond.c 2.65418 1.84479 1.439 0.151
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.795 on 302 degrees of freedom
## (223 observations deleted due to missingness)
## Multiple R-squared: 0.05394, Adjusted R-squared: -0.00558
## F-statistic: 0.9063 on 19 and 302 DF, p-value: 0.5755
# Action 21
summary(lm(act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1250 -1.7424 0.0508 1.7059 4.2727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.650779 0.275312 -2.364 0.01859 *
## SconsC.d 0.389119 0.384735 1.011 0.31247
## SconsM.d 0.671887 0.332270 2.022 0.04386 *
## SconsL.d 1.117148 0.414379 2.696 0.00733 **
## SconsSL.d 1.010394 0.492997 2.049 0.04110 *
## gend.mf -0.334806 0.550625 -0.608 0.54352
## cond.c 0.677052 0.550625 1.230 0.21960
## SconsC.d:gend.mf 0.118629 0.769471 0.154 0.87756
## SconsM.d:gend.mf 0.685446 0.664540 1.031 0.30298
## SconsL.d:gend.mf 0.384211 0.828758 0.464 0.64320
## SconsSL.d:gend.mf 0.515575 0.985994 0.523 0.60135
## SconsC.d:cond.c -0.736085 0.769471 -0.957 0.33937
## SconsM.d:cond.c -0.520116 0.664540 -0.783 0.43431
## SconsL.d:cond.c -0.952647 0.828758 -1.149 0.25108
## SconsSL.d:cond.c 0.003717 0.985994 0.004 0.99699
## gend.mf:cond.c 0.464078 1.101250 0.421 0.67369
## SconsC.d:gend.mf:cond.c -2.396431 1.538941 -1.557 0.12025
## SconsM.d:gend.mf:cond.c -0.563664 1.329080 -0.424 0.67173
## SconsL.d:gend.mf:cond.c -2.448602 1.657516 -1.477 0.14043
## SconsSL.d:gend.mf:cond.c 1.974383 1.971989 1.001 0.31736
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 381 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05638, Adjusted R-squared: 0.009323
## F-statistic: 1.198 on 19 and 381 DF, p-value: 0.2555
# Action 22
summary(lm(act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2222 -1.4571 -0.0508 1.7429 3.7778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21176 0.26372 -0.803 0.42248
## SconsC.d 0.49926 0.35747 1.397 0.16332
## SconsM.d 0.60455 0.32071 1.885 0.06019 .
## SconsL.d 0.84501 0.41036 2.059 0.04015 *
## SconsSL.d 1.29673 0.45676 2.839 0.00477 **
## gend.mf 0.87807 0.52744 1.665 0.09678 .
## cond.c 0.26335 0.52744 0.499 0.61786
## SconsC.d:gend.mf -1.21973 0.71493 -1.706 0.08881 .
## SconsM.d:gend.mf -0.40048 0.64143 -0.624 0.53276
## SconsL.d:gend.mf -0.88267 0.82073 -1.075 0.28284
## SconsSL.d:gend.mf -1.04800 0.91352 -1.147 0.25201
## SconsC.d:cond.c -0.63835 0.71493 -0.893 0.37248
## SconsM.d:cond.c -0.26123 0.64143 -0.407 0.68404
## SconsL.d:cond.c -0.58541 0.82073 -0.713 0.47611
## SconsSL.d:cond.c -0.81106 0.91352 -0.888 0.37518
## gend.mf:cond.c 0.01876 1.05487 0.018 0.98582
## SconsC.d:gend.mf:cond.c -1.60209 1.42986 -1.120 0.26323
## SconsM.d:gend.mf:cond.c 0.39806 1.28285 0.310 0.75651
## SconsL.d:gend.mf:cond.c -2.56511 1.64146 -1.563 0.11895
## SconsSL.d:gend.mf:cond.c -1.32333 1.82704 -0.724 0.46932
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.976 on 382 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.0681, Adjusted R-squared: 0.02175
## F-statistic: 1.469 on 19 and 382 DF, p-value: 0.0928
# Action 23
summary(lm(act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.625 -2.000 0.125 1.920 4.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30480 0.35302 0.863 0.3887
## SconsC.d -0.53955 0.46441 -1.162 0.2463
## SconsM.d -0.08367 0.43322 -0.193 0.8470
## SconsL.d 0.21494 0.51572 0.417 0.6772
## SconsSL.d 0.05657 0.61276 0.092 0.9265
## gend.mf 1.24596 0.70604 1.765 0.0787 .
## cond.c 0.05404 0.70604 0.077 0.9390
## SconsC.d:gend.mf -1.63757 0.92881 -1.763 0.0790 .
## SconsM.d:gend.mf -0.82155 0.86644 -0.948 0.3439
## SconsL.d:gend.mf -1.51759 1.03143 -1.471 0.1424
## SconsSL.d:gend.mf -2.46869 1.22552 -2.014 0.0450 *
## SconsC.d:cond.c -0.58787 0.92881 -0.633 0.5273
## SconsM.d:cond.c -0.62130 0.86644 -0.717 0.4739
## SconsL.d:cond.c -1.50622 1.03143 -1.460 0.1454
## SconsSL.d:cond.c 1.62323 1.22552 1.325 0.1864
## gend.mf:cond.c 1.38081 1.41208 0.978 0.3290
## SconsC.d:gend.mf:cond.c -2.92426 1.85763 -1.574 0.1166
## SconsM.d:gend.mf:cond.c -1.97962 1.73289 -1.142 0.2543
## SconsL.d:gend.mf:cond.c -3.44073 2.06287 -1.668 0.0965 .
## SconsSL.d:gend.mf:cond.c 0.26465 2.45103 0.108 0.9141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.253 on 272 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.07369, Adjusted R-squared: 0.008984
## F-statistic: 1.139 on 19 and 272 DF, p-value: 0.3118
# Action 24
summary(lm(act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8750 -0.0429 1.6429 4.6667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.032080 0.289327 -0.111 0.9118
## SconsC.d -0.405023 0.378288 -1.071 0.2850
## SconsM.d -0.293878 0.340532 -0.863 0.3887
## SconsL.d 0.006817 0.439521 0.016 0.9876
## SconsSL.d -0.210975 0.491805 -0.429 0.6682
## gend.mf 1.155070 0.578655 1.996 0.0466 *
## cond.c 0.159615 0.578655 0.276 0.7828
## SconsC.d:gend.mf -1.247530 0.756575 -1.649 0.1000 .
## SconsM.d:gend.mf -1.446335 0.681064 -2.124 0.0343 *
## SconsL.d:gend.mf -0.704544 0.879042 -0.801 0.4233
## SconsSL.d:gend.mf -1.752292 0.983609 -1.781 0.0756 .
## SconsC.d:cond.c -1.090965 0.756575 -1.442 0.1501
## SconsM.d:cond.c -1.036207 0.681064 -1.521 0.1289
## SconsL.d:cond.c -0.130142 0.879042 -0.148 0.8824
## SconsSL.d:cond.c -0.006838 0.983609 -0.007 0.9945
## gend.mf:cond.c -0.319231 1.157309 -0.276 0.7828
## SconsC.d:gend.mf:cond.c -2.551404 1.513151 -1.686 0.0926 .
## SconsM.d:gend.mf:cond.c -0.541221 1.362127 -0.397 0.6913
## SconsL.d:gend.mf:cond.c 1.060283 1.758084 0.603 0.5468
## SconsSL.d:gend.mf:cond.c 0.847009 1.967219 0.431 0.6670
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.083 on 395 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.05818, Adjusted R-squared: 0.01287
## F-statistic: 1.284 on 19 and 395 DF, p-value: 0.1894
# Action 25
summary(lm(act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6087 -0.8846 0.2222 1.3913 3.4000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09398 0.24951 -0.377 0.706606
## SconsC.d 0.61428 0.32966 1.863 0.063096 .
## SconsM.d 0.98063 0.29399 3.336 0.000926 ***
## SconsL.d 1.30866 0.36461 3.589 0.000370 ***
## SconsSL.d 1.30477 0.45440 2.871 0.004291 **
## gend.mf 0.24251 0.49902 0.486 0.627235
## cond.c 0.50615 0.49902 1.014 0.311027
## SconsC.d:gend.mf -0.39422 0.65931 -0.598 0.550205
## SconsM.d:gend.mf -0.22051 0.58799 -0.375 0.707830
## SconsL.d:gend.mf 0.07814 0.72922 0.107 0.914717
## SconsSL.d:gend.mf -0.49742 0.90879 -0.547 0.584436
## SconsC.d:cond.c -1.07666 0.65931 -1.633 0.103209
## SconsM.d:cond.c -0.70444 0.58799 -1.198 0.231568
## SconsL.d:cond.c 0.04820 0.72922 0.066 0.947333
## SconsSL.d:cond.c 0.73895 0.90879 0.813 0.416612
## gend.mf:cond.c 0.69679 0.99805 0.698 0.485462
## SconsC.d:gend.mf:cond.c -2.22243 1.31862 -1.685 0.092643 .
## SconsM.d:gend.mf:cond.c -1.05747 1.17597 -0.899 0.369043
## SconsL.d:gend.mf:cond.c -1.80549 1.45843 -1.238 0.216414
## SconsSL.d:gend.mf:cond.c 1.14635 1.81759 0.631 0.528579
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.837 on 424 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.07813, Adjusted R-squared: 0.03682
## F-statistic: 1.891 on 19 and 424 DF, p-value: 0.0133
# Action 26
summary(lm(act26 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2857 -1.1562 0.5577 1.3947 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6369048 0.3174174 5.157 5.88e-07 ***
## SconsC.d -0.0008929 0.4199790 -0.002 0.9983
## SconsM.d -0.0834006 0.3956941 -0.211 0.8333
## SconsL.d 0.0630952 0.5339856 0.118 0.9061
## SconsSL.d -0.8333333 0.5551246 -1.501 0.1348
## gend.mf -0.1071429 0.6348348 -0.169 0.8661
## cond.c -0.3928571 0.6348348 -0.619 0.5367
## SconsC.d:gend.mf -0.2398810 0.8399581 -0.286 0.7755
## SconsM.d:gend.mf -0.1152500 0.7913882 -0.146 0.8844
## SconsL.d:gend.mf 1.5071429 1.0679712 1.411 0.1597
## SconsSL.d:gend.mf 1.0000000 1.1102492 0.901 0.3688
## SconsC.d:cond.c 0.2541667 0.8399581 0.303 0.7625
## SconsM.d:cond.c 0.3946022 0.7913882 0.499 0.6186
## SconsL.d:cond.c -0.2071429 1.0679712 -0.194 0.8464
## SconsSL.d:cond.c 0.6190476 1.1102492 0.558 0.5777
## gend.mf:cond.c 1.1190476 1.2696696 0.881 0.3791
## SconsC.d:gend.mf:cond.c -3.4916667 1.6799161 -2.078 0.0389 *
## SconsM.d:gend.mf:cond.c -1.3533070 1.5827763 -0.855 0.3935
## SconsL.d:gend.mf:cond.c -2.3190476 2.1359423 -1.086 0.2789
## SconsSL.d:gend.mf:cond.c 0.7619048 2.2204983 0.343 0.7319
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.844 on 206 degrees of freedom
## (319 observations deleted due to missingness)
## Multiple R-squared: 0.06431, Adjusted R-squared: -0.02199
## F-statistic: 0.7452 on 19 and 206 DF, p-value: 0.7689
# Action 27
summary(lm(act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2143 0.1667 1.4167 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47917 0.26473 1.810 0.0713 .
## SconsC.d 0.34901 0.36196 0.964 0.3357
## SconsM.d 0.14209 0.32920 0.432 0.6663
## SconsL.d 0.63826 0.41502 1.538 0.1251
## SconsSL.d 0.87689 0.44361 1.977 0.0490 *
## gend.mf 0.95833 0.52946 1.810 0.0713 .
## cond.c -0.62500 0.52946 -1.180 0.2388
## SconsC.d:gend.mf -0.65436 0.72392 -0.904 0.3668
## SconsM.d:gend.mf -0.54907 0.65840 -0.834 0.4050
## SconsL.d:gend.mf -0.85985 0.83003 -1.036 0.3011
## SconsSL.d:gend.mf -0.83712 0.88722 -0.944 0.3462
## SconsC.d:cond.c -0.00754 0.72392 -0.010 0.9917
## SconsM.d:cond.c -0.06374 0.65840 -0.097 0.9229
## SconsL.d:cond.c 0.28409 0.83003 0.342 0.7324
## SconsSL.d:cond.c 1.24621 0.88722 1.405 0.1612
## gend.mf:cond.c -1.25000 1.05892 -1.180 0.2388
## SconsC.d:gend.mf:cond.c -1.11984 1.44783 -0.773 0.4399
## SconsM.d:gend.mf:cond.c 1.07392 1.31679 0.816 0.4154
## SconsL.d:gend.mf:cond.c 1.93182 1.66006 1.164 0.2455
## SconsSL.d:gend.mf:cond.c 1.67424 1.77443 0.944 0.3462
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 297 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.0834, Adjusted R-squared: 0.02476
## F-statistic: 1.422 on 19 and 297 DF, p-value: 0.1144
# Action 28
summary(lm(act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6250 -1.1321 0.2667 1.5522 3.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.81818 0.25217 3.245 0.00129 **
## SconsC.d 0.46896 0.34305 1.367 0.17249
## SconsM.d 0.17873 0.31089 0.575 0.56573
## SconsL.d 0.05396 0.39430 0.137 0.89122
## SconsSL.d 0.17557 0.47541 0.369 0.71213
## gend.mf -0.06364 0.50433 -0.126 0.89966
## cond.c -0.91364 0.50433 -1.812 0.07091 .
## SconsC.d:gend.mf -0.21066 0.68610 -0.307 0.75900
## SconsM.d:gend.mf 0.19204 0.62177 0.309 0.75761
## SconsL.d:gend.mf -0.45208 0.78860 -0.573 0.56683
## SconsSL.d:gend.mf -0.84053 0.95082 -0.884 0.37729
## SconsC.d:cond.c 0.54675 0.68610 0.797 0.42605
## SconsM.d:cond.c 0.78523 0.62177 1.263 0.20747
## SconsL.d:cond.c 0.46935 0.78860 0.595 0.55211
## SconsSL.d:cond.c 1.30114 0.95082 1.368 0.17205
## gend.mf:cond.c -0.22727 1.00867 -0.225 0.82186
## SconsC.d:gend.mf:cond.c -0.43896 1.37220 -0.320 0.74924
## SconsM.d:gend.mf:cond.c -0.82702 1.24355 -0.665 0.50645
## SconsL.d:gend.mf:cond.c -2.14130 1.57719 -1.358 0.17544
## SconsSL.d:gend.mf:cond.c 0.28561 1.90163 0.150 0.88070
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 352 degrees of freedom
## (173 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: -0.006203
## F-statistic: 0.8796 on 19 and 352 DF, p-value: 0.6089
# Action 29
summary(lm(act29 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6923 -1.0447 0.3077 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0884199 0.2492946 4.366 1.67e-05 ***
## SconsC.d -0.1423731 0.3409950 -0.418 0.677
## SconsM.d 0.0214408 0.3039381 0.071 0.944
## SconsL.d 0.0739575 0.3736089 0.198 0.843
## SconsSL.d 0.2638237 0.4485709 0.588 0.557
## gend.mf 0.2958874 0.4985892 0.593 0.553
## cond.c 0.2612554 0.4985892 0.524 0.601
## SconsC.d:gend.mf -0.5577290 0.6819900 -0.818 0.414
## SconsM.d:gend.mf -0.3456742 0.6078763 -0.569 0.570
## SconsL.d:gend.mf 0.3793577 0.7472178 0.508 0.612
## SconsSL.d:gend.mf -0.4503746 0.8971417 -0.502 0.616
## SconsC.d:cond.c -0.1257755 0.6819900 -0.184 0.854
## SconsM.d:cond.c -0.3298657 0.6078763 -0.543 0.588
## SconsL.d:cond.c -0.0734053 0.7472178 -0.098 0.922
## SconsSL.d:cond.c 0.0009241 0.8971417 0.001 0.999
## gend.mf:cond.c -0.6679654 0.9971783 -0.670 0.503
## SconsC.d:gend.mf:cond.c 1.3717955 1.3639800 1.006 0.315
## SconsM.d:gend.mf:cond.c 0.9097611 1.2157526 0.748 0.455
## SconsL.d:gend.mf:cond.c 0.5779794 1.4944357 0.387 0.699
## SconsSL.d:gend.mf:cond.c 2.2436064 1.7942835 1.250 0.212
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.791 on 348 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01904, Adjusted R-squared: -0.03452
## F-statistic: 0.3554 on 19 and 348 DF, p-value: 0.995
# Action 30
summary(lm(act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d) *
## gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.545 -1.059 0.400 1.466 3.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04394 0.25537 4.088 5.47e-05 ***
## SconsC.d -0.16329 0.35068 -0.466 0.6418
## SconsM.d -0.07513 0.32157 -0.234 0.8154
## SconsL.d 0.22405 0.39661 0.565 0.5725
## SconsSL.d -0.09508 0.46253 -0.206 0.8373
## gend.mf -0.51212 0.51075 -1.003 0.3167
## cond.c 1.17879 0.51075 2.308 0.0216 *
## SconsC.d:gend.mf -0.08250 0.70135 -0.118 0.9064
## SconsM.d:gend.mf 0.32562 0.64314 0.506 0.6130
## SconsL.d:gend.mf 0.80947 0.79321 1.020 0.3082
## SconsSL.d:gend.mf -0.13561 0.92505 -0.147 0.8835
## SconsC.d:cond.c -1.23893 0.70135 -1.766 0.0782 .
## SconsM.d:cond.c -1.11529 0.64314 -1.734 0.0838 .
## SconsL.d:cond.c -1.50644 0.79321 -1.899 0.0584 .
## SconsSL.d:cond.c -0.57652 0.92505 -0.623 0.5336
## gend.mf:cond.c 1.15758 1.02149 1.133 0.2579
## SconsC.d:gend.mf:cond.c -0.70396 1.40270 -0.502 0.6161
## SconsM.d:gend.mf:cond.c -0.55155 1.28629 -0.429 0.6684
## SconsL.d:gend.mf:cond.c -2.83561 1.58643 -1.787 0.0748 .
## SconsSL.d:gend.mf:cond.c 1.13788 1.85011 0.615 0.5390
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 332 degrees of freedom
## (193 observations deleted due to missingness)
## Multiple R-squared: 0.04439, Adjusted R-squared: -0.0103
## F-statistic: 0.8117 on 19 and 332 DF, p-value: 0.6931
vi. Most polarizing actions
1. Moderate Liberals vs. Moderate Conservatives
cbind(libs$name, libs$value_mean, cons$value_mean)
## [,1] [,2] [,3]
## [1,] 1 0.65 -0.49
## [2,] 2 1.57 0.89
## [3,] 3 -0.19 -0.42
## [4,] 4 0.38 -0.29
## [5,] 5 1.40 0.97
## [6,] 6 1.43 1.33
## [7,] 7 -0.03 -0.31
## [8,] 8 0.48 -0.71
## [9,] 9 0.58 -0.25
## [10,] 10 0.68 -0.26
## [11,] 11 1.66 0.82
## [12,] 12 0.74 -0.60
## [13,] 13 0.34 -0.22
## [14,] 14 0.95 0.32
## [15,] 15 0.89 0.11
## [16,] 16 1.07 0.99
## [17,] 17 0.55 0.17
## [18,] 18 0.91 0.49
## [19,] 19 1.44 1.05
## [20,] 20 1.20 1.13
## [21,] 21 0.44 -0.27
## [22,] 22 0.59 0.34
## [23,] 23 0.62 -0.18
## [24,] 24 -0.14 -0.50
## [25,] 25 1.13 0.50
## [26,] 26 1.26 1.57
## [27,] 27 1.18 0.72
## [28,] 28 1.00 1.32
## [29,] 29 0.98 1.02
## [30,] 30 1.18 1.01
# Action 1 -- YES
round(mean(d$act1[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.65
round(mean(d$act1[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.49
round((con.b1$coefficients['ConsL.d']),2)
## ConsL.d
## 1.14
# Action 4 -- marginal
round(mean(d$act4[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.38
round(mean(d$act4[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.29
round((con.b4$coefficients['ConsL.d']),2)
## ConsL.d
## 0.67
# Action 8 -- YES
summary(con.b8)
##
## Call:
## lm(formula = act8 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.625 -1.855 -0.287 1.713 4.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7130 0.2041 -3.493 0.000522 ***
## ConsSC.d -0.4320 0.3269 -1.321 0.186978
## ConsM.d 0.2702 0.2531 1.068 0.286207
## ConsL.d 1.1892 0.3362 3.537 0.000445 ***
## ConsSL.d 1.3380 0.3926 3.408 0.000710 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 476 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.06121, Adjusted R-squared: 0.05332
## F-statistic: 7.759 on 4 and 476 DF, p-value: 4.609e-06
round(mean(d$act8[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.48
round(mean(d$act8[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.71
round((con.b8$coefficients['ConsL.d']),2)
## ConsL.d
## 1.19
# Action 9
summary(con.b9)
##
## Call:
## lm(formula = act9 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5781 -1.5781 0.2525 1.7167 3.7167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2525 0.1976 -1.278 0.20196
## ConsSC.d -0.4641 0.3217 -1.443 0.14978
## ConsM.d 0.4525 0.2437 1.857 0.06401 .
## ConsL.d 0.8307 0.3154 2.634 0.00874 **
## ConsSL.d 0.4470 0.3827 1.168 0.24343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.966 on 444 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03759, Adjusted R-squared: 0.02892
## F-statistic: 4.336 on 4 and 444 DF, p-value: 0.00189
round(mean(d$act9[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.58
round(mean(d$act9[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.25
round((con.b9$coefficients['ConsL.d']),2)
## ConsL.d
## 0.83
# Action 10
summary(con.b10)
##
## Call:
## lm(formula = act10 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2571 0.2025 -1.270 0.204753
## ConsSC.d -0.3605 0.3230 -1.116 0.264918
## ConsM.d 0.3375 0.2503 1.349 0.178086
## ConsL.d 0.9341 0.3275 2.852 0.004531 **
## ConsSL.d 1.4071 0.3855 3.650 0.000292 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
round(mean(d$act10[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.68
round(mean(d$act10[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.26
round((con.b10$coefficients['ConsL.d']),2)
## ConsL.d
## 0.93
# Action 12
summary(con.b12)
##
## Call:
## lm(formula = act12 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.736 -2.158 0.000 2.000 3.842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6000 0.2262 -2.653 0.008317 **
## ConsSC.d -0.2421 0.3632 -0.667 0.505456
## ConsM.d 0.6000 0.2834 2.117 0.034871 *
## ConsL.d 1.3358 0.3715 3.596 0.000366 ***
## ConsSL.d 0.9333 0.4708 1.982 0.048158 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.146 on 380 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.0525, Adjusted R-squared: 0.04253
## F-statistic: 5.264 on 4 and 380 DF, p-value: 0.0003892
round(mean(d$act12[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.74
round(mean(d$act12[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.6
round((con.b12$coefficients['ConsL.d']),2)
## ConsL.d
## 1.34
# Action 13 -- marginal
summary(con.b13)
##
## Call:
## lm(formula = act13 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3438 -1.9149 0.0851 1.6562 3.5781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2174 0.2167 -1.003 0.316
## ConsSC.d -0.3607 0.3384 -1.066 0.287
## ConsM.d 0.1323 0.2645 0.500 0.617
## ConsL.d 0.5611 0.3384 1.658 0.098 .
## ConsSL.d 0.4745 0.4129 1.149 0.251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.079 on 438 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01713, Adjusted R-squared: 0.008155
## F-statistic: 1.909 on 4 and 438 DF, p-value: 0.108
round(mean(d$act13[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.34
round(mean(d$act13[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.22
round((con.b13$coefficients['ConsL.d']),2)
## ConsL.d
## 0.56
# Action 21 -- YES
summary(con.b21)
##
## Call:
## lm(formula = act21 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4407 -1.9401 0.0599 1.5806 3.5806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2683 0.2275 -1.179 0.2390
## ConsSC.d -0.3124 0.3467 -0.901 0.3682
## ConsM.d 0.2084 0.2778 0.750 0.4536
## ConsL.d 0.7090 0.3517 2.016 0.0445 *
## ConsSL.d 0.6925 0.4247 1.631 0.1038
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.06 on 398 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02474, Adjusted R-squared: 0.01494
## F-statistic: 2.524 on 4 and 398 DF, p-value: 0.04049
round(mean(d$act21[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.44
round(mean(d$act21[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.27
round((con.b21$coefficients['ConsL.d']),2)
## ConsL.d
## 0.71
# Action 23 -- marginal
summary(con.b23)
##
## Call:
## lm(formula = act23 ~ ConsSC.d + ConsM.d + ConsL.d + ConsSL.d,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6154 -2.1138 0.1846 2.1846 3.1846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1846 0.2810 -0.657 0.5116
## ConsSC.d 0.4529 0.4517 1.003 0.3169
## ConsM.d 0.2984 0.3473 0.859 0.3909
## ConsL.d 0.8000 0.4588 1.744 0.0823 .
## ConsSL.d 0.7446 0.5331 1.397 0.1635
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.265 on 288 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.01368, Adjusted R-squared: -2.033e-05
## F-statistic: 0.9985 on 4 and 288 DF, p-value: 0.4087
round(mean(d$act23[d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.62
round(mean(d$act23[d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.18
round((con.b23$coefficients['ConsL.d']),2)
## ConsL.d
## 0.8
Polarizing actions: 1, 8, 9, 10, 12, 21 Marginally polarizing
actions: 4, 13, 23
2. Strong Liberals vs. Strong Conservatives
cbind(Slibs$name, Slibs$value_mean, Scons$value_mean)
## [,1] [,2] [,3]
## [1,] 1 0.17 -0.46
## [2,] 2 1.04 0.96
## [3,] 3 0.37 -0.89
## [4,] 4 0.48 0.20
## [5,] 5 0.42 0.73
## [6,] 6 1.19 0.87
## [7,] 7 0.37 -0.16
## [8,] 8 0.62 -1.14
## [9,] 9 0.19 -0.72
## [10,] 10 1.15 -0.62
## [11,] 11 1.54 0.73
## [12,] 12 0.33 -0.84
## [13,] 13 0.26 -0.58
## [14,] 14 0.09 0.50
## [15,] 15 0.31 -0.36
## [16,] 16 1.03 0.56
## [17,] 17 1.21 0.38
## [18,] 18 0.76 0.19
## [19,] 19 1.30 0.91
## [20,] 20 1.00 1.15
## [21,] 21 0.42 -0.58
## [22,] 22 1.14 -0.33
## [23,] 23 0.56 0.27
## [24,] 24 -0.08 -0.13
## [25,] 25 1.34 -0.12
## [26,] 26 0.95 1.54
## [27,] 27 1.39 0.44
## [28,] 28 1.19 0.79
## [29,] 29 1.48 1.09
## [30,] 30 1.14 1.14
# Action 10
summary(scon.b10)
##
## Call:
## lm(formula = act10 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1500 -2.0804 0.2571 1.8500 3.6176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6176 0.2516 -2.455 0.014462 *
## SconsC.d 0.3605 0.3230 1.116 0.264918
## SconsM.d 0.6980 0.2915 2.395 0.017009 *
## SconsL.d 1.2946 0.3599 3.597 0.000356 ***
## SconsSL.d 1.7676 0.4135 4.275 2.31e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.075 on 472 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05311, Adjusted R-squared: 0.04509
## F-statistic: 6.619 on 4 and 472 DF, p-value: 3.451e-05
round(mean(d$act10[d$ideology == "Strong Liberal"], na.rm = T),2)
## [1] 1.15
round(mean(d$act10[d$ideology == "Strong Conservative"], na.rm = T),2)
## [1] -0.62
round((scon.b10$coefficients['SconsSL.d']),2)
## SconsSL.d
## 1.77
# Action 17
summary(scon.b17)
##
## Call:
## lm(formula = act17 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2059 -1.4798 -0.1685 1.6230 2.8315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3770 0.2561 1.472 0.1417
## SconsC.d -0.2085 0.3325 -0.627 0.5309
## SconsM.d 0.1027 0.2979 0.345 0.7304
## SconsL.d 0.1730 0.3637 0.476 0.6347
## SconsSL.d 0.8288 0.4281 1.936 0.0535 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2 on 412 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.01637, Adjusted R-squared: 0.006815
## F-statistic: 1.714 on 4 and 412 DF, p-value: 0.146
round(mean(d$act17[d$ideology == "Strong Liberal"], na.rm = T),2)
## [1] 1.21
round(mean(d$act17[d$ideology == "Strong Conservative"], na.rm = T),2)
## [1] 0.38
round((scon.b17$coefficients['SconsSL.d']),2)
## SconsSL.d
## 0.83
# Action 18
summary(scon.b18)
##
## Call:
## lm(formula = act18 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1196 0.1844 1.5135 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1887 0.2530 0.746 0.4563
## SconsC.d 0.2978 0.3314 0.899 0.3695
## SconsM.d 0.6269 0.2967 2.113 0.0353 *
## SconsL.d 0.7236 0.3514 2.059 0.0402 *
## SconsSL.d 0.5699 0.4254 1.340 0.1812
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.842 on 349 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01769, Adjusted R-squared: 0.006435
## F-statistic: 1.572 on 4 and 349 DF, p-value: 0.1814
round(mean(d$act18[d$ideology == "Strong Liberal"], na.rm = T),2)
## [1] 0.76
round(mean(d$act18[d$ideology == "Strong Conservative"], na.rm = T),2)
## [1] 0.19
round((scon.b18$coefficients['SconsSL.d']),2)
## SconsSL.d
## 0.57
# 18 not negative
# Action 22
summary(scon.b22)
##
## Call:
## lm(formula = act22 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1351 -1.3415 -0.1351 1.7143 3.3279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3279 0.2528 -1.297 0.195483
## SconsC.d 0.6693 0.3339 2.005 0.045684 *
## SconsM.d 0.6136 0.2952 2.079 0.038302 *
## SconsL.d 0.9172 0.3655 2.509 0.012486 *
## SconsSL.d 1.4630 0.4115 3.555 0.000423 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.975 on 399 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.03383, Adjusted R-squared: 0.02414
## F-statistic: 3.492 on 4 and 399 DF, p-value: 0.008087
round(mean(d$act22[d$ideology == "Strong Liberal"], na.rm = T),2)
## [1] 1.14
round(mean(d$act22[d$ideology == "Strong Conservative"], na.rm = T),2)
## [1] -0.33
round((scon.b22$coefficients['SconsSL.d']),2)
## SconsSL.d
## 1.46
# Action 25
summary(scon.b25)
##
## Call:
## lm(formula = act25 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3429 -0.8925 0.1167 1.5000 3.1167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1167 0.2367 -0.493 0.622329
## SconsC.d 0.6167 0.2983 2.067 0.039288 *
## SconsM.d 1.0091 0.2722 3.707 0.000236 ***
## SconsL.d 1.2437 0.3307 3.760 0.000193 ***
## SconsSL.d 1.4595 0.3900 3.743 0.000206 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.833 on 441 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.049, Adjusted R-squared: 0.04037
## F-statistic: 5.68 on 4 and 441 DF, p-value: 0.0001824
round(mean(d$act25[d$ideology == "Strong Liberal"], na.rm = T),2)
## [1] 1.34
round(mean(d$act25[d$ideology == "Strong Conservative"], na.rm = T),2)
## [1] -0.12
round((scon.b25$coefficients['SconsSL.d']),2)
## SconsSL.d
## 1.46
# Action 27
summary(scon.b27)
##
## Call:
## lm(formula = act27 ~ (SconsC.d + SconsM.d + SconsL.d + SconsSL.d),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3871 -0.9483 0.2813 1.5577 2.5577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4423 0.2604 1.699 0.0904 .
## SconsC.d 0.2764 0.3506 0.789 0.4310
## SconsM.d 0.1089 0.3091 0.352 0.7249
## SconsL.d 0.7355 0.3823 1.924 0.0553 .
## SconsSL.d 0.9448 0.4261 2.217 0.0273 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.878 on 314 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02704, Adjusted R-squared: 0.01464
## F-statistic: 2.182 on 4 and 314 DF, p-value: 0.07092
round(mean(d$act27[d$ideology == "Strong Liberal"], na.rm = T),2)
## [1] 1.39
round(mean(d$act27[d$ideology == "Strong Conservative"], na.rm = T),2)
## [1] 0.44
round((scon.b27$coefficients['SconsSL.d']),2)
## SconsSL.d
## 0.94
# 27 not negative
Polarized Actions: 10, 22, 25 Actions not polarized: 17, 18, 27
3. All Liberals vs. All Conservatives
# Action 1
ideo.b1 <- lm(act1 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b1) # yes, higher than 0
##
## Call:
## lm(formula = act1 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.480 -1.962 0.038 2.038 3.479
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01228 0.10500 -0.117 0.906974
## Libs_Cons.c -0.95879 0.27229 -3.521 0.000474 ***
## Mods_Ideo.c 0.03865 0.20886 0.185 0.853276
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.149 on 446 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.02736, Adjusted R-squared: 0.023
## F-statistic: 6.273 on 2 and 446 DF, p-value: 0.002058
# Action 2
ideo.b2 <- lm(act2 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b2) # yes, higher than 0
##
## Call:
## lm(formula = act2 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3788 -1.2212 0.0811 1.6212 2.0811
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17298 0.10921 10.741 <2e-16 ***
## Libs_Cons.c -0.45987 0.28030 -1.641 0.102
## Mods_Ideo.c -0.07239 0.22004 -0.329 0.742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.803 on 287 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01053, Adjusted R-squared: 0.003637
## F-statistic: 1.527 on 2 and 287 DF, p-value: 0.2189
# Action 3
ideo.b3 <- lm(act3 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b3) # nothing
##
## Call:
## lm(formula = act3 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0000 -1.9837 0.0163 1.5987 3.5987
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.20501 0.09846 -2.082 0.0379 *
## Libs_Cons.c -0.59873 0.25537 -2.345 0.0195 *
## Mods_Ideo.c -0.28306 0.19582 -1.445 0.1490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.014 on 441 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.01927, Adjusted R-squared: 0.01482
## F-statistic: 4.332 on 2 and 441 DF, p-value: 0.01371
# Action 4
ideo.b4 <- lm(act4 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b4) # nothing
##
## Call:
## lm(formula = act4 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4138 -1.9113 0.2062 2.0887 3.2062
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03961 0.11568 0.342 0.7322
## Libs_Cons.c -0.50250 0.30212 -1.663 0.0971 .
## Mods_Ideo.c 0.36879 0.22800 1.617 0.1066
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.16 on 368 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01294, Adjusted R-squared: 0.007571
## F-statistic: 2.411 on 2 and 368 DF, p-value: 0.09111
# Action 5
ideo.b5 <- lm(act5 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b5) # yes, higher than 0
##
## Call:
## lm(formula = act5 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.092 -1.092 0.123 1.908 2.123
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0047 0.1130 8.891 <2e-16 ***
## Libs_Cons.c -0.1684 0.2873 -0.586 0.558
## Mods_Ideo.c -0.1305 0.2303 -0.567 0.571
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.88 on 294 degrees of freedom
## (248 observations deleted due to missingness)
## Multiple R-squared: 0.002768, Adjusted R-squared: -0.004016
## F-statistic: 0.4081 on 2 and 294 DF, p-value: 0.6653
# Action 6
ideo.b6 <- lm(act6 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b6) # yes, higher than 0
##
## Call:
## lm(formula = act6 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3333 -1.1511 0.6667 1.6901 1.8489
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.26476 0.09946 12.72 <2e-16 ***
## Libs_Cons.c -0.18225 0.25664 -0.71 0.478
## Mods_Ideo.c -0.06765 0.19910 -0.34 0.734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 356 degrees of freedom
## (186 observations deleted due to missingness)
## Multiple R-squared: 0.00205, Adjusted R-squared: -0.003557
## F-statistic: 0.3656 on 2 and 356 DF, p-value: 0.694
# Action 7
ideo.b7 <- lm(act7 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b7) # nothing
##
## Call:
## lm(formula = act7 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1170 -1.8652 0.1348 1.8830 3.2517
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08985 0.10604 -0.847 0.397
## Libs_Cons.c -0.36877 0.27703 -1.331 0.184
## Mods_Ideo.c 0.06747 0.20891 0.323 0.747
##
## Residual standard error: 2.086 on 412 degrees of freedom
## (130 observations deleted due to missingness)
## Multiple R-squared: 0.004331, Adjusted R-squared: -0.0005026
## F-statistic: 0.896 on 2 and 412 DF, p-value: 0.409
# Action 8
ideo.b8 <- lm(act8 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b8) # marginally higher than 0
##
## Call:
## lm(formula = act8 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5340 -2.1186 -0.1186 1.8814 3.8814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2634 0.1008 -2.613 0.00926 **
## Libs_Cons.c -1.4153 0.2628 -5.385 1.14e-07 ***
## Mods_Ideo.c 0.2691 0.1991 1.352 0.17716
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 478 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.05753, Adjusted R-squared: 0.05358
## F-statistic: 14.59 on 2 and 478 DF, p-value: 7.084e-07
# Action 9
ideo.b9 <- lm(act9 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b9) # yes, higher than 0
##
## Call:
## lm(formula = act9 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4400 -1.5723 0.4277 1.5600 3.4277
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07078 0.09632 0.735 0.462859
## Libs_Cons.c -0.86767 0.25122 -3.454 0.000605 ***
## Mods_Ideo.c -0.19384 0.19018 -1.019 0.308651
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 446 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03118, Adjusted R-squared: 0.02683
## F-statistic: 7.176 on 2 and 446 DF, p-value: 0.0008562
# Action 10
ideo.b10 <- lm(act10 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b10) # yes, higher than 0
##
## Call:
## lm(formula = act10 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8571 -2.0804 0.1429 1.9196 3.3988
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17957 0.09867 1.820 0.0694 .
## Libs_Cons.c -1.25599 0.25684 -4.890 1.38e-06 ***
## Mods_Ideo.c 0.14875 0.19532 0.762 0.4467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.076 on 474 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.04803, Adjusted R-squared: 0.04401
## F-statistic: 11.96 on 2 and 474 DF, p-value: 8.584e-06
# Action 11
ideo.b11 <- lm(act11 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b11) # yes, higher than 0
##
## Call:
## lm(formula = act11 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6154 -0.7807 0.2741 1.3846 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0407 0.1102 9.440 < 2e-16 ***
## Libs_Cons.c -0.8347 0.2893 -2.885 0.00419 **
## Mods_Ideo.c 0.4721 0.2159 2.187 0.02948 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 311 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03466, Adjusted R-squared: 0.02845
## F-statistic: 5.583 on 2 and 311 DF, p-value: 0.004147
# Action 12
ideo.b12 <- lm(act12 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b12) # yes, higher than 0
##
## Call:
## lm(formula = act12 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.600 -2.306 0.000 2.000 3.694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03129 0.11437 -0.274 0.785
## Libs_Cons.c -1.29388 0.29775 -4.346 1.78e-05 ***
## Mods_Ideo.c -0.04694 0.22634 -0.207 0.836
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.143 on 382 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04983, Adjusted R-squared: 0.04485
## F-statistic: 10.02 on 2 and 382 DF, p-value: 5.759e-05
# Action 13
ideo.b13 <- lm(act13 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b13) # nothing
##
## Call:
## lm(formula = act13 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3131 -1.9149 0.0851 1.6869 3.3654
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04579 0.10229 -0.448 0.6547
## Libs_Cons.c -0.67852 0.26688 -2.542 0.0114 *
## Mods_Ideo.c 0.05898 0.20187 0.292 0.7703
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 440 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01449, Adjusted R-squared: 0.01001
## F-statistic: 3.235 on 2 and 440 DF, p-value: 0.04028
# Action 14
ideo.b14 <- lm(act14 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b14) # yes, higher than 0
##
## Call:
## lm(formula = act14 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6393 -1.4219 -0.0166 1.6061 2.6061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48505 0.12557 3.863 0.000139 ***
## Libs_Cons.c -0.24540 0.33105 -0.741 0.459130
## Mods_Ideo.c 0.09477 0.24437 0.388 0.698451
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.034 on 285 degrees of freedom
## (257 observations deleted due to missingness)
## Multiple R-squared: 0.002183, Adjusted R-squared: -0.004819
## F-statistic: 0.3118 on 2 and 285 DF, p-value: 0.7324
# Action 15
ideo.b15 <- lm(act15 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b15) # yes, higher than 0
##
## Call:
## lm(formula = act15 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6494 -1.9155 0.0845 1.8976 3.0845
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2224 0.1104 2.015 0.0446 *
## Libs_Cons.c -0.7339 0.2903 -2.528 0.0119 *
## Mods_Ideo.c 0.1800 0.2155 0.835 0.4040
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.052 on 382 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.01674, Adjusted R-squared: 0.01159
## F-statistic: 3.251 on 2 and 382 DF, p-value: 0.03981
# Action 16
ideo.b16 <- lm(act16 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b16) # yes, higher than 0
##
## Call:
## lm(formula = act16 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0556 -0.9643 0.1833 1.1833 2.1833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.94550 0.10476 9.026 <2e-16 ***
## Libs_Cons.c -0.23889 0.27339 -0.874 0.383
## Mods_Ideo.c -0.02817 0.20666 -0.136 0.892
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 329 degrees of freedom
## (213 observations deleted due to missingness)
## Multiple R-squared: 0.002561, Adjusted R-squared: -0.003503
## F-statistic: 0.4223 on 2 and 329 DF, p-value: 0.6559
# Action 17
ideo.b17 <- lm(act17 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b17) # yes, higher than 0
##
## Call:
## lm(formula = act17 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7872 -1.4798 0.2128 1.7467 2.7467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.50678 0.10139 4.998 8.56e-07 ***
## Libs_Cons.c -0.53390 0.26336 -2.027 0.0433 *
## Mods_Ideo.c 0.04051 0.20126 0.201 0.8406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 414 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.009855, Adjusted R-squared: 0.005072
## F-statistic: 2.06 on 2 and 414 DF, p-value: 0.1287
# Action 18
ideo.b18 <- lm(act18 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b18) # yes, higher than 0
##
## Call:
## lm(formula = act18 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8605 -1.2368 0.1844 1.6378 2.6378
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.67942 0.09996 6.797 4.6e-11 ***
## Libs_Cons.c -0.49826 0.25680 -1.940 0.0531 .
## Mods_Ideo.c -0.20427 0.20117 -1.015 0.3106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 351 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01504, Adjusted R-squared: 0.009431
## F-statistic: 2.68 on 2 and 351 DF, p-value: 0.06994
# Action 19
ideo.b19 <- lm(act19 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b19) # yes, higher than 0
##
## Call:
## lm(formula = act19 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3729 -0.9903 0.0097 1.6271 2.0097
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1978 0.1128 10.621 <2e-16 ***
## Libs_Cons.c -0.3826 0.2931 -1.305 0.193
## Mods_Ideo.c -0.0485 0.2236 -0.217 0.828
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.795 on 272 degrees of freedom
## (270 observations deleted due to missingness)
## Multiple R-squared: 0.00698, Adjusted R-squared: -0.0003221
## F-statistic: 0.9559 on 2 and 272 DF, p-value: 0.3858
# Action 20
ideo.b20 <- lm(act20 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b20) # yes, higher than 0
##
## Call:
## lm(formula = act20 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3566 -1.1393 0.6434 1.6434 1.8767
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20641 0.10262 11.756 <2e-16 ***
## Libs_Cons.c 0.01606 0.26456 0.061 0.952
## Mods_Ideo.c -0.22527 0.20562 -1.096 0.274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.788 on 321 degrees of freedom
## (221 observations deleted due to missingness)
## Multiple R-squared: 0.003768, Adjusted R-squared: -0.002439
## F-statistic: 0.6071 on 2 and 321 DF, p-value: 0.5455
# Action 21
ideo.b21 <- lm(act21 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b21) # nothing
##
## Call:
## lm(formula = act21 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9401 0.0599 1.5652 3.4028
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.009292 0.105789 -0.088 0.93005
## Libs_Cons.c -0.837560 0.274558 -3.051 0.00244 **
## Mods_Ideo.c 0.075883 0.210201 0.361 0.71829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 400 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02275, Adjusted R-squared: 0.01786
## F-statistic: 4.656 on 2 and 400 DF, p-value: 0.01002
# Action 22
ideo.b22 <- lm(act22 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b22) # yes, higher than 0
##
## Call:
## lm(formula = act22 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8065 -1.2857 -0.0559 1.7143 2.9441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3827 0.1018 3.759 0.000196 ***
## Libs_Cons.c -0.7505 0.2643 -2.840 0.004745 **
## Mods_Ideo.c 0.1455 0.2022 0.719 0.472282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.984 on 401 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.01997, Adjusted R-squared: 0.01509
## F-statistic: 4.086 on 2 and 401 DF, p-value: 0.01751
# Action 23
ideo.b23 <- lm(act23 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b23) # marginally higher than 0
##
## Call:
## lm(formula = act23 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5937 -2.1138 0.0094 2.0094 3.0094
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2327 0.1373 1.695 0.0912 .
## Libs_Cons.c -0.6032 0.3580 -1.685 0.0930 .
## Mods_Ideo.c 0.1783 0.2713 0.657 0.5115
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.261 on 290 degrees of freedom
## (252 observations deleted due to missingness)
## Multiple R-squared: 0.0102, Adjusted R-squared: 0.003379
## F-statistic: 1.495 on 2 and 290 DF, p-value: 0.226
# Action 24
ideo.b24 <- lm(act24 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b24) # nothing
##
## Call:
## lm(formula = act24 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8842 -1.8842 0.2299 1.5494 3.3605
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.235406 0.106484 -2.211 0.0276 *
## Libs_Cons.c -0.244755 0.276830 -0.884 0.3771
## Mods_Ideo.c -0.008282 0.211126 -0.039 0.9687
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.103 on 413 degrees of freedom
## (129 observations deleted due to missingness)
## Multiple R-squared: 0.001955, Adjusted R-squared: -0.002878
## F-statistic: 0.4045 on 2 and 413 DF, p-value: 0.6676
# Action 25
ideo.b25 <- lm(act25 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b25) # yes, higher than 0
##
## Call:
## lm(formula = act25 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2041 -1.2041 0.1075 1.7284 2.7284
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7894 0.0904 8.732 < 2e-16 ***
## Libs_Cons.c -0.9325 0.2353 -3.963 8.63e-05 ***
## Mods_Ideo.c -0.1546 0.1789 -0.864 0.388
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.03911, Adjusted R-squared: 0.03477
## F-statistic: 9.015 on 2 and 443 DF, p-value: 0.0001453
# Action 26
ideo.b26 <- lm(act26 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b26) # yes, higher than 0
##
## Call:
## lm(formula = act26 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5568 -1.1400 0.4432 1.4432 1.8600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4383 0.1253 11.481 <2e-16 ***
## Libs_Cons.c 0.4168 0.3225 1.293 0.198
## Mods_Ideo.c -0.2696 0.2515 -1.072 0.285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 224 degrees of freedom
## (318 observations deleted due to missingness)
## Multiple R-squared: 0.01062, Adjusted R-squared: 0.00179
## F-statistic: 1.203 on 2 and 224 DF, p-value: 0.3023
# Action 27
ideo.b27 <- lm(act27 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b27) # yes, higher than 0
##
## Call:
## lm(formula = act27 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -0.9290 0.4052 1.4488 2.4488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8031 0.1076 7.464 8.19e-13 ***
## Libs_Cons.c -0.6683 0.2766 -2.416 0.0162 *
## Mods_Ideo.c 0.3778 0.2163 1.747 0.0817 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.874 on 316 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.0244, Adjusted R-squared: 0.01823
## F-statistic: 3.952 on 2 and 316 DF, p-value: 0.02017
# Action 28
ideo.b28 <- lm(act28 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b28) # yes, higher than 0
##
## Call:
## lm(formula = act28 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1064 -1.0698 0.0272 1.8936 2.0272
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04965 0.09731 10.786 <2e-16 ***
## Libs_Cons.c 0.03662 0.25002 0.146 0.884
## Mods_Ideo.c 0.11529 0.19582 0.589 0.556
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.827 on 371 degrees of freedom
## (171 observations deleted due to missingness)
## Multiple R-squared: 0.001089, Adjusted R-squared: -0.004296
## F-statistic: 0.2022 on 2 and 371 DF, p-value: 0.817
# Action 29
ideo.b29 <- lm(act29 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b29) # yes, higher than 0
##
## Call:
## lm(formula = act29 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1548 -1.1429 -0.0504 1.8452 1.9496
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11599 0.09462 11.795 <2e-16 ***
## Libs_Cons.c -0.10440 0.24375 -0.428 0.669
## Mods_Ideo.c -0.04030 0.18977 -0.212 0.832
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.764 on 367 degrees of freedom
## (175 observations deleted due to missingness)
## Multiple R-squared: 0.0007188, Adjusted R-squared: -0.004727
## F-statistic: 0.132 on 2 and 367 DF, p-value: 0.8764
# Action 30
ideo.b30 <- lm(act30 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
summary(ideo.b30) # yes, higher than 0
##
## Call:
## lm(formula = act30 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1646 -1.0657 0.8354 1.8354 1.9565
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.09124 0.10288 10.607 <2e-16 ***
## Libs_Cons.c -0.09886 0.26435 -0.374 0.709
## Mods_Ideo.c 0.07165 0.20699 0.346 0.729
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 351 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.0006315, Adjusted R-squared: -0.005063
## F-statistic: 0.1109 on 2 and 351 DF, p-value: 0.8951
Significant difference between Libs & Cons: 1, 3, 8, 9, 10, 11,
12, 13, 15, 17, 18, 21, 22, 25, 27
# Action 1
summary(ideo.b10)
##
## Call:
## lm(formula = act10 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8571 -2.0804 0.1429 1.9196 3.3988
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17957 0.09867 1.820 0.0694 .
## Libs_Cons.c -1.25599 0.25684 -4.890 1.38e-06 ***
## Mods_Ideo.c 0.14875 0.19532 0.762 0.4467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.076 on 474 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.04803, Adjusted R-squared: 0.04401
## F-statistic: 11.96 on 2 and 474 DF, p-value: 8.584e-06
round(mean(d$act1[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.48
round(mean(d$act1[d$ideology == "Strong Conservative" | d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.48
round((ideo.b1$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.96
# Action 3
summary(ideo.b3)
##
## Call:
## lm(formula = act3 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0000 -1.9837 0.0163 1.5987 3.5987
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.20501 0.09846 -2.082 0.0379 *
## Libs_Cons.c -0.59873 0.25537 -2.345 0.0195 *
## Mods_Ideo.c -0.28306 0.19582 -1.445 0.1490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.014 on 441 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.01927, Adjusted R-squared: 0.01482
## F-statistic: 4.332 on 2 and 441 DF, p-value: 0.01371
round(mean(d$act3[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0
round(mean(d$act3[d$ideology == "Strong Conservative" | d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.6
round((ideo.b3$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.6
# Action 8
summary(ideo.b8)
##
## Call:
## lm(formula = act8 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5340 -2.1186 -0.1186 1.8814 3.8814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2634 0.1008 -2.613 0.00926 **
## Libs_Cons.c -1.4153 0.2628 -5.385 1.14e-07 ***
## Mods_Ideo.c 0.2691 0.1991 1.352 0.17716
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 478 degrees of freedom
## (64 observations deleted due to missingness)
## Multiple R-squared: 0.05753, Adjusted R-squared: 0.05358
## F-statistic: 14.59 on 2 and 478 DF, p-value: 7.084e-07
round(mean(d$act8[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.53
round(mean(d$act8[d$ideology == "Strong Conservative" | d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.88
round((ideo.b8$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -1.42
# Action 9
summary(ideo.b9)
##
## Call:
## lm(formula = act9 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4400 -1.5723 0.4277 1.5600 3.4277
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07078 0.09632 0.735 0.462859
## Libs_Cons.c -0.86767 0.25122 -3.454 0.000605 ***
## Mods_Ideo.c -0.19384 0.19018 -1.019 0.308651
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 446 degrees of freedom
## (96 observations deleted due to missingness)
## Multiple R-squared: 0.03118, Adjusted R-squared: 0.02683
## F-statistic: 7.176 on 2 and 446 DF, p-value: 0.0008562
round(mean(d$act9[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.44
round(mean(d$act9[d$ideology == "Strong Conservative" | d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.43
round((ideo.b9$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.87
# Action 10
summary(ideo.b10)
##
## Call:
## lm(formula = act10 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8571 -2.0804 0.1429 1.9196 3.3988
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17957 0.09867 1.820 0.0694 .
## Libs_Cons.c -1.25599 0.25684 -4.890 1.38e-06 ***
## Mods_Ideo.c 0.14875 0.19532 0.762 0.4467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.076 on 474 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.04803, Adjusted R-squared: 0.04401
## F-statistic: 11.96 on 2 and 474 DF, p-value: 8.584e-06
round(mean(d$act10[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.86
round(mean(d$act10[d$ideology == "Strong Conservative" | d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.4
round((ideo.b10$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -1.26
# Action 11
summary(ideo.b11)
##
## Call:
## lm(formula = act11 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6154 -0.7807 0.2741 1.3846 2.2741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0407 0.1102 9.440 < 2e-16 ***
## Libs_Cons.c -0.8347 0.2893 -2.885 0.00419 **
## Mods_Ideo.c 0.4721 0.2159 2.187 0.02948 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 311 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03466, Adjusted R-squared: 0.02845
## F-statistic: 5.583 on 2 and 311 DF, p-value: 0.004147
round(mean(d$act11[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 1.62
round(mean(d$act11[d$ideology == "Strong Conservative" | d$ideology == "Conservative"], na.rm = T),2)
## [1] 0.78
round((ideo.b11$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.83
## Action 11 not polarized
# Action 12
summary(ideo.b12)
##
## Call:
## lm(formula = act12 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.600 -2.306 0.000 2.000 3.694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03129 0.11437 -0.274 0.785
## Libs_Cons.c -1.29388 0.29775 -4.346 1.78e-05 ***
## Mods_Ideo.c -0.04694 0.22634 -0.207 0.836
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.143 on 382 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.04983, Adjusted R-squared: 0.04485
## F-statistic: 10.02 on 2 and 382 DF, p-value: 5.759e-05
round(mean(d$act12[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.6
round(mean(d$act12[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.69
round((ideo.b12$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -1.29
# Action 13
summary(ideo.b13)
##
## Call:
## lm(formula = act13 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3131 -1.9149 0.0851 1.6869 3.3654
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04579 0.10229 -0.448 0.6547
## Libs_Cons.c -0.67852 0.26688 -2.542 0.0114 *
## Mods_Ideo.c 0.05898 0.20187 0.292 0.7703
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 440 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.01449, Adjusted R-squared: 0.01001
## F-statistic: 3.235 on 2 and 440 DF, p-value: 0.04028
round(mean(d$act13[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.31
round(mean(d$act13[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.37
round((ideo.b13$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.68
# Action 15
summary(ideo.b15)
##
## Call:
## lm(formula = act15 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6494 -1.9155 0.0845 1.8976 3.0845
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2224 0.1104 2.015 0.0446 *
## Libs_Cons.c -0.7339 0.2903 -2.528 0.0119 *
## Mods_Ideo.c 0.1800 0.2155 0.835 0.4040
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.052 on 382 degrees of freedom
## (160 observations deleted due to missingness)
## Multiple R-squared: 0.01674, Adjusted R-squared: 0.01159
## F-statistic: 3.251 on 2 and 382 DF, p-value: 0.03981
round(mean(d$act15[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.65
round(mean(d$act15[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.08
round((ideo.b15$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.73
# Action 17
summary(ideo.b17)
##
## Call:
## lm(formula = act17 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7872 -1.4798 0.2128 1.7467 2.7467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.50678 0.10139 4.998 8.56e-07 ***
## Libs_Cons.c -0.53390 0.26336 -2.027 0.0433 *
## Mods_Ideo.c 0.04051 0.20126 0.201 0.8406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 414 degrees of freedom
## (128 observations deleted due to missingness)
## Multiple R-squared: 0.009855, Adjusted R-squared: 0.005072
## F-statistic: 2.06 on 2 and 414 DF, p-value: 0.1287
round(mean(d$act17[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.79
round(mean(d$act17[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] 0.25
round((ideo.b17$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.53
## Action 17 not polarized
# Action 18
summary(ideo.b18)
##
## Call:
## lm(formula = act18 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8605 -1.2368 0.1844 1.6378 2.6378
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.67942 0.09996 6.797 4.6e-11 ***
## Libs_Cons.c -0.49826 0.25680 -1.940 0.0531 .
## Mods_Ideo.c -0.20427 0.20117 -1.015 0.3106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 351 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01504, Adjusted R-squared: 0.009431
## F-statistic: 2.68 on 2 and 351 DF, p-value: 0.06994
round(mean(d$act18[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.86
round(mean(d$act18[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] 0.36
round((ideo.b18$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.5
## Action 18 not polarized
# Action 21
summary(ideo.b21)
##
## Call:
## lm(formula = act21 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4348 -1.9401 0.0599 1.5652 3.4028
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.009292 0.105789 -0.088 0.93005
## Libs_Cons.c -0.837560 0.274558 -3.051 0.00244 **
## Mods_Ideo.c 0.075883 0.210201 0.361 0.71829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 400 degrees of freedom
## (142 observations deleted due to missingness)
## Multiple R-squared: 0.02275, Adjusted R-squared: 0.01786
## F-statistic: 4.656 on 2 and 400 DF, p-value: 0.01002
round(mean(d$act21[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.43
round(mean(d$act21[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] -0.4
round((ideo.b21$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.84
# Action 22
summary(ideo.b22)
##
## Call:
## lm(formula = act22 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8065 -1.2857 -0.0559 1.7143 2.9441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3827 0.1018 3.759 0.000196 ***
## Libs_Cons.c -0.7505 0.2643 -2.840 0.004745 **
## Mods_Ideo.c 0.1455 0.2022 0.719 0.472282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.984 on 401 degrees of freedom
## (141 observations deleted due to missingness)
## Multiple R-squared: 0.01997, Adjusted R-squared: 0.01509
## F-statistic: 4.086 on 2 and 401 DF, p-value: 0.01751
round(mean(d$act22[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 0.81
round(mean(d$act22[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] 0.06
round((ideo.b22$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.75
## Action 22 not polarized
# Action 25
summary(ideo.b25)
##
## Call:
## lm(formula = act25 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2041 -1.2041 0.1075 1.7284 2.7284
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7894 0.0904 8.732 < 2e-16 ***
## Libs_Cons.c -0.9325 0.2353 -3.963 8.63e-05 ***
## Mods_Ideo.c -0.1546 0.1789 -0.864 0.388
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.03911, Adjusted R-squared: 0.03477
## F-statistic: 9.015 on 2 and 443 DF, p-value: 0.0001453
round(mean(d$act25[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 1.2
round(mean(d$act25[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] 0.27
round((ideo.b25$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.93
## Action 25 not polarized
# Action 27
summary(ideo.b27)
##
## Call:
## lm(formula = act27 ~ Libs_Cons.c + Mods_Ideo.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -0.9290 0.4052 1.4488 2.4488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8031 0.1076 7.464 8.19e-13 ***
## Libs_Cons.c -0.6683 0.2766 -2.416 0.0162 *
## Mods_Ideo.c 0.3778 0.2163 1.747 0.0817 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.874 on 316 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.0244, Adjusted R-squared: 0.01823
## F-statistic: 3.952 on 2 and 316 DF, p-value: 0.02017
round(mean(d$act27[d$ideology == "Strong Liberal" | d$ideology == "Liberal"], na.rm = T),2)
## [1] 1.26
round(mean(d$act27[d$ideology == "Strong Conservative"| d$ideology == "Conservative"], na.rm = T),2)
## [1] 0.59
round((ideo.b27$coefficients['Libs_Cons.c']),2)
## Libs_Cons.c
## -0.67
# 27 not polarized
Actions that are polarizing: 1, 3, 8, 9, 10, 12, 13, 15, 21
Nonpolarized actions: 11, 17, 18, 22, 25, 27
c. Actions by Party ID
i. Republicans
Actions opposed: 1, 3, 7, 11, 16, 18, 19, 20, 25, 26, 27, 28, 29, 30
Action neutral: 4, 14, 15, 17, 22, 23 Actions supported: 2, 5, 6, 8, 9,
10, 12, 13, 21, 24
# Action 1
rep.b1 <- lm(act1 ~ (RepD.d + RepI.d), data = d)
summary(rep.b1)
##
## Call:
## lm(formula = act1 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2770 -2.2199 -0.0486 1.7230 3.5844
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5844 0.1727 -3.385 0.000776 ***
## RepD.d 0.8614 0.2466 3.493 0.000526 ***
## RepI.d 0.6330 0.2484 2.549 0.011150 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.143 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02882, Adjusted R-squared: 0.02443
## F-statistic: 6.572 on 2 and 443 DF, p-value: 0.001539
# Action 2
rep.b2 <- lm(act2 ~ (RepD.d + RepI.d), data = d)
summary(rep.b2)
##
## Call:
## lm(formula = act2 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.280 -1.104 0.022 1.720 2.022
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9780 0.1898 5.153 4.81e-07 ***
## RepD.d 0.3020 0.2623 1.151 0.251
## RepI.d 0.1261 0.2649 0.476 0.634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.811 on 284 degrees of freedom
## (258 observations deleted due to missingness)
## Multiple R-squared: 0.004714, Adjusted R-squared: -0.002295
## F-statistic: 0.6726 on 2 and 284 DF, p-value: 0.5112
# Action 3
rep.b3 <- lm(act3 ~ (RepD.d + RepI.d), data = d)
summary(rep.b3)
##
## Call:
## lm(formula = act3 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1325 -1.8289 0.1711 1.6884 3.6884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6884 0.1702 -4.045 6.18e-05 ***
## RepD.d 0.8209 0.2354 3.487 0.000539 ***
## RepI.d 0.5174 0.2351 2.201 0.028263 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.999 on 438 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.02743, Adjusted R-squared: 0.02299
## F-statistic: 6.176 on 2 and 438 DF, p-value: 0.002265
# Action 5
rep.b5 <- lm(act5 ~ (RepD.d + RepI.d), data = d)
summary(rep.b5)
##
## Call:
## lm(formula = act5 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1165 -1.1165 0.1053 1.8835 2.1053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9583 0.1906 5.027 8.73e-07 ***
## RepD.d 0.1582 0.2650 0.597 0.551
## RepI.d -0.0636 0.2703 -0.235 0.814
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.868 on 291 degrees of freedom
## (251 observations deleted due to missingness)
## Multiple R-squared: 0.002558, Adjusted R-squared: -0.004298
## F-statistic: 0.3731 on 2 and 291 DF, p-value: 0.6889
# Action 6
rep.b6 <- lm(act6 ~ (RepD.d + RepI.d), data = d)
summary(rep.b6)
##
## Call:
## lm(formula = act6 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.400 -1.111 0.600 1.600 1.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11111 0.16773 6.624 1.3e-10 ***
## RepD.d 0.09064 0.23876 0.380 0.704
## RepI.d 0.28889 0.23338 1.238 0.217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 353 degrees of freedom
## (189 observations deleted due to missingness)
## Multiple R-squared: 0.004549, Adjusted R-squared: -0.001091
## F-statistic: 0.8065 on 2 and 353 DF, p-value: 0.4472
# Action 7
rep.b7 <- lm(act7 ~ (RepD.d + RepI.d), data = d)
summary(rep.b7)
##
## Call:
## lm(formula = act7 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0993 -1.9929 0.0071 1.9007 3.4962
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4962 0.1805 -2.748 0.00625 **
## RepD.d 0.5955 0.2508 2.375 0.01802 *
## RepI.d 0.4890 0.2512 1.947 0.05222 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 409 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: 0.01046
## F-statistic: 3.172 on 2 and 409 DF, p-value: 0.04296
# Action 8
rep.b8 <- lm(act8 ~ (RepD.d + RepI.d), data = d)
summary(rep.b8)
##
## Call:
## lm(formula = act8 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2327 -1.8734 -0.2327 1.7673 4.1266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.1266 0.1676 -6.723 5.12e-11 ***
## RepD.d 1.3593 0.2366 5.745 1.64e-08 ***
## RepI.d 0.7974 0.2359 3.381 0.000783 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.106 on 475 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.06556, Adjusted R-squared: 0.06162
## F-statistic: 16.66 on 2 and 475 DF, p-value: 1.014e-07
# Action 9
rep.b9 <- lm(act9 ~ (RepD.d + RepI.d), data = d)
summary(rep.b9)
##
## Call:
## lm(formula = act9 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2617 -1.5594 0.1196 1.7383 3.4406
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4406 0.1648 -2.673 0.00779 **
## RepD.d 0.7023 0.2307 3.044 0.00247 **
## RepI.d 0.6419 0.2289 2.804 0.00526 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.971 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02498, Adjusted R-squared: 0.02058
## F-statistic: 5.676 on 2 and 443 DF, p-value: 0.003682
# Action 10
rep.b10 <- lm(act10 ~ (RepD.d + RepI.d), data = d)
summary(rep.b10)
##
## Call:
## lm(formula = act10 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5935 -2.2208 0.4065 1.6545 3.7792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7792 0.1643 -4.741 2.82e-06 ***
## RepD.d 1.3728 0.2320 5.916 6.36e-09 ***
## RepI.d 1.1247 0.2285 4.922 1.19e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 471 degrees of freedom
## (71 observations deleted due to missingness)
## Multiple R-squared: 0.07812, Adjusted R-squared: 0.07421
## F-statistic: 19.96 on 2 and 471 DF, p-value: 4.791e-09
# Action 11
rep.b11 <- lm(act11 ~ (RepD.d + RepI.d), data = d)
summary(rep.b11)
##
## Call:
## lm(formula = act11 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0755 -1.0755 0.3093 1.9245 2.3093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6907 0.1915 3.606 0.000362 ***
## RepD.d 0.3848 0.2651 1.452 0.147652
## RepI.d 0.2908 0.2639 1.102 0.271402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.886 on 308 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.007306, Adjusted R-squared: 0.0008601
## F-statistic: 1.133 on 2 and 308 DF, p-value: 0.3233
# Action 12
rep.b12 <- lm(act12 ~ (RepD.d + RepI.d), data = d)
summary(rep.b12)
##
## Call:
## lm(formula = act12 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3167 -2.0992 -0.1603 1.8397 3.9008
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9008 0.1858 -4.849 1.81e-06 ***
## RepD.d 1.2174 0.2687 4.531 7.86e-06 ***
## RepI.d 1.0611 0.2627 4.039 6.50e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.126 on 379 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.06166, Adjusted R-squared: 0.0567
## F-statistic: 12.45 on 2 and 379 DF, p-value: 5.789e-06
# Action 13
rep.b13 <- lm(act13 ~ (RepD.d + RepI.d), data = d)
summary(rep.b13)
##
## Call:
## lm(formula = act13 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1888 -2.0186 -0.0186 1.8112 3.5588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5588 0.1769 -3.159 0.00170 **
## RepD.d 0.7476 0.2471 3.025 0.00263 **
## RepI.d 0.5775 0.2403 2.403 0.01667 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.063 on 437 degrees of freedom
## (105 observations deleted due to missingness)
## Multiple R-squared: 0.0225, Adjusted R-squared: 0.01802
## F-statistic: 5.029 on 2 and 437 DF, p-value: 0.006932
# Action 14
rep.b14 <- lm(act14 ~ (RepD.d + RepI.d), data = d)
summary(rep.b14)
##
## Call:
## lm(formula = act14 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5481 -1.4444 -0.3171 1.5556 2.6829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3171 0.2244 1.413 0.159
## RepD.d 0.2310 0.3000 0.770 0.442
## RepI.d 0.1274 0.3034 0.420 0.675
##
## Residual standard error: 2.032 on 282 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.002098, Adjusted R-squared: -0.00498
## F-statistic: 0.2964 on 2 and 282 DF, p-value: 0.7437
# Action 15
rep.b15 <- lm(act15 ~ (RepD.d + RepI.d), data = d)
summary(rep.b15)
##
## Call:
## lm(formula = act15 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5328 -1.8049 0.1951 1.4672 3.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1951 0.1842 -1.060 0.29003
## RepD.d 0.7279 0.2610 2.789 0.00555 **
## RepI.d 0.2681 0.2537 1.057 0.29126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.042 on 379 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.02059, Adjusted R-squared: 0.01542
## F-statistic: 3.984 on 2 and 379 DF, p-value: 0.0194
# Action 16
rep.b16 <- lm(act16 ~ (RepD.d + RepI.d), data = d)
summary(rep.b16)
##
## Call:
## lm(formula = act16 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0550 -1.0550 0.0841 1.1770 2.1770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.91589 0.17615 5.199 3.54e-07 ***
## RepD.d 0.13916 0.24797 0.561 0.575
## RepI.d -0.09288 0.24579 -0.378 0.706
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 326 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.002782, Adjusted R-squared: -0.003336
## F-statistic: 0.4547 on 2 and 326 DF, p-value: 0.6351
# Action 17
rep.b17 <- lm(act17 ~ (RepD.d + RepI.d), data = d)
summary(rep.b17)
##
## Call:
## lm(formula = act17 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.650 -1.420 0.350 1.702 2.702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2977 0.1752 1.700 0.090 .
## RepD.d 0.3523 0.2437 1.446 0.149
## RepI.d 0.1219 0.2425 0.503 0.616
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.005 on 411 degrees of freedom
## (131 observations deleted due to missingness)
## Multiple R-squared: 0.005261, Adjusted R-squared: 0.0004204
## F-statistic: 1.087 on 2 and 411 DF, p-value: 0.3382
# Action 18
rep.b18 <- lm(act18 ~ (RepD.d + RepI.d), data = d)
summary(rep.b18)
##
## Call:
## lm(formula = act18 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8430 -1.1338 0.3145 1.3145 2.5755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4245 0.1781 2.383 0.0177 *
## RepD.d 0.4184 0.2440 1.715 0.0872 .
## RepI.d 0.2610 0.2426 1.076 0.2829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 348 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.008477, Adjusted R-squared: 0.002779
## F-statistic: 1.488 on 2 and 348 DF, p-value: 0.2273
# Action 19
rep.b19 <- lm(act19 ~ (RepD.d + RepI.d), data = d)
summary(rep.b19)
##
## Call:
## lm(formula = act19 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.337 -1.032 0.000 1.663 2.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0000 0.1897 5.273 2.76e-07 ***
## RepD.d 0.1264 0.2705 0.467 0.641
## RepI.d 0.3368 0.2647 1.273 0.204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.799 on 269 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.006131, Adjusted R-squared: -0.001258
## F-statistic: 0.8297 on 2 and 269 DF, p-value: 0.4373
# Action 20
rep.b20 <- lm(act20 ~ (RepD.d + RepI.d), data = d)
summary(rep.b20)
##
## Call:
## lm(formula = act20 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3148 -1.2621 0.6852 1.6852 1.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.26214 0.17500 7.212 4.05e-12 ***
## RepD.d -0.16214 0.24352 -0.666 0.506
## RepI.d 0.05268 0.24461 0.215 0.830
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.776 on 318 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.002716, Adjusted R-squared: -0.003556
## F-statistic: 0.433 on 2 and 318 DF, p-value: 0.6489
# Action 21
rep.b21 <- lm(act21 ~ (RepD.d + RepI.d), data = d)
summary(rep.b21)
##
## Call:
## lm(formula = act21 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2214 -2.0071 -0.0071 1.7786 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5000 0.1817 -2.752 0.00620 **
## RepD.d 0.5071 0.2510 2.021 0.04399 *
## RepI.d 0.7214 0.2555 2.824 0.00499 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.056 on 397 degrees of freedom
## (145 observations deleted due to missingness)
## Multiple R-squared: 0.02074, Adjusted R-squared: 0.01581
## F-statistic: 4.205 on 2 and 397 DF, p-value: 0.01559
# Action 22
rep.b22 <- lm(act22 ~ (RepD.d + RepI.d), data = d)
summary(rep.b22)
##
## Call:
## lm(formula = act22 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8045 -1.3873 0.1955 1.6127 3.2857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2857 0.1739 -1.643 0.10115
## RepD.d 1.0902 0.2427 4.493 9.22e-06 ***
## RepI.d 0.6730 0.2389 2.817 0.00508 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.952 on 398 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.04897, Adjusted R-squared: 0.04419
## F-statistic: 10.25 on 2 and 398 DF, p-value: 4.577e-05
# Action 23
rep.b23 <- lm(act23 ~ (RepD.d + RepI.d), data = d)
summary(rep.b23)
##
## Call:
## lm(formula = act23 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3810 -2.3810 0.0824 2.0824 3.0824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08235 0.24519 -0.336 0.737
## RepD.d 0.24235 0.33350 0.727 0.468
## RepI.d 0.46331 0.32983 1.405 0.161
##
## Residual standard error: 2.261 on 287 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.006836, Adjusted R-squared: -8.474e-05
## F-statistic: 0.9878 on 2 and 287 DF, p-value: 0.3737
# Action 24
rep.b24 <- lm(act24 ~ (RepD.d + RepI.d), data = d)
summary(rep.b24)
##
## Call:
## lm(formula = act24 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9281 -1.9281 0.0719 1.5038 3.5038
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5038 0.1811 -2.782 0.00565 **
## RepD.d 0.2910 0.2524 1.153 0.24969
## RepI.d 0.4318 0.2533 1.705 0.08901 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.088 on 410 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.007291, Adjusted R-squared: 0.002448
## F-statistic: 1.506 on 2 and 410 DF, p-value: 0.2231
# Action 25
rep.b25 <- lm(act25 ~ (RepD.d + RepI.d), data = d)
summary(rep.b25)
##
## Call:
## lm(formula = act25 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1149 -1.1149 0.1611 1.7603 2.7603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2397 0.1516 1.582 0.11445
## RepD.d 0.8751 0.2136 4.097 4.99e-05 ***
## RepI.d 0.5992 0.2133 2.810 0.00518 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 440 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.0383, Adjusted R-squared: 0.03393
## F-statistic: 8.762 on 2 and 440 DF, p-value: 0.0001856
# Action 26
rep.b26 <- lm(act26 ~ (RepD.d + RepI.d), data = d)
summary(rep.b26)
##
## Call:
## lm(formula = act26 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5672 -1.3974 0.6026 1.4810 1.6026
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56716 0.22247 7.044 2.34e-11 ***
## RepD.d -0.16973 0.30333 -0.560 0.576
## RepI.d -0.04818 0.30244 -0.159 0.874
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 221 degrees of freedom
## (321 observations deleted due to missingness)
## Multiple R-squared: 0.001544, Adjusted R-squared: -0.007492
## F-statistic: 0.1709 on 2 and 221 DF, p-value: 0.843
# Action 27
rep.b27 <- lm(act27 ~ (RepD.d + RepI.d), data = d)
summary(rep.b27)
##
## Call:
## lm(formula = act27 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1404 -1.1404 0.1489 1.5670 2.5670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4330 0.1894 2.286 0.0229 *
## RepD.d 0.7074 0.2577 2.745 0.0064 **
## RepI.d 0.1289 0.2627 0.491 0.6240
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 313 degrees of freedom
## (229 observations deleted due to missingness)
## Multiple R-squared: 0.02742, Adjusted R-squared: 0.02121
## F-statistic: 4.413 on 2 and 313 DF, p-value: 0.01288
# Action 28
rep.b28 <- lm(act28 ~ (RepD.d + RepI.d), data = d)
summary(rep.b28)
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2266 -0.9508 0.0579 1.7734 2.0579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.950820 0.164624 5.776 1.63e-08 ***
## RepD.d 0.275743 0.230069 1.199 0.231
## RepI.d -0.008671 0.233294 -0.037 0.970
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.818 on 368 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.005379, Adjusted R-squared: -2.643e-05
## F-statistic: 0.9951 on 2 and 368 DF, p-value: 0.3707
# Action 29
rep.b29 <- lm(act29 ~ (RepD.d + RepI.d), data = d)
summary(rep.b29)
##
## Call:
## lm(formula = act29 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3200 -1.0720 0.0684 1.6800 2.0684
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9316 0.1614 5.773 1.67e-08 ***
## RepD.d 0.3884 0.2245 1.730 0.0845 .
## RepI.d 0.1404 0.2245 0.625 0.5322
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.745 on 364 degrees of freedom
## (178 observations deleted due to missingness)
## Multiple R-squared: 0.008418, Adjusted R-squared: 0.00297
## F-statistic: 1.545 on 2 and 364 DF, p-value: 0.2147
# Action 30
rep.b30 <- lm(act30 ~ (RepD.d + RepI.d), data = d)
summary(rep.b30)
##
## Call:
## lm(formula = act30 ~ (RepD.d + RepI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1917 -1.0598 0.8083 1.8083 2.0263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97368 0.17465 5.575 4.97e-08 ***
## RepD.d 0.08614 0.24540 0.351 0.726
## RepI.d 0.21798 0.24388 0.894 0.372
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 348 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.002333, Adjusted R-squared: -0.003401
## F-statistic: 0.4068 on 2 and 348 DF, p-value: 0.6661
Significantly above 0: 2; 5; 6; 11; 16; 18; 19; 20; 26; 28; 29;
30
1. condition differences?
# Action 1
rep.c.b1 <- lm(act1 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b1) # no
##
## Call:
## lm(formula = act1 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.417 -2.229 0.026 1.771 3.591
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.58493 0.17338 -3.374 0.000807 ***
## RepD.d 0.86563 0.24733 3.500 0.000513 ***
## RepI.d 0.60103 0.25056 2.399 0.016866 *
## cond.c 0.01324 0.34676 0.038 0.969569
## RepD.d:cond.c -0.28517 0.49467 -0.576 0.564587
## RepI.d:cond.c -0.43887 0.50111 -0.876 0.381620
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 440 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.03317, Adjusted R-squared: 0.02218
## F-statistic: 3.019 on 5 and 440 DF, p-value: 0.01084
# Action 2
rep.c.b2 <- lm(act2 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b2) #no
##
## Call:
## lm(formula = act2 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3800 -1.1947 0.2292 1.6200 2.2292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99007 0.19003 5.210 3.66e-07 ***
## RepD.d 0.28993 0.26243 1.105 0.270
## RepI.d 0.05438 0.26928 0.202 0.840
## cond.c -0.43847 0.38005 -1.154 0.250
## RepD.d:cond.c 0.23847 0.52486 0.454 0.650
## RepI.d:cond.c -0.03931 0.53856 -0.073 0.942
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.81 on 281 degrees of freedom
## (258 observations deleted due to missingness)
## Multiple R-squared: 0.01593, Adjusted R-squared: -0.001575
## F-statistic: 0.91 on 5 and 281 DF, p-value: 0.4749
# Action 3
rep.c.b3 <- lm(act3 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b3) # no
##
## Call:
## lm(formula = act3 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2568 -1.8939 0.1061 1.6351 3.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.926e-01 1.711e-01 -4.049 6.1e-05 ***
## RepD.d 8.274e-01 2.364e-01 3.501 0.000512 ***
## RepI.d 5.291e-01 2.370e-01 2.233 0.026078 *
## cond.c 1.149e-01 3.421e-01 0.336 0.737223
## RepD.d:cond.c 1.289e-01 4.727e-01 0.273 0.785236
## RepI.d:cond.c 4.762e-06 4.739e-01 0.000 0.999992
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.004 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.0292, Adjusted R-squared: 0.01804
## F-statistic: 2.617 on 5 and 435 DF, p-value: 0.024
# Action 4
rep.c.b4 <- lm(act4 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b4) # no
##
## Call:
## lm(formula = act4 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4923 -2.0000 0.2258 2.0000 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.20550 0.20057 -1.025 0.3063
## RepD.d 0.51135 0.27463 1.862 0.0634 .
## RepI.d -0.06373 0.28219 -0.226 0.8214
## cond.c -0.04062 0.40114 -0.101 0.9194
## RepD.d:cond.c 0.41353 0.54925 0.753 0.4520
## RepI.d:cond.c -0.49784 0.56437 -0.882 0.3783
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.155 on 362 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.0212, Adjusted R-squared: 0.007677
## F-statistic: 1.568 on 5 and 362 DF, p-value: 0.1683
# Action 5
rep.c.b5 <- lm(act5 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b5) # no
##
## Call:
## lm(formula = act5 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3585 -0.9200 0.1818 1.6415 2.1818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98226 0.19285 5.093 6.37e-07 ***
## RepD.d 0.12698 0.26673 0.476 0.634
## RepI.d -0.08893 0.27217 -0.327 0.744
## cond.c -0.32816 0.38570 -0.851 0.396
## RepD.d:cond.c -0.17033 0.53347 -0.319 0.750
## RepI.d:cond.c 0.27483 0.54434 0.505 0.614
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 288 degrees of freedom
## (251 observations deleted due to missingness)
## Multiple R-squared: 0.01139, Adjusted R-squared: -0.005774
## F-statistic: 0.6636 on 5 and 288 DF, p-value: 0.6514
# Action 6
rep.c.b6 <- lm(act6 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b6) # no
##
## Call:
## lm(formula = act6 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5278 -1.1731 0.4722 1.7736 1.9385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11731 0.16926 6.601 1.52e-10 ***
## RepD.d 0.08362 0.24036 0.348 0.728
## RepI.d 0.25979 0.23614 1.100 0.272
## cond.c -0.11154 0.33853 -0.329 0.742
## RepD.d:cond.c 0.08006 0.48072 0.167 0.868
## RepI.d:cond.c -0.18982 0.47228 -0.402 0.688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.82 on 350 degrees of freedom
## (189 observations deleted due to missingness)
## Multiple R-squared: 0.007256, Adjusted R-squared: -0.006926
## F-statistic: 0.5116 on 5 and 350 DF, p-value: 0.7675
# Action 7
rep.c.b7 <- lm(act7 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b7) # no
##
## Call:
## lm(formula = act7 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2192 -1.9706 0.0294 1.7808 3.6613
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.50456 0.18102 -2.787 0.00556 **
## RepD.d 0.59944 0.25132 2.385 0.01753 *
## RepI.d 0.51691 0.25270 2.046 0.04144 *
## cond.c 0.31346 0.36204 0.866 0.38709
## RepD.d:cond.c -0.06487 0.50264 -0.129 0.89737
## RepI.d:cond.c -0.01029 0.50539 -0.020 0.98377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 406 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.02009, Adjusted R-squared: 0.008026
## F-statistic: 1.665 on 5 and 406 DF, p-value: 0.1419
# Action 8
rep.c.b8 <- lm(act8 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b8) # no
##
## Call:
## lm(formula = act8 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.367 -1.648 -0.100 1.843 4.352
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0976 0.1687 -6.507 1.96e-10 ***
## RepD.d 1.3311 0.2374 5.607 3.50e-08 ***
## RepI.d 0.7731 0.2372 3.260 0.0012 **
## cond.c -0.5094 0.3373 -1.510 0.1317
## RepD.d:cond.c 0.7765 0.4748 1.636 0.1026
## RepI.d:cond.c 0.6104 0.4743 1.287 0.1987
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.106 on 472 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.07148, Adjusted R-squared: 0.06165
## F-statistic: 7.267 on 5 and 472 DF, p-value: 1.426e-06
# Action 9
rep.c.b9 <- lm(act9 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b9) # no
##
## Call:
## lm(formula = act9 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2973 -1.5231 0.1162 1.7027 3.4769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.443590 0.166040 -2.672 0.00783 **
## RepD.d 0.705572 0.231972 3.042 0.00249 **
## RepI.d 0.649666 0.231739 2.803 0.00528 **
## cond.c 0.066667 0.332081 0.201 0.84098
## RepD.d:cond.c 0.003964 0.463945 0.009 0.99319
## RepI.d:cond.c -0.010069 0.463478 -0.022 0.98268
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 440 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02525, Adjusted R-squared: 0.01417
## F-statistic: 2.279 on 5 and 440 DF, p-value: 0.04594
# Action 10
rep.c.b10 <- lm(act10 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b10) # no
##
## Call:
## lm(formula = act10 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6133 -2.0595 0.3867 1.6404 3.9405
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7631 0.1654 -4.615 5.08e-06 ***
## RepD.d 1.3573 0.2330 5.824 1.07e-08 ***
## RepI.d 1.1073 0.2298 4.819 1.96e-06 ***
## cond.c -0.3548 0.3307 -1.073 0.284
## RepD.d:cond.c 0.3931 0.4661 0.843 0.399
## RepI.d:cond.c 0.3242 0.4596 0.705 0.481
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 468 degrees of freedom
## (71 observations deleted due to missingness)
## Multiple R-squared: 0.08043, Adjusted R-squared: 0.0706
## F-statistic: 8.187 on 5 and 468 DF, p-value: 2.004e-07
# Action 11
rep.c.b11 <- lm(act11 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b11) # no
##
## Call:
## lm(formula = act11 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3509 -1.0528 0.4314 1.6491 2.4314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.69309 0.19073 3.634 0.000327 ***
## RepD.d 0.35971 0.26434 1.361 0.174585
## RepI.d 0.26666 0.26280 1.015 0.311057
## cond.c -0.09207 0.38145 -0.241 0.809430
## RepD.d:cond.c -0.38853 0.52867 -0.735 0.462954
## RepI.d:cond.c -0.69018 0.52559 -1.313 0.190122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 305 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.0279, Adjusted R-squared: 0.01197
## F-statistic: 1.751 on 5 and 305 DF, p-value: 0.1228
# Action 12
rep.c.b12 <- lm(act12 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b12) # no
##
## Call:
## lm(formula = act12 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3333 -1.9851 -0.1029 1.8971 4.0149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8981 0.1864 -4.817 2.11e-06 ***
## RepD.d 1.2139 0.2698 4.500 9.08e-06 ***
## RepI.d 1.0607 0.2637 4.022 6.97e-05 ***
## cond.c -0.2337 0.3729 -0.627 0.531
## RepD.d:cond.c 0.1986 0.5395 0.368 0.713
## RepI.d:cond.c 0.3530 0.5274 0.669 0.504
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.133 on 376 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.06291, Adjusted R-squared: 0.05045
## F-statistic: 5.048 on 5 and 376 DF, p-value: 0.0001718
# Action 13
rep.c.b13 <- lm(act13 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b13) # no
##
## Call:
## lm(formula = act13 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3803 -2.0000 0.1977 1.7533 3.8133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5296 0.1773 -2.987 0.00298 **
## RepD.d 0.7198 0.2470 2.914 0.00375 **
## RepI.d 0.5641 0.2405 2.346 0.01944 *
## cond.c -0.5674 0.3546 -1.600 0.11028
## RepD.d:cond.c 0.1872 0.4940 0.379 0.70500
## RepI.d:cond.c 1.0318 0.4810 2.145 0.03249 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 434 degrees of freedom
## (105 observations deleted due to missingness)
## Multiple R-squared: 0.03544, Adjusted R-squared: 0.02433
## F-statistic: 3.189 on 5 and 434 DF, p-value: 0.007706
# Action 14
rep.c.b14 <- lm(act14 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b14) # no
##
## Call:
## lm(formula = act14 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7209 -1.5370 -0.2321 1.7297 2.7679
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.31291 0.22606 1.384 0.167
## RepD.d 0.23561 0.30178 0.781 0.436
## RepI.d 0.16362 0.30621 0.534 0.594
## cond.c 0.08529 0.45212 0.189 0.851
## RepD.d:cond.c -0.06232 0.60356 -0.103 0.918
## RepI.d:cond.c 0.40350 0.61241 0.659 0.511
##
## Residual standard error: 2.037 on 279 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.007218, Adjusted R-squared: -0.01057
## F-statistic: 0.4057 on 5 and 279 DF, p-value: 0.8447
# Action 15
rep.c.b15 <- lm(act15 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b15) # no
##
## Call:
## lm(formula = act15 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8098 0.2069 1.6290 3.2069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.19576 0.18484 -1.059 0.29025
## RepD.d 0.73124 0.26174 2.794 0.00548 **
## RepI.d 0.25742 0.25483 1.010 0.31305
## cond.c 0.02228 0.36967 0.060 0.95197
## RepD.d:cond.c -0.35131 0.52348 -0.671 0.50256
## RepI.d:cond.c -0.30435 0.50966 -0.597 0.55076
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.047 on 376 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.02432, Adjusted R-squared: 0.01135
## F-statistic: 1.875 on 5 and 376 DF, p-value: 0.09788
# Action 16
rep.c.b16 <- lm(act16 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b16) # no
##
## Call:
## lm(formula = act16 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1887 -1.0385 0.1404 1.5000 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.91982 0.17622 5.220 3.21e-07 ***
## RepD.d 0.13449 0.24793 0.542 0.588
## RepI.d -0.07548 0.24585 -0.307 0.759
## cond.c -0.12035 0.35243 -0.341 0.733
## RepD.d:cond.c 0.08864 0.49586 0.179 0.858
## RepI.d:cond.c 0.80903 0.49170 1.645 0.101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 323 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.01546, Adjusted R-squared: 0.0002187
## F-statistic: 1.014 on 5 and 323 DF, p-value: 0.4091
# Action 17
rep.c.b17 <- lm(act17 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b17) # no
##
## Call:
## lm(formula = act17 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6761 -1.4375 0.3239 1.6032 2.8108
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3139 0.1772 1.771 0.0772 .
## RepD.d 0.3357 0.2455 1.367 0.1723
## RepI.d 0.1033 0.2451 0.421 0.6738
## cond.c -0.2494 0.3544 -0.704 0.4820
## RepD.d:cond.c 0.1965 0.4911 0.400 0.6892
## RepI.d:cond.c 0.2087 0.4902 0.426 0.6705
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.011 on 408 degrees of freedom
## (131 observations deleted due to missingness)
## Multiple R-squared: 0.006561, Adjusted R-squared: -0.005614
## F-statistic: 0.5389 on 5 and 408 DF, p-value: 0.7468
# Action 18
rep.c.b18 <- lm(act18 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b18) # no
##
## Call:
## lm(formula = act18 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1004 0.2778 1.3654 2.7115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4220 0.1787 2.361 0.0188 *
## RepD.d 0.4248 0.2450 1.734 0.0839 .
## RepI.d 0.2564 0.2449 1.047 0.2959
## cond.c 0.2671 0.3575 0.747 0.4555
## RepD.d:cond.c -0.1361 0.4900 -0.278 0.7814
## RepI.d:cond.c -0.3547 0.4898 -0.724 0.4695
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.84 on 345 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.01071, Adjusted R-squared: -0.003625
## F-statistic: 0.7472 on 5 and 345 DF, p-value: 0.5886
# Action 19
rep.c.b19 <- lm(act19 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b19) # yes--climate less supported
##
## Call:
## lm(formula = act19 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5429 -1.0543 0.3455 1.5510 2.3455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.09870 0.19337 5.682 3.49e-08 ***
## RepD.d 0.04232 0.27306 0.155 0.8769
## RepI.d 0.23448 0.26665 0.879 0.3800
## cond.c -0.88831 0.38674 -2.297 0.0224 *
## RepD.d:cond.c 0.60626 0.54612 1.110 0.2679
## RepI.d:cond.c 0.65672 0.53330 1.231 0.2192
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.789 on 266 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.0288, Adjusted R-squared: 0.01054
## F-statistic: 1.578 on 5 and 266 DF, p-value: 0.1666
# Action 20
rep.c.b20 <- lm(act20 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b20) # no
##
## Call:
## lm(formula = act20 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5102 -1.2979 0.4444 1.4444 2.4444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.27362 0.17274 7.373 1.48e-12 ***
## RepD.d -0.18334 0.24026 -0.763 0.446
## RepI.d 0.03925 0.24232 0.162 0.871
## cond.c -0.47317 0.34549 -1.370 0.172
## RepD.d:cond.c -0.59628 0.48052 -1.241 0.216
## RepI.d:cond.c 0.44317 0.48464 0.914 0.361
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.751 on 315 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.03972, Adjusted R-squared: 0.02447
## F-statistic: 2.606 on 5 and 315 DF, p-value: 0.02506
# Action 21
rep.c.b21 <- lm(act21 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b21) # no
##
## Call:
## lm(formula = act21 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5667 -1.9565 0.0704 1.7143 3.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5238 0.1828 -2.865 0.00439 **
## RepD.d 0.5298 0.2516 2.106 0.03586 *
## RepI.d 0.7719 0.2565 3.009 0.00279 **
## cond.c 0.3810 0.3657 1.042 0.29814
## RepD.d:cond.c -0.4800 0.5032 -0.954 0.34077
## RepI.d:cond.c 0.2561 0.5131 0.499 0.61789
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.052 on 394 degrees of freedom
## (145 observations deleted due to missingness)
## Multiple R-squared: 0.03132, Adjusted R-squared: 0.01903
## F-statistic: 2.548 on 5 and 394 DF, p-value: 0.0276
# Action 22
rep.c.b22 <- lm(act22 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b22) # no
##
## Call:
## lm(formula = act22 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9254 -1.5082 0.2647 1.7037 3.3103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.28753 0.17489 -1.644 0.10097
## RepD.d 1.09112 0.24369 4.478 9.89e-06 ***
## RepI.d 0.68977 0.24104 2.862 0.00444 **
## cond.c 0.04564 0.34978 0.130 0.89625
## RepD.d:cond.c -0.28919 0.48737 -0.593 0.55327
## RepI.d:cond.c 0.16626 0.48209 0.345 0.73037
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 395 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05123, Adjusted R-squared: 0.03922
## F-statistic: 4.266 on 5 and 395 DF, p-value: 0.0008644
# Action 23
rep.c.b23 <- lm(act23 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b23) # no
##
## Call:
## lm(formula = act23 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.661 -2.044 0.225 2.189 3.225
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09028 0.24542 -0.368 0.713
## RepD.d 0.24554 0.33357 0.736 0.462
## RepI.d 0.43166 0.33102 1.304 0.193
## cond.c 0.26944 0.49083 0.549 0.583
## RepD.d:cond.c -0.74323 0.66714 -1.114 0.266
## RepI.d:cond.c -0.90872 0.66204 -1.373 0.171
##
## Residual standard error: 2.259 on 284 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01883, Adjusted R-squared: 0.001555
## F-statistic: 1.09 on 5 and 284 DF, p-value: 0.366
# Action 24
rep.c.b24 <- lm(act24 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b24) # no
##
## Call:
## lm(formula = act24 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1266 -1.9583 -0.1266 1.6133 3.6133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.48770 0.18256 -2.671 0.00785 **
## RepD.d 0.27122 0.25350 1.070 0.28531
## RepI.d 0.38433 0.25552 1.504 0.13334
## cond.c -0.25126 0.36511 -0.688 0.49173
## RepD.d:cond.c -0.09837 0.50701 -0.194 0.84625
## RepI.d:cond.c -0.20865 0.51105 -0.408 0.68328
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.088 on 407 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01483, Adjusted R-squared: 0.00273
## F-statistic: 1.226 on 5 and 407 DF, p-value: 0.2962
# Action 25
rep.c.b25 <- lm(act25 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b25) # no
##
## Call:
## lm(formula = act25 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3194 -0.9688 0.0789 1.6563 2.8415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2511 0.1528 1.644 0.10095
## RepD.d 0.8691 0.2146 4.050 6.05e-05 ***
## RepI.d 0.6038 0.2152 2.805 0.00525 **
## cond.c -0.1852 0.3056 -0.606 0.54476
## RepD.d:cond.c 0.5836 0.4291 1.360 0.17455
## RepI.d:cond.c 0.4128 0.4305 0.959 0.33814
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 437 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.04416, Adjusted R-squared: 0.03323
## F-statistic: 4.038 on 5 and 437 DF, p-value: 0.001359
# Action 26
rep.c.b26 <- lm(act26 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b26) # no
##
## Call:
## lm(formula = act26 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6875 -1.4444 0.5556 1.5000 1.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57232 0.22385 7.024 2.71e-11 ***
## RepD.d -0.18343 0.30548 -0.600 0.549
## RepI.d -0.04128 0.30555 -0.135 0.893
## cond.c -0.23036 0.44770 -0.515 0.607
## RepD.d:cond.c 0.45258 0.61097 0.741 0.460
## RepI.d:cond.c 0.40356 0.61110 0.660 0.510
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.83 on 218 degrees of freedom
## (321 observations deleted due to missingness)
## Multiple R-squared: 0.004848, Adjusted R-squared: -0.01798
## F-statistic: 0.2124 on 5 and 218 DF, p-value: 0.957
# Action 27
rep.c.b27 <- lm(act25 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b27) # no
##
## Call:
## lm(formula = act25 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3194 -0.9688 0.0789 1.6563 2.8415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2511 0.1528 1.644 0.10095
## RepD.d 0.8691 0.2146 4.050 6.05e-05 ***
## RepI.d 0.6038 0.2152 2.805 0.00525 **
## cond.c -0.1852 0.3056 -0.606 0.54476
## RepD.d:cond.c 0.5836 0.4291 1.360 0.17455
## RepI.d:cond.c 0.4128 0.4305 0.959 0.33814
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 437 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.04416, Adjusted R-squared: 0.03323
## F-statistic: 4.038 on 5 and 437 DF, p-value: 0.001359
# Action 28
rep.c.b28 <- lm(act28 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b28) # no
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2187 1.6912 2.2187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9596 0.1649 5.820 1.29e-08 ***
## RepD.d 0.2615 0.2305 1.134 0.257
## RepI.d 0.0117 0.2350 0.050 0.960
## cond.c -0.3567 0.3298 -1.082 0.280
## RepD.d:cond.c 0.1812 0.4611 0.393 0.695
## RepI.d:cond.c 0.7278 0.4700 1.549 0.122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
# Action 29
rep.c.b29 <- lm(act29 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b29) # no
##
## Call:
## lm(formula = act29 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3438 -1.1250 0.0968 1.6562 2.0968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93343 0.16230 5.751 1.89e-08 ***
## RepD.d 0.38598 0.22565 1.711 0.088 .
## RepI.d 0.14356 0.22622 0.635 0.526
## cond.c -0.06041 0.32459 -0.186 0.852
## RepD.d:cond.c 0.10908 0.45131 0.242 0.809
## RepI.d:cond.c 0.15643 0.45244 0.346 0.730
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.752 on 361 degrees of freedom
## (178 observations deleted due to missingness)
## Multiple R-squared: 0.008834, Adjusted R-squared: -0.004894
## F-statistic: 0.6435 on 5 and 361 DF, p-value: 0.6667
# Action 30
rep.c.b30 <- lm(act30 ~ (RepD.d + RepI.d) * cond.c, data = d)
summary(rep.c.b30) # no
##
## Call:
## lm(formula = act30 ~ (RepD.d + RepI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2545 -1.1167 0.7455 1.8615 2.1373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.96312 0.17625 5.465 8.9e-08 ***
## RepD.d 0.09521 0.24701 0.385 0.700
## RepI.d 0.23338 0.24586 0.949 0.343
## cond.c 0.20075 0.35249 0.570 0.569
## RepD.d:cond.c -0.08408 0.49402 -0.170 0.865
## RepI.d:cond.c -0.08466 0.49173 -0.172 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 345 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.003928, Adjusted R-squared: -0.01051
## F-statistic: 0.2721 on 5 and 345 DF, p-value: 0.9282
Significant condition difference: 19
a. Means for condition diffs
describeBy(d$act19[d$party_factor=="Republican"], d$cond[d$party_factor=="Republican"]) # both supported, ctrl supported more
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 55 0.65 1.97 1 0.8 1.48 -3 3 6 -0.53 -0.81 0.27
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 1.54 1.4 2 1.66 1.48 -3 3 6 -0.93 0.88 0.24
### is climate different from 0?
summary(lm(act28 ~ (RepD.d + RepI.d) * clim.d, data = d))
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2188 1.6912 2.2188
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7812 0.2274 3.436 0.000659 ***
## RepD.d 0.3521 0.3269 1.077 0.282157
## RepI.d 0.3756 0.3415 1.100 0.272035
## clim.d 0.3567 0.3298 1.082 0.280162
## RepD.d:clim.d -0.1812 0.4611 -0.393 0.694555
## RepI.d:clim.d -0.7278 0.4700 -1.549 0.122362
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
### Higher than 0 in the climate condition
summary(lm(act28 ~ (RepD.d + RepI.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2188 1.6912 2.2187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1379 0.2389 4.764 2.74e-06 ***
## RepD.d 0.1709 0.3251 0.526 0.599
## RepI.d -0.3522 0.3230 -1.090 0.276
## ctrl.d -0.3567 0.3298 -1.082 0.280
## RepD.d:ctrl.d 0.1812 0.4611 0.393 0.695
## RepI.d:ctrl.d 0.7278 0.4700 1.549 0.122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
### Higher than 0 in the ctrl condition
2. Gender differences
Action: 5, 14, 20
summary(lm(act1 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act1 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3182 -2.0095 -0.0095 1.8462 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7265 0.2026 -3.586 0.000373 ***
## RepD.d 1.0032 0.2803 3.579 0.000383 ***
## RepI.d 0.8082 0.2857 2.829 0.004880 **
## gend.mf -0.5470 0.4051 -1.350 0.177661
## RepD.d:gend.mf 0.6299 0.5606 1.124 0.261770
## RepI.d:gend.mf 0.6913 0.5713 1.210 0.226899
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 438 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03231, Adjusted R-squared: 0.02127
## F-statistic: 2.925 on 5 and 438 DF, p-value: 0.01307
summary(lm(act2 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act2 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.292 -1.076 0.280 1.708 2.280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8979 0.2137 4.201 3.58e-05 ***
## RepD.d 0.3392 0.2890 1.174 0.242
## RepI.d 0.2461 0.2990 0.823 0.411
## gend.mf -0.3558 0.4275 -0.832 0.406
## RepD.d:gend.mf 0.2453 0.5780 0.424 0.672
## RepI.d:gend.mf 0.5294 0.5979 0.885 0.377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.82 on 279 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.007276, Adjusted R-squared: -0.01051
## F-statistic: 0.409 on 5 and 279 DF, p-value: 0.8424
summary(lm(act3 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act3 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1845 -1.8571 0.1429 1.6667 3.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.70833 0.19483 -3.636 0.000311 ***
## RepD.d 0.81144 0.26405 3.073 0.002253 **
## RepI.d 0.54600 0.26681 2.046 0.041326 *
## gend.mf -0.08333 0.38966 -0.214 0.830757
## RepD.d:gend.mf -0.07939 0.52810 -0.150 0.880568
## RepI.d:gend.mf 0.12229 0.53363 0.229 0.818841
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 433 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.02799, Adjusted R-squared: 0.01676
## F-statistic: 2.493 on 5 and 433 DF, p-value: 0.0305
summary(lm(act4 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act4 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3721 -1.9412 0.2198 2.0588 3.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.33586 0.22709 -1.479 0.1400
## RepD.d 0.65984 0.30377 2.172 0.0305 *
## RepI.d 0.08804 0.32379 0.272 0.7858
## gend.mf -0.55408 0.45418 -1.220 0.2233
## RepD.d:gend.mf 0.65031 0.60755 1.070 0.2852
## RepI.d:gend.mf 0.49800 0.64757 0.769 0.4424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.165 on 360 degrees of freedom
## (179 observations deleted due to missingness)
## Multiple R-squared: 0.01789, Adjusted R-squared: 0.004246
## F-statistic: 1.311 on 5 and 360 DF, p-value: 0.2585
summary(lm(act5 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act5 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2540 -1.1852 0.4133 1.7460 2.6061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8240 0.2001 4.118 5e-05 ***
## RepD.d 0.2485 0.2775 0.895 0.3713
## RepI.d 0.1583 0.2913 0.544 0.5872
## gend.mf -0.8600 0.4001 -2.149 0.0324 *
## RepD.d:gend.mf 0.6611 0.5550 1.191 0.2345
## RepI.d:gend.mf 1.2658 0.5827 2.172 0.0306 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 286 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.02198, Adjusted R-squared: 0.004878
## F-statistic: 1.285 on 5 and 286 DF, p-value: 0.2702
summary(lm(act6 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act6 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7273 -1.2184 0.6579 1.6579 2.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.00920 0.19196 5.257 2.56e-07 ***
## RepD.d 0.09241 0.26552 0.348 0.7280
## RepI.d 0.49575 0.26588 1.865 0.0631 .
## gend.mf -0.41839 0.38392 -1.090 0.2766
## RepD.d:gend.mf -0.06260 0.53104 -0.118 0.9062
## RepI.d:gend.mf 0.86305 0.53177 1.623 0.1055
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 348 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01702, Adjusted R-squared: 0.002894
## F-statistic: 1.205 on 5 and 348 DF, p-value: 0.3064
summary(lm(act7 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act7 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1684 -1.9773 0.0472 1.8316 3.6562
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.55035 0.21114 -2.607 0.00949 **
## RepD.d 0.62319 0.28361 2.197 0.02856 *
## RepI.d 0.58559 0.29404 1.991 0.04710 *
## gend.mf -0.21181 0.42229 -0.502 0.61624
## RepD.d:gend.mf 0.02066 0.56721 0.036 0.97097
## RepI.d:gend.mf 0.37662 0.58809 0.640 0.52226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 404 degrees of freedom
## (135 observations deleted due to missingness)
## Multiple R-squared: 0.01716, Adjusted R-squared: 0.004995
## F-statistic: 1.411 on 5 and 404 DF, p-value: 0.2193
summary(lm(act8 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act8 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4545 -1.8926 -0.1593 1.8407 4.1892
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.14831 0.19868 -5.780 1.36e-08 ***
## RepD.d 1.45523 0.27348 5.321 1.60e-07 ***
## RepI.d 0.82889 0.27691 2.993 0.00291 **
## gend.mf -0.08175 0.39736 -0.206 0.83709
## RepD.d:gend.mf 0.37700 0.54697 0.689 0.49100
## RepI.d:gend.mf 0.12059 0.55383 0.218 0.82772
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.115 on 470 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.06738, Adjusted R-squared: 0.05746
## F-statistic: 6.791 on 5 and 470 DF, p-value: 3.961e-06
summary(lm(act9 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act9 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3564 -1.6055 0.0435 1.6436 3.5882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4914 0.1937 -2.536 0.0115 *
## RepD.d 0.6478 0.2613 2.479 0.0136 *
## RepI.d 0.6744 0.2634 2.561 0.0108 *
## gend.mf -0.1937 0.3874 -0.500 0.6173
## RepD.d:gend.mf -0.2062 0.5227 -0.394 0.6934
## RepI.d:gend.mf 0.1134 0.5268 0.215 0.8297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 438 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02744, Adjusted R-squared: 0.01634
## F-statistic: 2.472 on 5 and 438 DF, p-value: 0.03179
summary(lm(act10 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act10 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.9722 0.2857 1.7034 4.0278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8656 0.1948 -4.444 1.10e-05 ***
## RepD.d 1.4950 0.2687 5.564 4.45e-08 ***
## RepI.d 1.1879 0.2653 4.478 9.49e-06 ***
## gend.mf -0.3244 0.3896 -0.833 0.405
## RepD.d:gend.mf 0.4940 0.5374 0.919 0.358
## RepI.d:gend.mf 0.2252 0.5306 0.424 0.671
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 467 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.07975, Adjusted R-squared: 0.0699
## F-statistic: 8.094 on 5 and 467 DF, p-value: 2.448e-07
summary(lm(act11 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act11 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0519 -1.0519 0.3382 1.7105 2.3382
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.71019 0.21031 3.377 0.000829 ***
## RepD.d 0.41182 0.28551 1.442 0.150232
## RepI.d 0.21901 0.29140 0.752 0.452898
## gend.mf 0.09686 0.42062 0.230 0.818039
## RepD.d:gend.mf 0.23807 0.57103 0.417 0.677034
## RepI.d:gend.mf -0.34235 0.58281 -0.587 0.557358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.897 on 303 degrees of freedom
## (236 observations deleted due to missingness)
## Multiple R-squared: 0.01116, Adjusted R-squared: -0.005162
## F-statistic: 0.6836 on 5 and 303 DF, p-value: 0.6362
summary(lm(act12 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act12 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4217 -2.1579 -0.1579 1.8355 4.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0442 0.2144 -4.871 1.64e-06 ***
## RepD.d 1.2551 0.3034 4.137 4.35e-05 ***
## RepI.d 1.2065 0.2990 4.035 6.63e-05 ***
## gend.mf -0.5782 0.4288 -1.349 0.178
## RepD.d:gend.mf 0.1565 0.6068 0.258 0.797
## RepI.d:gend.mf 0.5870 0.5981 0.982 0.327
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.13 on 374 degrees of freedom
## (165 observations deleted due to missingness)
## Multiple R-squared: 0.06734, Adjusted R-squared: 0.05487
## F-statistic: 5.401 on 5 and 374 DF, p-value: 8.241e-05
summary(lm(act13 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act13 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5000 -2.0784 -0.0784 1.8067 3.6990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4101 0.2057 -1.994 0.0468 *
## RepD.d 0.6993 0.2813 2.486 0.0133 *
## RepI.d 0.2687 0.2764 0.972 0.3315
## gend.mf 0.5778 0.4114 1.405 0.1609
## RepD.d:gend.mf -0.1562 0.5626 -0.278 0.7813
## RepI.d:gend.mf -1.2473 0.5527 -2.257 0.0245 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 433 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.03722, Adjusted R-squared: 0.0261
## F-statistic: 3.347 on 5 and 433 DF, p-value: 0.005603
summary(lm(act14 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act14 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.730 -1.520 0.322 1.538 3.609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03464 0.24852 0.139 0.8893
## RepD.d 0.56100 0.32421 1.730 0.0847 .
## RepI.d 0.32953 0.34348 0.959 0.3382
## gend.mf -1.28666 0.49704 -2.589 0.0101 *
## RepD.d:gend.mf 1.55485 0.64842 2.398 0.0172 *
## RepI.d:gend.mf 0.97500 0.68696 1.419 0.1569
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.022 on 277 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.02875, Adjusted R-squared: 0.01121
## F-statistic: 1.64 on 5 and 277 DF, p-value: 0.1496
summary(lm(act15 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act15 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5581 -1.5581 0.4634 1.5278 3.5278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2926 0.2020 -1.449 0.14823
## RepD.d 0.8345 0.2798 2.983 0.00304 **
## RepI.d 0.2120 0.2774 0.764 0.44530
## gend.mf -0.4703 0.4040 -1.164 0.24506
## RepD.d:gend.mf 0.5028 0.5595 0.899 0.36944
## RepI.d:gend.mf -0.2952 0.5548 -0.532 0.59500
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.038 on 375 degrees of freedom
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.03469, Adjusted R-squared: 0.02182
## F-statistic: 2.695 on 5 and 375 DF, p-value: 0.02078
summary(lm(act16 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act16 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2692 -0.9860 0.1667 1.3103 2.3103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89069 0.19623 4.539 8e-06 ***
## RepD.d 0.11983 0.26881 0.446 0.656
## RepI.d 0.08875 0.28291 0.314 0.754
## gend.mf -0.11472 0.39247 -0.292 0.770
## RepD.d:gend.mf -0.06423 0.53763 -0.119 0.905
## RepI.d:gend.mf 0.69429 0.56582 1.227 0.221
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.824 on 322 degrees of freedom
## (217 observations deleted due to missingness)
## Multiple R-squared: 0.009561, Adjusted R-squared: -0.005818
## F-statistic: 0.6217 on 5 and 322 DF, p-value: 0.6834
summary(lm(act17 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act17 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8837 -1.4362 0.4583 1.5741 3.0541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1911 0.1949 0.980 0.3276
## RepD.d 0.5216 0.2682 1.945 0.0525 .
## RepI.d 0.2219 0.2760 0.804 0.4218
## gend.mf -0.4902 0.3898 -1.258 0.2093
## RepD.d:gend.mf 0.8323 0.5365 1.551 0.1216
## RepI.d:gend.mf 0.4643 0.5519 0.841 0.4007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.009 on 407 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01111, Adjusted R-squared: -0.001043
## F-statistic: 0.9141 on 5 and 407 DF, p-value: 0.4717
summary(lm(act18 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act18 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9730 -1.3947 0.2561 1.5000 2.6053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4474 0.1983 2.256 0.0247 *
## RepD.d 0.4111 0.2692 1.527 0.1277
## RepI.d 0.1573 0.2738 0.574 0.5661
## gend.mf 0.1053 0.3966 0.265 0.7908
## RepD.d:gend.mf 0.1238 0.5385 0.230 0.8183
## RepI.d:gend.mf -0.4395 0.5475 -0.803 0.4227
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 343 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01109, Adjusted R-squared: -0.003321
## F-statistic: 0.7696 on 5 and 343 DF, p-value: 0.5722
summary(lm(act19 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act19 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3538 -1.1719 0.4231 1.6462 2.4231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8744 0.2096 4.173 4.08e-05 ***
## RepD.d 0.2420 0.2962 0.817 0.415
## RepI.d 0.4525 0.2889 1.566 0.118
## gend.mf -0.5950 0.4191 -1.420 0.157
## RepD.d:gend.mf 0.6584 0.5924 1.111 0.267
## RepI.d:gend.mf 0.5411 0.5778 0.936 0.350
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.802 on 265 degrees of freedom
## (274 observations deleted due to missingness)
## Multiple R-squared: 0.01397, Adjusted R-squared: -0.00463
## F-statistic: 0.7511 on 5 and 265 DF, p-value: 0.5859
summary(lm(act20 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act20 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5139 -1.1429 0.4861 1.5556 2.3226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.09565 0.19038 5.755 2.06e-08 ***
## RepD.d 0.02878 0.26102 0.110 0.9123
## RepI.d 0.16327 0.27223 0.600 0.5491
## gend.mf -0.83647 0.38075 -2.197 0.0288 *
## RepD.d:gend.mf 1.11391 0.52204 2.134 0.0336 *
## RepI.d:gend.mf 0.60433 0.54446 1.110 0.2679
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.772 on 313 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02125, Adjusted R-squared: 0.005613
## F-statistic: 1.359 on 5 and 313 DF, p-value: 0.2396
summary(lm(act21 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act21 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.308 -1.850 0.150 1.760 3.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6184 0.2020 -3.061 0.00236 **
## RepD.d 0.6972 0.2801 2.489 0.01322 *
## RepI.d 0.8239 0.2863 2.877 0.00423 **
## gend.mf -0.5411 0.4041 -1.339 0.18132
## RepD.d:gend.mf 0.9988 0.5602 1.783 0.07538 .
## RepI.d:gend.mf 0.4729 0.5727 0.826 0.40943
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.055 on 392 degrees of freedom
## (147 observations deleted due to missingness)
## Multiple R-squared: 0.02841, Adjusted R-squared: 0.01602
## F-statistic: 2.293 on 5 and 392 DF, p-value: 0.04499
summary(lm(act22 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act22 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.5263 0.2421 1.5686 3.4194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3307 0.2024 -1.634 0.10310
## RepD.d 1.1748 0.2766 4.248 2.69e-05 ***
## RepI.d 0.7622 0.2746 2.776 0.00577 **
## gend.mf -0.1772 0.4049 -0.438 0.66177
## RepD.d:gend.mf 0.4891 0.5531 0.884 0.37711
## RepI.d:gend.mf 0.3670 0.5492 0.668 0.50430
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 393 degrees of freedom
## (146 observations deleted due to missingness)
## Multiple R-squared: 0.04966, Adjusted R-squared: 0.03757
## F-statistic: 4.107 on 5 and 393 DF, p-value: 0.001201
summary(lm(act23 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act23 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6667 -2.2821 0.0678 2.0678 3.1154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09159 0.26687 -0.343 0.732
## RepD.d 0.24494 0.35781 0.685 0.494
## RepI.d 0.56595 0.36783 1.539 0.125
## gend.mf -0.04759 0.53374 -0.089 0.929
## RepD.d:gend.mf 0.19803 0.71561 0.277 0.782
## RepI.d:gend.mf 0.43220 0.73567 0.587 0.557
##
## Residual standard error: 2.267 on 283 degrees of freedom
## (256 observations deleted due to missingness)
## Multiple R-squared: 0.009342, Adjusted R-squared: -0.008161
## F-statistic: 0.5337 on 5 and 283 DF, p-value: 0.7507
summary(lm(act24 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act24 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.13 -2.00 -0.13 1.59 3.59
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.48684 0.19980 -2.437 0.0153 *
## RepD.d 0.31847 0.27709 1.149 0.2511
## RepI.d 0.25697 0.28025 0.917 0.3597
## gend.mf 0.07895 0.39960 0.198 0.8435
## RepD.d:gend.mf 0.25779 0.55417 0.465 0.6421
## RepI.d:gend.mf -0.79869 0.56050 -1.425 0.1549
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.082 on 406 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.01727, Adjusted R-squared: 0.005164
## F-statistic: 1.427 on 5 and 406 DF, p-value: 0.2135
summary(lm(act25 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act25 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2791 -1.0194 0.0833 1.6847 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.15766 0.17784 0.887 0.376
## RepD.d 0.99159 0.24366 4.070 5.59e-05 ***
## RepI.d 0.61775 0.24484 2.523 0.012 *
## gend.mf -0.31532 0.35568 -0.887 0.376
## RepD.d:gend.mf 0.57497 0.48731 1.180 0.239
## RepI.d:gend.mf 0.03279 0.48967 0.067 0.947
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.04154, Adjusted R-squared: 0.03052
## F-statistic: 3.77 on 5 and 435 DF, p-value: 0.002362
summary(lm(act26 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act26 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7609 -1.1429 0.5614 1.3929 1.8571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.45186 0.24004 6.048 6.33e-09 ***
## RepD.d -0.02584 0.32286 -0.080 0.936
## RepI.d 0.13107 0.33159 0.395 0.693
## gend.mf -0.61801 0.48008 -1.287 0.199
## RepD.d:gend.mf 0.98026 0.64573 1.518 0.130
## RepI.d:gend.mf 0.90669 0.66318 1.367 0.173
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.823 on 217 degrees of freedom
## (322 observations deleted due to missingness)
## Multiple R-squared: 0.01451, Adjusted R-squared: -0.008199
## F-statistic: 0.6389 on 5 and 217 DF, p-value: 0.6702
summary(lm(act27 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act27 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4324 -0.9467 0.0533 1.5676 2.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4500 0.2017 2.231 0.02638 *
## RepD.d 0.7396 0.2755 2.685 0.00765 **
## RepI.d 0.1733 0.2853 0.608 0.54389
## gend.mf 0.1000 0.4034 0.248 0.80436
## RepD.d:gend.mf 0.3858 0.5509 0.700 0.48432
## RepI.d:gend.mf 0.1867 0.5705 0.327 0.74376
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.868 on 308 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03174, Adjusted R-squared: 0.01602
## F-statistic: 2.019 on 5 and 308 DF, p-value: 0.07577
summary(lm(act28 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2151 -1.0449 0.2069 1.7849 2.3030
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.87096 0.18603 4.682 4.02e-06 ***
## RepD.d 0.34263 0.26233 1.306 0.192
## RepI.d 0.02016 0.26906 0.075 0.940
## gend.mf -0.34797 0.37207 -0.935 0.350
## RepD.d:gend.mf 0.34504 0.52465 0.658 0.511
## RepI.d:gend.mf 0.15195 0.53812 0.282 0.778
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 363 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.007968, Adjusted R-squared: -0.005696
## F-statistic: 0.5831 on 5 and 363 DF, p-value: 0.7129
summary(lm(act29 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act29 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.056 0.069 1.667 2.069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.932184 0.185773 5.018 8.24e-07 ***
## RepD.d 0.378161 0.254453 1.486 0.138
## RepI.d 0.151462 0.254062 0.596 0.551
## gend.mf 0.002299 0.371547 0.006 0.995
## RepD.d:gend.mf 0.043678 0.508906 0.086 0.932
## RepI.d:gend.mf 0.052632 0.508124 0.104 0.918
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.755 on 359 degrees of freedom
## (180 observations deleted due to missingness)
## Multiple R-squared: 0.00763, Adjusted R-squared: -0.006191
## F-statistic: 0.552 on 5 and 359 DF, p-value: 0.7368
summary(lm(act30 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act30 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2581 -1.1685 0.7419 1.8228 2.4194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8506 0.1964 4.330 1.96e-05 ***
## RepD.d 0.1130 0.2717 0.416 0.678
## RepI.d 0.3627 0.2765 1.312 0.190
## gend.mf -0.5398 0.3929 -1.374 0.170
## RepD.d:gend.mf 0.1126 0.5434 0.207 0.836
## RepI.d:gend.mf 0.6294 0.5531 1.138 0.256
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 343 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01173, Adjusted R-squared: -0.002672
## F-statistic: 0.8145 on 5 and 343 DF, p-value: 0.5399
a. Means for gender differences
summary(lm(act5 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act5 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2540 -1.1852 0.4133 1.7460 2.6061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8240 0.2001 4.118 5e-05 ***
## RepD.d 0.2485 0.2775 0.895 0.3713
## RepI.d 0.1583 0.2913 0.544 0.5872
## gend.mf -0.8600 0.4001 -2.149 0.0324 *
## RepD.d:gend.mf 0.6611 0.5550 1.191 0.2345
## RepI.d:gend.mf 1.2658 0.5827 2.172 0.0306 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 286 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.02198, Adjusted R-squared: 0.004878
## F-statistic: 1.285 on 5 and 286 DF, p-value: 0.2702
round(mean(d$act5[d$party_factor == "Republican" & d$gend == "Female"], na.rm = T),2)
## [1] 1.25
round(mean(d$act5[d$party_factor == "Republican" & d$gend == "Male"], na.rm = T),2)
## [1] 0.39
summary(lm(act14 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act14 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.730 -1.520 0.322 1.538 3.609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03464 0.24852 0.139 0.8893
## RepD.d 0.56100 0.32421 1.730 0.0847 .
## RepI.d 0.32953 0.34348 0.959 0.3382
## gend.mf -1.28666 0.49704 -2.589 0.0101 *
## RepD.d:gend.mf 1.55485 0.64842 2.398 0.0172 *
## RepI.d:gend.mf 0.97500 0.68696 1.419 0.1569
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.022 on 277 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.02875, Adjusted R-squared: 0.01121
## F-statistic: 1.64 on 5 and 277 DF, p-value: 0.1496
round(mean(d$act14[d$party_factor == "Republican" & d$gend == "Female"], na.rm = T),2)
## [1] 0.68
round(mean(d$act14[d$party_factor == "Republican" & d$gend == "Male"], na.rm = T),2)
## [1] -0.61
summary(lm(act20 ~ (RepD.d + RepI.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act20 ~ (RepD.d + RepI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5139 -1.1429 0.4861 1.5556 2.3226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.09565 0.19038 5.755 2.06e-08 ***
## RepD.d 0.02878 0.26102 0.110 0.9123
## RepI.d 0.16327 0.27223 0.600 0.5491
## gend.mf -0.83647 0.38075 -2.197 0.0288 *
## RepD.d:gend.mf 1.11391 0.52204 2.134 0.0336 *
## RepI.d:gend.mf 0.60433 0.54446 1.110 0.2679
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.772 on 313 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02125, Adjusted R-squared: 0.005613
## F-statistic: 1.359 on 5 and 313 DF, p-value: 0.2396
round(mean(d$act20[d$party_factor == "Republican" & d$gend == "Female"], na.rm = T),2)
## [1] 1.51
round(mean(d$act20[d$party_factor == "Republican" & d$gend == "Male"], na.rm = T),2)
## [1] 0.68
3. Gender x Condition
Significant effects: Actions 26
summary(lm(act1 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7273 -2.0492 -0.0019 1.9273 3.6522
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7811 0.2073 -3.768 0.000188 ***
## RepD.d 1.0640 0.2842 3.744 0.000206 ***
## RepI.d 0.8168 0.2904 2.813 0.005134 **
## gend.mf -0.6614 0.4147 -1.595 0.111450
## cond.c 0.3601 0.4147 0.868 0.385684
## RepD.d:gend.mf 0.7289 0.5684 1.282 0.200436
## RepI.d:gend.mf 0.7290 0.5808 1.255 0.210055
## RepD.d:cond.c -0.5531 0.5684 -0.973 0.331065
## RepI.d:cond.c -1.0651 0.5808 -1.834 0.067336 .
## gend.mf:cond.c 1.1184 0.8293 1.349 0.178183
## RepD.d:gend.mf:cond.c -0.7989 1.1369 -0.703 0.482614
## RepI.d:gend.mf:cond.c -2.3393 1.1615 -2.014 0.044634 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 432 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.04596, Adjusted R-squared: 0.02167
## F-statistic: 1.892 on 11 and 432 DF, p-value: 0.03851
summary(lm(act2 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6765 -0.9062 0.3235 1.3889 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93816 0.21937 4.277 2.63e-05 ***
## RepD.d 0.26814 0.29308 0.915 0.3611
## RepI.d 0.15133 0.30540 0.496 0.6206
## gend.mf -0.26522 0.43874 -0.604 0.5460
## cond.c -0.47008 0.43874 -1.071 0.2849
## RepD.d:gend.mf 0.13039 0.58616 0.222 0.8241
## RepI.d:gend.mf 0.46198 0.61081 0.756 0.4501
## RepD.d:cond.c 0.53955 0.58616 0.920 0.3581
## RepI.d:cond.c -0.03982 0.61081 -0.065 0.9481
## gend.mf:cond.c -0.28207 0.87747 -0.321 0.7481
## RepD.d:gend.mf:cond.c 2.03201 1.17232 1.733 0.0842 .
## RepI.d:gend.mf:cond.c 0.18671 1.22162 0.153 0.8786
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 273 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.03645, Adjusted R-squared: -0.002379
## F-statistic: 0.9387 on 11 and 273 DF, p-value: 0.5035
summary(lm(act3 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4808 -1.7697 0.1176 1.5192 3.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.77115 0.20396 -3.781 0.000179 ***
## RepD.d 0.86051 0.27136 3.171 0.001628 **
## RepI.d 0.61337 0.27451 2.234 0.025975 *
## gend.mf -0.20769 0.40793 -0.509 0.610917
## cond.c 0.34231 0.40793 0.839 0.401862
## RepD.d:gend.mf 0.02327 0.54271 0.043 0.965813
## RepI.d:gend.mf 0.22579 0.54903 0.411 0.681096
## RepD.d:cond.c -0.32596 0.54271 -0.601 0.548421
## RepI.d:cond.c -0.30109 0.54903 -0.548 0.583702
## gend.mf:cond.c 0.81538 0.81586 0.999 0.318156
## RepD.d:gend.mf:cond.c -1.97952 1.08543 -1.824 0.068893 .
## RepI.d:gend.mf:cond.c -1.14497 1.09805 -1.043 0.297665
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.013 on 427 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.03842, Adjusted R-squared: 0.01365
## F-statistic: 1.551 on 11 and 427 DF, p-value: 0.1107
summary(lm(act4 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6923 -1.9844 0.1636 1.9750 4.0625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3181 0.2315 -1.374 0.1702
## RepD.d 0.6464 0.3092 2.091 0.0373 *
## RepI.d 0.1083 0.3284 0.330 0.7418
## gend.mf -0.5172 0.4629 -1.117 0.2646
## cond.c -0.1006 0.4629 -0.217 0.8282
## RepD.d:gend.mf 0.6594 0.6184 1.066 0.2870
## RepI.d:gend.mf 0.5667 0.6568 0.863 0.3888
## RepD.d:cond.c 0.4628 0.6184 0.748 0.4547
## RepI.d:cond.c -0.8478 0.6568 -1.291 0.1976
## gend.mf:cond.c -0.4392 0.9259 -0.474 0.6355
## RepD.d:gend.mf:cond.c 0.2350 1.2368 0.190 0.8494
## RepI.d:gend.mf:cond.c -1.1737 1.3136 -0.893 0.3722
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.164 on 354 degrees of freedom
## (179 observations deleted due to missingness)
## Multiple R-squared: 0.03473, Adjusted R-squared: 0.004739
## F-statistic: 1.158 on 11 and 354 DF, p-value: 0.3153
summary(lm(act5 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2647 -1.2414 0.2432 1.4847 2.9048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.87950 0.20588 4.272 2.66e-05 ***
## RepD.d 0.18038 0.28208 0.639 0.5230
## RepI.d 0.10746 0.29590 0.363 0.7168
## gend.mf -0.74709 0.41176 -1.814 0.0707 .
## cond.c -0.39905 0.41176 -0.969 0.3333
## RepD.d:gend.mf 0.57470 0.56417 1.019 0.3092
## RepI.d:gend.mf 1.15779 0.59180 1.956 0.0514 .
## RepD.d:cond.c -0.04001 0.56417 -0.071 0.9435
## RepI.d:cond.c 0.23159 0.59180 0.391 0.6958
## gend.mf:cond.c -0.84476 0.82352 -1.026 0.3059
## RepD.d:gend.mf:cond.c 1.61761 1.12834 1.434 0.1528
## RepI.d:gend.mf:cond.c 0.41044 1.18360 0.347 0.7290
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 280 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03883, Adjusted R-squared: 0.001066
## F-statistic: 1.028 on 11 and 280 DF, p-value: 0.4213
summary(lm(act6 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.500 -1.108 0.600 1.600 2.400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02202 0.20198 5.060 6.86e-07 ***
## RepD.d 0.06093 0.27483 0.222 0.8247
## RepI.d 0.46530 0.27469 1.694 0.0912 .
## gend.mf -0.39405 0.40396 -0.975 0.3300
## cond.c -0.09405 0.40396 -0.233 0.8160
## RepD.d:gend.mf -0.12425 0.54967 -0.226 0.8213
## RepI.d:gend.mf 0.86058 0.54938 1.566 0.1182
## RepD.d:cond.c -0.10345 0.54967 -0.188 0.8508
## RepI.d:cond.c -0.27249 0.54938 -0.496 0.6202
## gend.mf:cond.c -0.11190 0.80792 -0.139 0.8899
## RepD.d:gend.mf:cond.c -0.38835 1.09934 -0.353 0.7241
## RepI.d:gend.mf:cond.c -0.03738 1.09875 -0.034 0.9729
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 342 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.02172, Adjusted R-squared: -0.009744
## F-statistic: 0.6903 on 11 and 342 DF, p-value: 0.7479
summary(lm(act7 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3725 -1.9167 0.0893 1.6275 3.5600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5925 0.2172 -2.728 0.00665 **
## RepD.d 0.6556 0.2888 2.270 0.02372 *
## RepI.d 0.6427 0.2995 2.146 0.03249 *
## gend.mf -0.2984 0.4343 -0.687 0.49247
## cond.c 0.4584 0.4343 1.055 0.29189
## RepD.d:gend.mf 0.1203 0.5775 0.208 0.83505
## RepI.d:gend.mf 0.4341 0.5990 0.725 0.46901
## RepD.d:cond.c -0.3074 0.5775 -0.532 0.59484
## RepI.d:cond.c -0.2560 0.5990 -0.427 0.66931
## gend.mf:cond.c 0.4499 0.8687 0.518 0.60484
## RepD.d:gend.mf:cond.c -1.0293 1.1551 -0.891 0.37339
## RepI.d:gend.mf:cond.c -0.8269 1.1979 -0.690 0.49045
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.084 on 398 degrees of freedom
## (135 observations deleted due to missingness)
## Multiple R-squared: 0.02484, Adjusted R-squared: -0.002116
## F-statistic: 0.9215 on 11 and 398 DF, p-value: 0.5194
summary(lm(act8 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5909 -1.6719 -0.1404 1.8596 4.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0934179 0.2064887 -5.295 1.84e-07 ***
## RepD.d 1.4009694 0.2795089 5.012 7.67e-07 ***
## RepI.d 0.7822775 0.2831360 2.763 0.00596 **
## gend.mf 0.0009383 0.4129773 0.002 0.99819
## cond.c -0.5579559 0.4129773 -1.351 0.17734
## RepD.d:gend.mf 0.2930495 0.5590177 0.524 0.60037
## RepI.d:gend.mf 0.0213425 0.5662720 0.038 0.96995
## RepD.d:cond.c 0.8373333 0.5590177 1.498 0.13485
## RepI.d:cond.c 0.4915574 0.5662720 0.868 0.38581
## gend.mf:cond.c -0.1789600 0.8259546 -0.217 0.82856
## RepD.d:gend.mf:cond.c 0.1656597 1.1180355 0.148 0.88227
## RepI.d:gend.mf:cond.c -0.4882431 1.1325440 -0.431 0.66659
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 464 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07492, Adjusted R-squared: 0.05299
## F-statistic: 3.416 on 11 and 464 DF, p-value: 0.0001407
summary(lm(act9 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4615 -1.6087 0.2381 1.6512 3.4182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5450 0.2049 -2.659 0.00812 **
## RepD.d 0.6920 0.2706 2.557 0.01089 *
## RepI.d 0.7398 0.2732 2.708 0.00703 **
## gend.mf -0.3014 0.4098 -0.735 0.46252
## cond.c 0.2804 0.4098 0.684 0.49417
## RepD.d:gend.mf -0.1109 0.5412 -0.205 0.83775
## RepI.d:gend.mf 0.1974 0.5464 0.361 0.71813
## RepD.d:cond.c -0.3512 0.5412 -0.649 0.51677
## RepI.d:cond.c -0.3213 0.5464 -0.588 0.55675
## gend.mf:cond.c 0.6565 0.8197 0.801 0.42361
## RepD.d:gend.mf:cond.c -1.2312 1.0824 -1.137 0.25596
## RepI.d:gend.mf:cond.c -1.1461 1.0928 -1.049 0.29484
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 432 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03168, Adjusted R-squared: 0.007022
## F-statistic: 1.285 on 11 and 432 DF, p-value: 0.2302
summary(lm(act10 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9000 -1.7391 0.4211 1.5789 4.2609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8187 0.2017 -4.059 5.80e-05 ***
## RepD.d 1.4521 0.2744 5.292 1.87e-07 ***
## RepI.d 1.1356 0.2711 4.189 3.36e-05 ***
## gend.mf -0.2388 0.4035 -0.592 0.554
## cond.c -0.4431 0.4035 -1.098 0.273
## RepD.d:gend.mf 0.4175 0.5487 0.761 0.447
## RepI.d:gend.mf 0.1506 0.5421 0.278 0.781
## RepD.d:cond.c 0.5854 0.5487 1.067 0.287
## RepI.d:cond.c 0.5687 0.5421 1.049 0.295
## gend.mf:cond.c -0.4048 0.8069 -0.502 0.616
## RepD.d:gend.mf:cond.c 0.8292 1.0975 0.756 0.450
## RepI.d:gend.mf:cond.c 1.0627 1.0843 0.980 0.328
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.054 on 461 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.08452, Adjusted R-squared: 0.06267
## F-statistic: 3.869 on 11 and 461 DF, p-value: 2.315e-05
summary(lm(act11 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -1.1111 0.3636 1.4286 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.72446 0.21422 3.382 0.000816 ***
## RepD.d 0.37314 0.28868 1.293 0.197167
## RepI.d 0.16413 0.29432 0.558 0.577494
## gend.mf 0.12684 0.42844 0.296 0.767398
## cond.c -0.14589 0.42844 -0.341 0.733714
## RepD.d:gend.mf 0.19057 0.57736 0.330 0.741573
## RepI.d:gend.mf -0.43344 0.58865 -0.736 0.462113
## RepD.d:cond.c -0.34146 0.57736 -0.591 0.554690
## RepI.d:cond.c -0.84751 0.58865 -1.440 0.150988
## gend.mf:cond.c -0.19307 0.85688 -0.225 0.821884
## RepD.d:gend.mf:cond.c -0.09273 1.15472 -0.080 0.936046
## RepI.d:gend.mf:cond.c -0.76130 1.17730 -0.647 0.518358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.891 on 297 degrees of freedom
## (236 observations deleted due to missingness)
## Multiple R-squared: 0.03642, Adjusted R-squared: 0.0007281
## F-statistic: 1.02 on 11 and 297 DF, p-value: 0.428
summary(lm(act12 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4359 -2.0600 -0.1111 1.9130 4.2381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.06663 0.22236 -4.797 2.35e-06 ***
## RepD.d 1.27706 0.31024 4.116 4.76e-05 ***
## RepI.d 1.23163 0.30585 4.027 6.87e-05 ***
## gend.mf -0.60483 0.44472 -1.360 0.175
## cond.c -0.01788 0.44472 -0.040 0.968
## RepD.d:gend.mf 0.18071 0.62049 0.291 0.771
## RepI.d:gend.mf 0.60817 0.61170 0.994 0.321
## RepD.d:cond.c -0.02591 0.62049 -0.042 0.967
## RepI.d:cond.c 0.06565 0.61170 0.107 0.915
## gend.mf:cond.c 0.55956 0.88945 0.629 0.530
## RepD.d:gend.mf:cond.c -0.70075 1.24097 -0.565 0.573
## RepI.d:gend.mf:cond.c -0.87734 1.22340 -0.717 0.474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 368 degrees of freedom
## (165 observations deleted due to missingness)
## Multiple R-squared: 0.06951, Adjusted R-squared: 0.04169
## F-statistic: 2.499 on 11 and 368 DF, p-value: 0.004871
summary(lm(act13 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7778 -1.8242 0.0923 1.5417 3.9444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.33730 0.21098 -1.599 0.1106
## RepD.d 0.64970 0.28511 2.279 0.0232 *
## RepI.d 0.21039 0.27991 0.752 0.4527
## gend.mf 0.69841 0.42195 1.655 0.0986 .
## cond.c -0.74603 0.42195 -1.768 0.0778 .
## RepD.d:gend.mf -0.27270 0.57022 -0.478 0.6327
## RepI.d:gend.mf -1.39697 0.55981 -2.495 0.0130 *
## RepD.d:cond.c 0.63976 0.57022 1.122 0.2625
## RepI.d:cond.c 1.10832 0.55981 1.980 0.0484 *
## gend.mf:cond.c -0.46032 0.84390 -0.545 0.5857
## RepD.d:gend.mf:cond.c 1.68296 1.14044 1.476 0.1408
## RepI.d:gend.mf:cond.c -0.07379 1.11963 -0.066 0.9475
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.047 on 427 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.05903, Adjusted R-squared: 0.03479
## F-statistic: 2.435 on 11 and 427 DF, p-value: 0.00595
summary(lm(act14 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8947 -1.5556 0.2667 1.6471 3.2667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04009 0.25875 -0.155 0.87700
## RepD.d 0.63606 0.33284 1.911 0.05706 .
## RepI.d 0.41885 0.35298 1.187 0.23641
## gend.mf -1.43649 0.51751 -2.776 0.00589 **
## cond.c 0.48017 0.51751 0.928 0.35431
## RepD.d:gend.mf 1.69485 0.66568 2.546 0.01145 *
## RepI.d:gend.mf 1.04959 0.70596 1.487 0.13824
## RepD.d:cond.c -0.53591 0.66568 -0.805 0.42149
## RepI.d:cond.c 0.05716 0.70596 0.081 0.93552
## gend.mf:cond.c 1.00632 1.03502 0.972 0.33178
## RepD.d:gend.mf:cond.c -1.57321 1.33135 -1.182 0.23838
## RepI.d:gend.mf:cond.c -0.97610 1.41191 -0.691 0.48995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.032 on 271 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.04048, Adjusted R-squared: 0.001535
## F-statistic: 1.039 on 11 and 271 DF, p-value: 0.4117
summary(lm(act15 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8421 -1.7727 0.1579 1.7727 3.7727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.25664 0.20617 -1.245 0.21399
## RepD.d 0.80372 0.28318 2.838 0.00479 **
## RepI.d 0.16628 0.28103 0.592 0.55443
## gend.mf -0.40230 0.41234 -0.976 0.32989
## cond.c -0.14316 0.41234 -0.347 0.72865
## RepD.d:gend.mf 0.42935 0.56636 0.758 0.44889
## RepI.d:gend.mf -0.34316 0.56206 -0.611 0.54188
## RepD.d:cond.c -0.05933 0.56636 -0.105 0.91662
## RepI.d:cond.c -0.03308 0.56206 -0.059 0.95310
## gend.mf:cond.c -0.97342 0.82469 -1.180 0.23862
## RepD.d:gend.mf:cond.c 1.80265 1.13272 1.591 0.11237
## RepI.d:gend.mf:cond.c 1.37829 1.12412 1.226 0.22094
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 369 degrees of freedom
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.0454, Adjusted R-squared: 0.01694
## F-statistic: 1.595 on 11 and 369 DF, p-value: 0.09792
summary(lm(act16 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2121 -1.0500 0.0526 1.3846 2.6170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.91780 0.20195 4.545 7.85e-06 ***
## RepD.d 0.09576 0.27332 0.350 0.726
## RepI.d 0.07506 0.28729 0.261 0.794
## gend.mf -0.06048 0.40391 -0.150 0.881
## cond.c -0.20402 0.40391 -0.505 0.614
## RepD.d:gend.mf -0.12452 0.54665 -0.228 0.820
## RepI.d:gend.mf 0.61322 0.57458 1.067 0.287
## RepD.d:cond.c 0.12587 0.54665 0.230 0.818
## RepI.d:cond.c 0.88369 0.57458 1.538 0.125
## gend.mf:cond.c -0.40535 0.80782 -0.502 0.616
## RepD.d:gend.mf:cond.c -0.17519 1.09330 -0.160 0.873
## RepI.d:gend.mf:cond.c 0.43064 1.14916 0.375 0.708
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.827 on 316 degrees of freedom
## (217 observations deleted due to missingness)
## Multiple R-squared: 0.02432, Adjusted R-squared: -0.009643
## F-statistic: 0.7161 on 11 and 316 DF, p-value: 0.7231
summary(lm(act17 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.5111 0.2941 1.6667 3.1304
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20812 0.20059 1.038 0.3001
## RepD.d 0.50602 0.27314 1.853 0.0647 .
## RepI.d 0.21518 0.28129 0.765 0.4447
## gend.mf -0.47524 0.40118 -1.185 0.2369
## cond.c -0.21333 0.40118 -0.532 0.5952
## RepD.d:gend.mf 0.81970 0.54628 1.501 0.1343
## RepI.d:gend.mf 0.44564 0.56258 0.792 0.4287
## RepD.d:cond.c 0.11099 0.54628 0.203 0.8391
## RepI.d:cond.c -0.01103 0.56258 -0.020 0.9844
## gend.mf:cond.c 0.02294 0.80237 0.029 0.9772
## RepD.d:gend.mf:cond.c -0.27279 1.09256 -0.250 0.8030
## RepI.d:gend.mf:cond.c -0.76375 1.12516 -0.679 0.4977
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.02 on 401 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01457, Adjusted R-squared: -0.01246
## F-statistic: 0.539 on 11 and 401 DF, p-value: 0.8766
summary(lm(act18 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.167 -1.150 0.250 1.333 2.850
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4750 0.2024 2.347 0.0195 *
## RepD.d 0.3857 0.2731 1.413 0.1587
## RepI.d 0.1251 0.2783 0.449 0.6534
## gend.mf 0.1333 0.4048 0.329 0.7421
## cond.c 0.0500 0.4048 0.124 0.9018
## RepD.d:gend.mf 0.1013 0.5462 0.185 0.8529
## RepI.d:gend.mf -0.4629 0.5566 -0.832 0.4062
## RepD.d:cond.c 0.1320 0.5462 0.242 0.8092
## RepI.d:cond.c -0.1204 0.5566 -0.216 0.8288
## gend.mf:cond.c -0.9333 0.8096 -1.153 0.2498
## RepD.d:gend.mf:cond.c 1.3237 1.0924 1.212 0.2265
## RepI.d:gend.mf:cond.c 0.9330 1.1132 0.838 0.4026
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 337 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01772, Adjusted R-squared: -0.01434
## F-statistic: 0.5527 on 11 and 337 DF, p-value: 0.8662
summary(lm(act19 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4722 -1.1034 0.2222 1.5331 3.0588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.03854 0.21728 4.780 2.94e-06 ***
## RepD.d 0.09398 0.30185 0.311 0.75579
## RepI.d 0.28621 0.29502 0.970 0.33288
## gend.mf -0.35813 0.43456 -0.824 0.41062
## cond.c -1.16223 0.43456 -2.675 0.00796 **
## RepD.d:gend.mf 0.42642 0.60371 0.706 0.48061
## RepI.d:gend.mf 0.32853 0.59004 0.557 0.57815
## RepD.d:cond.c 0.83468 0.60371 1.383 0.16798
## RepI.d:cond.c 0.95490 0.59004 1.618 0.10680
## gend.mf:cond.c -1.34875 0.86911 -1.552 0.12192
## RepD.d:gend.mf:cond.c 1.33717 1.20742 1.107 0.26912
## RepI.d:gend.mf:cond.c 1.46475 1.18008 1.241 0.21564
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.794 on 259 degrees of freedom
## (274 observations deleted due to missingness)
## Multiple R-squared: 0.045, Adjusted R-squared: 0.004435
## F-statistic: 1.109 on 11 and 259 DF, p-value: 0.354
summary(lm(act20 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6111 -1.2857 0.3889 1.5000 2.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.13408 0.18944 5.987 5.98e-09 ***
## RepD.d -0.01622 0.25872 -0.063 0.9500
## RepI.d 0.13077 0.27017 0.484 0.6287
## gend.mf -0.75962 0.37887 -2.005 0.0458 *
## cond.c -0.57372 0.37887 -1.514 0.1310
## RepD.d:gend.mf 1.02390 0.51744 1.979 0.0487 *
## RepI.d:gend.mf 0.51563 0.54035 0.954 0.3407
## RepD.d:cond.c -0.37628 0.51744 -0.727 0.4677
## RepI.d:cond.c 0.42713 0.54035 0.790 0.4299
## gend.mf:cond.c -0.75855 0.75774 -1.001 0.3176
## RepD.d:gend.mf:cond.c 1.65855 1.03489 1.603 0.1100
## RepI.d:gend.mf:cond.c 0.19458 1.08070 0.180 0.8572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.747 on 307 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.06688, Adjusted R-squared: 0.03345
## F-statistic: 2 on 11 and 307 DF, p-value: 0.02801
summary(lm(act21 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7442 -1.8400 0.1698 1.6250 3.6250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6880 0.2107 -3.265 0.00119 **
## RepD.d 0.7598 0.2866 2.651 0.00835 **
## RepI.d 0.9165 0.2926 3.132 0.00187 **
## gend.mf -0.6657 0.4215 -1.580 0.11503
## cond.c 0.5634 0.4215 1.337 0.18205
## RepD.d:gend.mf 1.1094 0.5732 1.936 0.05366 .
## RepI.d:gend.mf 0.5485 0.5853 0.937 0.34930
## RepD.d:cond.c -0.7360 0.5732 -1.284 0.19989
## RepI.d:cond.c -0.1587 0.5853 -0.271 0.78637
## gend.mf:cond.c 0.4564 0.8429 0.541 0.58848
## RepD.d:gend.mf:cond.c -0.8415 1.1463 -0.734 0.46333
## RepI.d:gend.mf:cond.c -1.4750 1.1706 -1.260 0.20840
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.053 on 386 degrees of freedom
## (147 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: 0.01812
## F-statistic: 1.666 on 11 and 386 DF, p-value: 0.07902
summary(lm(act22 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7021 -1.4886 0.1667 1.5238 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3146 0.2102 -1.497 0.13521
## RepD.d 1.1462 0.2829 4.051 6.15e-05 ***
## RepI.d 0.7584 0.2817 2.692 0.00741 **
## gend.mf -0.1435 0.4204 -0.341 0.73308
## cond.c -0.0374 0.4204 -0.089 0.92916
## RepD.d:gend.mf 0.4304 0.5658 0.761 0.44727
## RepI.d:gend.mf 0.3204 0.5635 0.569 0.56998
## RepD.d:cond.c -0.4235 0.5658 -0.748 0.45462
## RepI.d:cond.c 0.2154 0.5635 0.382 0.70248
## gend.mf:cond.c -0.3797 0.8407 -0.452 0.65173
## RepD.d:gend.mf:cond.c -0.5985 1.1316 -0.529 0.59721
## RepI.d:gend.mf:cond.c 0.2479 1.1269 0.220 0.82603
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.965 on 387 degrees of freedom
## (146 observations deleted due to missingness)
## Multiple R-squared: 0.05667, Adjusted R-squared: 0.02986
## F-statistic: 2.114 on 11 and 387 DF, p-value: 0.01862
summary(lm(act23 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5294 -2.2500 0.1563 1.9412 3.8000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1367 0.2709 -0.505 0.6141
## RepD.d 0.2877 0.3602 0.799 0.4251
## RepI.d 0.4590 0.3748 1.225 0.2217
## gend.mf -0.1390 0.5418 -0.257 0.7977
## cond.c 0.4265 0.5418 0.787 0.4319
## RepD.d:gend.mf 0.2847 0.7205 0.395 0.6930
## RepI.d:gend.mf 0.2240 0.7495 0.299 0.7653
## RepD.d:cond.c -0.8259 0.7205 -1.146 0.2526
## RepI.d:cond.c -1.6210 0.7495 -2.163 0.0314 *
## gend.mf:cond.c 0.7220 1.0837 0.666 0.5058
## RepD.d:gend.mf:cond.c -0.5833 1.4409 -0.405 0.6859
## RepI.d:gend.mf:cond.c -2.9919 1.4991 -1.996 0.0469 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.258 on 277 degrees of freedom
## (256 observations deleted due to missingness)
## Multiple R-squared: 0.03833, Adjusted R-squared: 0.0001456
## F-statistic: 1.004 on 11 and 277 DF, p-value: 0.4431
summary(lm(act24 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3182 -1.6875 -0.1455 1.5822 4.5263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.43190 0.20403 -2.117 0.0349 *
## RepD.d 0.25415 0.27951 0.909 0.3638
## RepI.d 0.19715 0.28317 0.696 0.4867
## gend.mf 0.18522 0.40806 0.454 0.6501
## cond.c -0.43522 0.40806 -1.067 0.2868
## RepD.d:gend.mf 0.13845 0.55903 0.248 0.8045
## RepI.d:gend.mf -0.94204 0.56634 -1.663 0.0970 .
## RepD.d:cond.c -0.03845 0.55903 -0.069 0.9452
## RepI.d:cond.c -0.40208 0.56634 -0.710 0.4781
## gend.mf:cond.c -0.77241 0.81611 -0.946 0.3445
## RepD.d:gend.mf:cond.c 0.38339 1.11806 0.343 0.7318
## RepI.d:gend.mf:cond.c -1.20562 1.13268 -1.064 0.2878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.07 on 400 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.04277, Adjusted R-squared: 0.01644
## F-statistic: 1.625 on 11 and 400 DF, p-value: 0.08932
summary(lm(act25 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3125 -1.1591 0.2364 1.6875 3.0435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17025 0.18563 0.917 0.3596
## RepD.d 0.98900 0.24993 3.957 8.88e-05 ***
## RepI.d 0.62310 0.25140 2.479 0.0136 *
## gend.mf -0.30064 0.37125 -0.810 0.4185
## cond.c -0.14668 0.37125 -0.395 0.6930
## RepD.d:gend.mf 0.54301 0.49987 1.086 0.2780
## RepI.d:gend.mf -0.02176 0.50280 -0.043 0.9655
## RepD.d:cond.c 0.40155 0.49987 0.803 0.4222
## RepI.d:cond.c 0.26909 0.50280 0.535 0.5928
## gend.mf:cond.c 0.03975 0.74250 0.054 0.9573
## RepD.d:gend.mf:cond.c -0.62774 0.99973 -0.628 0.5304
## RepI.d:gend.mf:cond.c -0.61312 1.00560 -0.610 0.5424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 429 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.05022, Adjusted R-squared: 0.02587
## F-statistic: 2.062 on 11 and 429 DF, p-value: 0.02189
summary(lm(act26 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2400 0.6111 1.4762 2.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5642 0.2448 6.390 1.05e-09 ***
## RepD.d -0.1553 0.3273 -0.475 0.6356
## RepI.d 0.0229 0.3384 0.068 0.9461
## gend.mf -0.4170 0.4896 -0.852 0.3954
## cond.c -0.6215 0.4896 -1.269 0.2057
## RepD.d:gend.mf 0.7449 0.6545 1.138 0.2564
## RepI.d:gend.mf 0.6786 0.6769 1.002 0.3173
## RepD.d:cond.c 0.8561 0.6545 1.308 0.1923
## RepI.d:cond.c 0.7402 0.6769 1.094 0.2754
## gend.mf:cond.c -2.3339 0.9792 -2.383 0.0180 *
## RepD.d:gend.mf:cond.c 2.8231 1.3090 2.157 0.0322 *
## RepI.d:gend.mf:cond.c 2.3016 1.3538 1.700 0.0906 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 211 degrees of freedom
## (322 observations deleted due to missingness)
## Multiple R-squared: 0.04338, Adjusted R-squared: -0.006486
## F-statistic: 0.8699 on 11 and 211 DF, p-value: 0.5707
summary(lm(act27 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7895 -1.0714 0.1471 1.6544 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5103 0.2040 2.502 0.0129 *
## RepD.d 0.6703 0.2772 2.418 0.0162 *
## RepI.d 0.1079 0.2874 0.375 0.7076
## gend.mf 0.2103 0.4079 0.515 0.6066
## cond.c -0.7264 0.4079 -1.781 0.0760 .
## RepD.d:gend.mf 0.2736 0.5544 0.493 0.6220
## RepI.d:gend.mf 0.1249 0.5748 0.217 0.8282
## RepD.d:cond.c 0.2737 0.5544 0.494 0.6219
## RepI.d:cond.c 0.2401 0.5748 0.418 0.6764
## gend.mf:cond.c -1.0088 0.8158 -1.236 0.2172
## RepD.d:gend.mf:cond.c 0.4463 1.1088 0.403 0.6876
## RepI.d:gend.mf:cond.c 0.8385 1.1495 0.729 0.4663
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 302 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.05283, Adjusted R-squared: 0.01833
## F-statistic: 1.531 on 11 and 302 DF, p-value: 0.1192
summary(lm(act28 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3421 -1.0652 0.2593 1.6579 2.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.94771 0.19104 4.961 1.09e-06 ***
## RepD.d 0.24624 0.26607 0.925 0.355
## RepI.d -0.03878 0.27334 -0.142 0.887
## gend.mf -0.19305 0.38208 -0.505 0.614
## cond.c -0.58646 0.38208 -1.535 0.126
## RepD.d:gend.mf 0.14959 0.53215 0.281 0.779
## RepI.d:gend.mf -0.07193 0.54668 -0.132 0.895
## RepD.d:cond.c 0.15916 0.53215 0.299 0.765
## RepI.d:cond.c 0.72608 0.54668 1.328 0.185
## gend.mf:cond.c -1.08899 0.76416 -1.425 0.155
## RepD.d:gend.mf:cond.c 0.18802 1.06430 0.177 0.860
## RepI.d:gend.mf:cond.c 0.16551 1.09337 0.151 0.880
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 357 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02841, Adjusted R-squared: -0.001523
## F-statistic: 0.9491 on 11 and 357 DF, p-value: 0.4931
summary(lm(act29 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -1.0541 0.1053 1.6905 2.1053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93906 0.19247 4.879 1.62e-06 ***
## RepD.d 0.37165 0.26031 1.428 0.154
## RepI.d 0.13996 0.26053 0.537 0.591
## gend.mf 0.01661 0.38495 0.043 0.966
## cond.c -0.07642 0.38495 -0.199 0.843
## RepD.d:gend.mf 0.02863 0.52062 0.055 0.956
## RepI.d:gend.mf 0.02969 0.52105 0.057 0.955
## RepD.d:cond.c 0.16610 0.52062 0.319 0.750
## RepI.d:cond.c 0.23559 0.52105 0.452 0.651
## gend.mf:cond.c -0.05769 0.76989 -0.075 0.940
## RepD.d:gend.mf:cond.c 0.32277 1.04125 0.310 0.757
## RepI.d:gend.mf:cond.c 0.38331 1.04210 0.368 0.713
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.768 on 353 degrees of freedom
## (180 observations deleted due to missingness)
## Multiple R-squared: 0.009013, Adjusted R-squared: -0.02187
## F-statistic: 0.2919 on 11 and 353 DF, p-value: 0.9872
summary(lm(act30 ~ (RepD.d + RepI.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (RepD.d + RepI.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.1579 0.5556 1.7368 2.7273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8143 0.2041 3.990 8.11e-05 ***
## RepD.d 0.1509 0.2780 0.543 0.588
## RepI.d 0.3870 0.2836 1.365 0.173
## gend.mf -0.6058 0.4081 -1.484 0.139
## cond.c 0.3308 0.4081 0.810 0.418
## RepD.d:gend.mf 0.1754 0.5560 0.316 0.753
## RepI.d:gend.mf 0.6739 0.5672 1.188 0.236
## RepD.d:cond.c -0.1080 0.5560 -0.194 0.846
## RepI.d:cond.c -0.1048 0.5672 -0.185 0.854
## gend.mf:cond.c 0.2930 0.8163 0.359 0.720
## RepD.d:gend.mf:cond.c 0.4837 1.1119 0.435 0.664
## RepI.d:gend.mf:cond.c 0.1962 1.1344 0.173 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.877 on 337 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01829, Adjusted R-squared: -0.01375
## F-statistic: 0.5709 on 11 and 337 DF, p-value: 0.8523
a. Means, etc.
aggregate(d$act26[d$party_factor == "Republican" & d$gend == "Female"], list(d$cond[d$party_factor == "Republican" & d$gend == "Female"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 climate 2.045455
## 2 ctrl 1.500000
aggregate(d$act26[d$party_factor == "Republican" & d$gend == "Male"], list(d$cond[d$party_factor == "Republican" & d$gend == "Male"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 climate 0.4615385
## 2 ctrl 2.2500000
ii. Independents
Above 0: 2;5;6;11;14;16;17;18;19;20;25;26;27;28;29;30 below: 8,
# Action 1
ind.b1 <- lm(act1 ~ (IndD.d + IndR.d), data = d)
summary(ind.b1)
##
## Call:
## lm(formula = act1 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2770 -2.2199 -0.0486 1.7230 3.5844
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04861 0.17855 0.272 0.7856
## IndD.d 0.22842 0.25080 0.911 0.3629
## IndR.d -0.63303 0.24838 -2.549 0.0111 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.143 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02882, Adjusted R-squared: 0.02443
## F-statistic: 6.572 on 2 and 443 DF, p-value: 0.001539
# Action 2
ind.b2 <- lm(act2 ~ (IndD.d + IndR.d), data = d)
summary(ind.b2) # yes, above 0
##
## Call:
## lm(formula = act2 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.280 -1.104 0.022 1.720 2.022
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1042 0.1848 5.975 6.87e-09 ***
## IndD.d 0.1758 0.2587 0.680 0.497
## IndR.d -0.1261 0.2649 -0.476 0.634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.811 on 284 degrees of freedom
## (258 observations deleted due to missingness)
## Multiple R-squared: 0.004714, Adjusted R-squared: -0.002295
## F-statistic: 0.6726 on 2 and 284 DF, p-value: 0.5112
# Action 3
ind.b3 <- lm(act3 ~ (IndD.d + IndR.d), data = d)
summary(ind.b3)
##
## Call:
## lm(formula = act3 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1325 -1.8289 0.1711 1.6884 3.6884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1711 0.1622 -1.055 0.2921
## IndD.d 0.3035 0.2297 1.321 0.1871
## IndR.d -0.5174 0.2351 -2.201 0.0283 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.999 on 438 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.02743, Adjusted R-squared: 0.02299
## F-statistic: 6.176 on 2 and 438 DF, p-value: 0.002265
# Action 4
ind.b4 <- lm(act4 ~ (IndD.d + IndR.d), data = d)
summary(ind.b4)
##
## Call:
## lm(formula = act4 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3030 -1.7931 0.2069 2.2069 3.2333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.23333 0.19668 -1.186 0.2363
## IndD.d 0.53636 0.27176 1.974 0.0492 *
## IndR.d 0.02644 0.28054 0.094 0.9250
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.155 on 365 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01352, Adjusted R-squared: 0.008119
## F-statistic: 2.502 on 2 and 365 DF, p-value: 0.08333
# Action 5
ind.b5 <- lm(act5 ~ (IndD.d + IndR.d), data = d)
summary(ind.b5) # yes, above 0
##
## Call:
## lm(formula = act5 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1165 -1.1165 0.1053 1.8835 2.1053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8947 0.1916 4.669 4.63e-06 ***
## IndD.d 0.2218 0.2657 0.835 0.405
## IndR.d 0.0636 0.2703 0.235 0.814
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.868 on 291 degrees of freedom
## (251 observations deleted due to missingness)
## Multiple R-squared: 0.002558, Adjusted R-squared: -0.004298
## F-statistic: 0.3731 on 2 and 291 DF, p-value: 0.6889
# Action 6
ind.b6 <- lm(act6 ~ (IndD.d + IndR.d), data = d)
summary(ind.b6) # yes, above 0
##
## Call:
## lm(formula = act6 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.400 -1.111 0.600 1.600 1.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4000 0.1623 8.627 <2e-16 ***
## IndD.d -0.1982 0.2350 -0.844 0.399
## IndR.d -0.2889 0.2334 -1.238 0.217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 353 degrees of freedom
## (189 observations deleted due to missingness)
## Multiple R-squared: 0.004549, Adjusted R-squared: -0.001091
## F-statistic: 0.8065 on 2 and 353 DF, p-value: 0.4472
# Action 7
ind.b7 <- lm(act7 ~ (IndD.d + IndR.d), data = d)
summary(ind.b7)
##
## Call:
## lm(formula = act7 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0993 -1.9929 0.0071 1.9007 3.4962
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.007143 0.174639 -0.041 0.9674
## IndD.d 0.106434 0.246538 0.432 0.6662
## IndR.d -0.489040 0.251182 -1.947 0.0522 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 409 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: 0.01046
## F-statistic: 3.172 on 2 and 409 DF, p-value: 0.04296
# Action 8
ind.b8 <- lm(act8 ~ (IndD.d + IndR.d), data = d)
summary(ind.b8) # yes, below 0
##
## Call:
## lm(formula = act8 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2327 -1.8734 -0.2327 1.7673 4.1266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3292 0.1660 -1.983 0.047937 *
## IndD.d 0.5619 0.2355 2.386 0.017425 *
## IndR.d -0.7974 0.2359 -3.381 0.000783 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.106 on 475 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.06556, Adjusted R-squared: 0.06162
## F-statistic: 16.66 on 2 and 475 DF, p-value: 1.014e-07
# Action 9
ind.b9 <- lm(act9 ~ (IndD.d + IndR.d), data = d)
summary(ind.b9)
##
## Call:
## lm(formula = act9 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2617 -1.5594 0.1196 1.7383 3.4406
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20130 0.15882 1.267 0.20565
## IndD.d 0.06045 0.22648 0.267 0.78967
## IndR.d -0.64186 0.22888 -2.804 0.00526 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.971 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02498, Adjusted R-squared: 0.02058
## F-statistic: 5.676 on 2 and 443 DF, p-value: 0.003682
# Action 10
ind.b10 <- lm(act10 ~ (IndD.d + IndR.d), data = d)
summary(ind.b10) # yes, above 0
##
## Call:
## lm(formula = act10 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5935 -2.2208 0.4065 1.6545 3.7792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3455 0.1588 2.176 0.0301 *
## IndD.d 0.2481 0.2281 1.087 0.2774
## IndR.d -1.1247 0.2285 -4.922 1.19e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 471 degrees of freedom
## (71 observations deleted due to missingness)
## Multiple R-squared: 0.07812, Adjusted R-squared: 0.07421
## F-statistic: 19.96 on 2 and 471 DF, p-value: 4.791e-09
# Action 11
ind.b11 <- lm(act11 ~ (IndD.d + IndR.d), data = d)
summary(ind.b11) # yes, above 0
##
## Call:
## lm(formula = act11 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0755 -1.0755 0.3093 1.9245 2.3093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98148 0.18152 5.407 1.29e-07 ***
## IndD.d 0.09399 0.25792 0.364 0.716
## IndR.d -0.29076 0.26389 -1.102 0.271
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.886 on 308 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.007306, Adjusted R-squared: 0.0008601
## F-statistic: 1.133 on 2 and 308 DF, p-value: 0.3233
# Action 12
ind.b12 <- lm(act12 ~ (IndD.d + IndR.d), data = d)
summary(ind.b12)
##
## Call:
## lm(formula = act12 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3167 -2.0992 -0.1603 1.8397 3.9008
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1603 0.1858 0.863 0.389
## IndD.d 0.1564 0.2687 0.582 0.561
## IndR.d -1.0611 0.2627 -4.039 6.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.126 on 379 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.06166, Adjusted R-squared: 0.0567
## F-statistic: 12.45 on 2 and 379 DF, p-value: 5.789e-06
# Action 13
ind.b13 <- lm(act13 ~ (IndD.d + IndR.d), data = d)
summary(ind.b13)
##
## Call:
## lm(formula = act13 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1888 -2.0186 -0.0186 1.8112 3.5588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01863 0.16261 0.115 0.9088
## IndD.d 0.17018 0.23709 0.718 0.4733
## IndR.d -0.57746 0.24030 -2.403 0.0167 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.063 on 437 degrees of freedom
## (105 observations deleted due to missingness)
## Multiple R-squared: 0.0225, Adjusted R-squared: 0.01802
## F-statistic: 5.029 on 2 and 437 DF, p-value: 0.006932
# Action 14
ind.b14 <- lm(act14 ~ (IndD.d + IndR.d), data = d)
summary(ind.b14) # yes, above 0
##
## Call:
## lm(formula = act14 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5481 -1.4444 -0.3171 1.5556 2.6829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4444 0.2042 2.177 0.0303 *
## IndD.d 0.1036 0.2853 0.363 0.7167
## IndR.d -0.1274 0.3034 -0.420 0.6749
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.032 on 282 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.002098, Adjusted R-squared: -0.00498
## F-statistic: 0.2964 on 2 and 282 DF, p-value: 0.7437
# Action 15
ind.b15 <- lm(act15 ~ (IndD.d + IndR.d), data = d)
summary(ind.b15)
##
## Call:
## lm(formula = act15 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5328 -1.8049 0.1951 1.4672 3.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07299 0.17449 0.418 0.6760
## IndD.d 0.45979 0.25424 1.808 0.0713 .
## IndR.d -0.26811 0.25370 -1.057 0.2913
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.042 on 379 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.02059, Adjusted R-squared: 0.01542
## F-statistic: 3.984 on 2 and 379 DF, p-value: 0.0194
# Action 16
ind.b16 <- lm(act16 ~ (IndD.d + IndR.d), data = d)
summary(ind.b16) # yes, above 0
##
## Call:
## lm(formula = act16 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0550 -1.0550 0.0841 1.1770 2.1770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.82301 0.17141 4.801 2.41e-06 ***
## IndD.d 0.23204 0.24463 0.949 0.344
## IndR.d 0.09288 0.24579 0.378 0.706
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 326 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.002782, Adjusted R-squared: -0.003336
## F-statistic: 0.4547 on 2 and 326 DF, p-value: 0.6351
# Action 17
ind.b17 <- lm(act17 ~ (IndD.d + IndR.d), data = d)
summary(ind.b17) # yes, above 0
##
## Call:
## lm(formula = act17 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.650 -1.420 0.350 1.702 2.702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4196 0.1677 2.503 0.0127 *
## IndD.d 0.2304 0.2384 0.967 0.3343
## IndR.d -0.1219 0.2425 -0.503 0.6155
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.005 on 411 degrees of freedom
## (131 observations deleted due to missingness)
## Multiple R-squared: 0.005261, Adjusted R-squared: 0.0004204
## F-statistic: 1.087 on 2 and 411 DF, p-value: 0.3382
# Action 18
ind.b18 <- lm(act18 ~ (IndD.d + IndR.d), data = d)
summary(ind.b18) # yes, above 0
##
## Call:
## lm(formula = act18 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8430 -1.1338 0.3145 1.3145 2.5755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6855 0.1647 4.162 3.98e-05 ***
## IndD.d 0.1575 0.2344 0.672 0.502
## IndR.d -0.2610 0.2426 -1.076 0.283
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 348 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.008477, Adjusted R-squared: 0.002779
## F-statistic: 1.488 on 2 and 348 DF, p-value: 0.2273
# Action 19
ind.b19 <- lm(act19 ~ (IndD.d + IndR.d), data = d)
summary(ind.b19) # yes, above 0
##
## Call:
## lm(formula = act19 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.337 -1.032 0.000 1.663 2.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3368 0.1846 7.242 4.66e-12 ***
## IndD.d -0.2104 0.2670 -0.788 0.431
## IndR.d -0.3368 0.2647 -1.273 0.204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.799 on 269 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.006131, Adjusted R-squared: -0.001258
## F-statistic: 0.8297 on 2 and 269 DF, p-value: 0.4373
# Action 20
ind.b20 <- lm(act20 ~ (IndD.d + IndR.d), data = d)
summary(ind.b20) # yes, above 0
##
## Call:
## lm(formula = act20 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3148 -1.2621 0.6852 1.6852 1.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.31481 0.17090 7.693 1.82e-13 ***
## IndD.d -0.21481 0.24059 -0.893 0.373
## IndR.d -0.05268 0.24461 -0.215 0.830
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.776 on 318 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.002716, Adjusted R-squared: -0.003556
## F-statistic: 0.433 on 2 and 318 DF, p-value: 0.6489
# Action 21
ind.b21 <- lm(act21 ~ (IndD.d + IndR.d), data = d)
summary(ind.b21)
##
## Call:
## lm(formula = act21 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2214 -2.0071 -0.0071 1.7786 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2214 0.1796 1.233 0.21846
## IndD.d -0.2143 0.2495 -0.859 0.39085
## IndR.d -0.7214 0.2555 -2.824 0.00499 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.056 on 397 degrees of freedom
## (145 observations deleted due to missingness)
## Multiple R-squared: 0.02074, Adjusted R-squared: 0.01581
## F-statistic: 4.205 on 2 and 397 DF, p-value: 0.01559
# Action 22
ind.b22 <- lm(act22 ~ (IndD.d + IndR.d), data = d)
summary(ind.b22) # yes, above 0
##
## Call:
## lm(formula = act22 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8045 -1.3873 0.1955 1.6127 3.2857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3873 0.1638 2.365 0.01853 *
## IndD.d 0.4172 0.2355 1.771 0.07728 .
## IndR.d -0.6730 0.2389 -2.817 0.00508 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.952 on 398 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.04897, Adjusted R-squared: 0.04419
## F-statistic: 10.25 on 2 and 398 DF, p-value: 4.577e-05
# Action 23
ind.b23 <- lm(act23 ~ (IndD.d + IndR.d), data = d)
summary(ind.b23)
##
## Call:
## lm(formula = act23 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3810 -2.3810 0.0824 2.0824 3.0824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3810 0.2206 1.727 0.0853 .
## IndD.d -0.2210 0.3159 -0.700 0.4848
## IndR.d -0.4633 0.3298 -1.405 0.1612
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.261 on 287 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.006836, Adjusted R-squared: -8.474e-05
## F-statistic: 0.9878 on 2 and 287 DF, p-value: 0.3737
# Action 24
ind.b24 <- lm(act24 ~ (IndD.d + IndR.d), data = d)
summary(ind.b24)
##
## Call:
## lm(formula = act24 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9281 -1.9281 0.0719 1.5038 3.5038
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07194 0.17713 -0.406 0.685
## IndD.d -0.14082 0.24962 -0.564 0.573
## IndR.d -0.43182 0.25331 -1.705 0.089 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.088 on 410 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.007291, Adjusted R-squared: 0.002448
## F-statistic: 1.506 on 2 and 410 DF, p-value: 0.2231
# Action 25
ind.b25 <- lm(act25 ~ (IndD.d + IndR.d), data = d)
summary(ind.b25) # yes, above 0
##
## Call:
## lm(formula = act25 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1149 -1.1149 0.1611 1.7603 2.7603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8389 0.1500 5.592 3.96e-08 ***
## IndD.d 0.2759 0.2125 1.298 0.19487
## IndR.d -0.5992 0.2133 -2.810 0.00518 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 440 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.0383, Adjusted R-squared: 0.03393
## F-statistic: 8.762 on 2 and 440 DF, p-value: 0.0001856
# Action 26
ind.b26 <- lm(act26 ~ (IndD.d + IndR.d), data = d)
summary(ind.b26) # yes, above 0
##
## Call:
## lm(formula = act26 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5672 -1.3974 0.6026 1.4810 1.6026
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.51899 0.20488 7.414 2.59e-12 ***
## IndD.d -0.12155 0.29067 -0.418 0.676
## IndR.d 0.04818 0.30244 0.159 0.874
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 221 degrees of freedom
## (321 observations deleted due to missingness)
## Multiple R-squared: 0.001544, Adjusted R-squared: -0.007492
## F-statistic: 0.1709 on 2 and 221 DF, p-value: 0.843
# Action 27
ind.b27 <- lm(act27 ~ (IndD.d + IndR.d), data = d)
summary(ind.b27) # yes, above 0
##
## Call:
## lm(formula = act27 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1404 -1.1404 0.1489 1.5670 2.5670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5619 0.1821 3.086 0.00221 **
## IndD.d 0.5784 0.2523 2.292 0.02255 *
## IndR.d -0.1289 0.2627 -0.491 0.62401
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 313 degrees of freedom
## (229 observations deleted due to missingness)
## Multiple R-squared: 0.02742, Adjusted R-squared: 0.02121
## F-statistic: 4.413 on 2 and 313 DF, p-value: 0.01288
# Action 28
ind.b28 <- lm(act28 ~ (IndD.d + IndR.d), data = d)
summary(ind.b28) # yes, above 0
##
## Call:
## lm(formula = act28 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2266 -0.9508 0.0579 1.7734 2.0579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.942149 0.165303 5.700 2.47e-08 ***
## IndD.d 0.284414 0.230555 1.234 0.218
## IndR.d 0.008671 0.233294 0.037 0.970
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.818 on 368 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.005379, Adjusted R-squared: -2.643e-05
## F-statistic: 0.9951 on 2 and 368 DF, p-value: 0.3707
# Action 29
ind.b29 <- lm(act29 ~ (IndD.d + IndR.d), data = d)
summary(ind.b29) # yes, above 0
##
## Call:
## lm(formula = act29 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3200 -1.0720 0.0684 1.6800 2.0684
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0720 0.1561 6.866 2.85e-11 ***
## IndD.d 0.2480 0.2208 1.123 0.262
## IndR.d -0.1404 0.2245 -0.625 0.532
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.745 on 364 degrees of freedom
## (178 observations deleted due to missingness)
## Multiple R-squared: 0.008418, Adjusted R-squared: 0.00297
## F-statistic: 1.545 on 2 and 364 DF, p-value: 0.2147
# Action 30
ind.b30 <- lm(act30 ~ (IndD.d + IndR.d), data = d)
summary(ind.b30) # yes, above 0
##
## Call:
## lm(formula = act30 ~ (IndD.d + IndR.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1917 -1.0598 0.8083 1.8083 2.0263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1917 0.1702 7.000 1.32e-11 ***
## IndD.d -0.1318 0.2423 -0.544 0.587
## IndR.d -0.2180 0.2439 -0.894 0.372
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 348 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.002333, Adjusted R-squared: -0.003401
## F-statistic: 0.4068 on 2 and 348 DF, p-value: 0.6661
Significantly above 0:
1. condition differences?
actions: 11, 16
summary(lm(act1 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.417 -2.229 0.026 1.771 3.591
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0161 0.1809 0.089 0.9291
## IndD.d 0.2646 0.2526 1.047 0.2955
## IndR.d -0.6010 0.2506 -2.399 0.0169 *
## cond.c -0.4256 0.3618 -1.177 0.2400
## IndD.d:cond.c 0.1537 0.5053 0.304 0.7611
## IndR.d:cond.c 0.4389 0.5011 0.876 0.3816
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 440 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.03317, Adjusted R-squared: 0.02218
## F-statistic: 3.019 on 5 and 440 DF, p-value: 0.01084
summary(lm(act2 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3800 -1.1947 0.2292 1.6200 2.2292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.04444 0.19079 5.474 9.74e-08 ***
## IndD.d 0.23556 0.26299 0.896 0.371
## IndR.d -0.05438 0.26928 -0.202 0.840
## cond.c -0.47778 0.38158 -1.252 0.212
## IndD.d:cond.c 0.27778 0.52597 0.528 0.598
## IndR.d:cond.c 0.03931 0.53856 0.073 0.942
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.81 on 281 degrees of freedom
## (258 observations deleted due to missingness)
## Multiple R-squared: 0.01593, Adjusted R-squared: -0.001575
## F-statistic: 0.91 on 5 and 281 DF, p-value: 0.4749
summary(lm(act3 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2568 -1.8939 0.1061 1.6351 3.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.635e-01 1.640e-01 -0.997 0.3193
## IndD.d 2.984e-01 2.313e-01 1.290 0.1978
## IndR.d -5.291e-01 2.370e-01 -2.233 0.0261 *
## cond.c 1.149e-01 3.280e-01 0.350 0.7263
## IndD.d:cond.c 1.289e-01 4.626e-01 0.279 0.7807
## IndR.d:cond.c -4.762e-06 4.739e-01 0.000 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.004 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.0292, Adjusted R-squared: 0.01804
## F-statistic: 2.617 on 5 and 435 DF, p-value: 0.024
summary(lm(act4 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4923 -2.0000 0.2258 2.0000 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.26923 0.19850 -1.356 0.1758
## IndD.d 0.57509 0.27312 2.106 0.0359 *
## IndR.d 0.06373 0.28219 0.226 0.8214
## cond.c -0.53846 0.39700 -1.356 0.1758
## IndD.d:cond.c 0.91137 0.54624 1.668 0.0961 .
## IndR.d:cond.c 0.49784 0.56437 0.882 0.3783
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.155 on 362 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.0212, Adjusted R-squared: 0.007677
## F-statistic: 1.568 on 5 and 362 DF, p-value: 0.1683
summary(lm(act5 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3585 -0.9200 0.1818 1.6415 2.1818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89333 0.19206 4.651 5.03e-06 ***
## IndD.d 0.21591 0.26616 0.811 0.418
## IndR.d 0.08893 0.27217 0.327 0.744
## cond.c -0.05333 0.38411 -0.139 0.890
## IndD.d:cond.c -0.44516 0.53232 -0.836 0.404
## IndR.d:cond.c -0.27483 0.54434 -0.505 0.614
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 288 degrees of freedom
## (251 observations deleted due to missingness)
## Multiple R-squared: 0.01139, Adjusted R-squared: -0.005774
## F-statistic: 0.6636 on 5 and 288 DF, p-value: 0.6514
summary(lm(act6 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5278 -1.1731 0.4722 1.7736 1.9385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3771 0.1647 8.363 1.47e-15 ***
## IndD.d -0.1762 0.2371 -0.743 0.458
## IndR.d -0.2598 0.2361 -1.100 0.272
## cond.c -0.3014 0.3293 -0.915 0.361
## IndD.d:cond.c 0.2699 0.4743 0.569 0.570
## IndR.d:cond.c 0.1898 0.4723 0.402 0.688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.82 on 350 degrees of freedom
## (189 observations deleted due to missingness)
## Multiple R-squared: 0.007256, Adjusted R-squared: -0.006926
## F-statistic: 0.5116 on 5 and 350 DF, p-value: 0.7675
summary(lm(act7 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2192 -1.9706 0.0294 1.7808 3.6613
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01235 0.17632 0.070 0.9442
## IndD.d 0.08254 0.24796 0.333 0.7394
## IndR.d -0.51691 0.25270 -2.046 0.0414 *
## cond.c 0.30317 0.35263 0.860 0.3904
## IndD.d:cond.c -0.05459 0.49591 -0.110 0.9124
## IndR.d:cond.c 0.01029 0.50539 0.020 0.9838
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 406 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.02009, Adjusted R-squared: 0.008026
## F-statistic: 1.665 on 5 and 406 DF, p-value: 0.1419
summary(lm(act8 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.367 -1.648 -0.100 1.843 4.352
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3245 0.1667 -1.946 0.0522 .
## IndD.d 0.5580 0.2360 2.364 0.0185 *
## IndR.d -0.7731 0.2372 -3.260 0.0012 **
## cond.c 0.1010 0.3335 0.303 0.7620
## IndD.d:cond.c 0.1661 0.4720 0.352 0.7251
## IndR.d:cond.c -0.6104 0.4743 -1.287 0.1987
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.106 on 472 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.07148, Adjusted R-squared: 0.06165
## F-statistic: 7.267 on 5 and 472 DF, p-value: 1.426e-06
summary(lm(act9 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2973 -1.5231 0.1162 1.7027 3.4769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20608 0.16166 1.275 0.20307
## IndD.d 0.05591 0.22886 0.244 0.80713
## IndR.d -0.64967 0.23174 -2.803 0.00528 **
## cond.c 0.05660 0.32332 0.175 0.86112
## IndD.d:cond.c 0.01403 0.45771 0.031 0.97555
## IndR.d:cond.c 0.01007 0.46348 0.022 0.98268
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 440 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02525, Adjusted R-squared: 0.01417
## F-statistic: 2.279 on 5 and 440 DF, p-value: 0.04594
summary(lm(act10 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6133 -2.0595 0.3867 1.6404 3.9405
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34425 0.15958 2.157 0.0315 *
## IndD.d 0.24992 0.22899 1.091 0.2757
## IndR.d -1.10734 0.22980 -4.819 1.96e-06 ***
## cond.c -0.03060 0.31916 -0.096 0.9237
## IndD.d:cond.c 0.06894 0.45797 0.151 0.8804
## IndR.d:cond.c -0.32416 0.45960 -0.705 0.4810
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 468 degrees of freedom
## (71 observations deleted due to missingness)
## Multiple R-squared: 0.08043, Adjusted R-squared: 0.0706
## F-statistic: 8.187 on 5 and 468 DF, p-value: 2.004e-07
summary(lm(act11 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3509 -1.0528 0.4314 1.6491 2.4314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.95975 0.18079 5.309 2.13e-07 ***
## IndD.d 0.09305 0.25726 0.362 0.7178
## IndR.d -0.26666 0.26280 -1.015 0.3111
## cond.c -0.78225 0.36158 -2.163 0.0313 *
## IndD.d:cond.c 0.30165 0.51452 0.586 0.5581
## IndR.d:cond.c 0.69018 0.52559 1.313 0.1901
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 305 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.0279, Adjusted R-squared: 0.01197
## F-statistic: 1.751 on 5 and 305 DF, p-value: 0.1228
summary(lm(act11 ~ (IndD.d + IndR.d)*clim.d, data = d))
##
## Call:
## lm(formula = act11 ~ (IndD.d + IndR.d) * clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3509 -1.0528 0.4314 1.6491 2.4314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56863 0.26268 2.165 0.0312 *
## IndD.d 0.24387 0.37725 0.646 0.5185
## IndR.d 0.07843 0.37149 0.211 0.8329
## clim.d 0.78225 0.36158 2.163 0.0313 *
## IndD.d:clim.d -0.30165 0.51452 -0.586 0.5581
## IndR.d:clim.d -0.69018 0.52559 -1.313 0.1901
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 305 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.0279, Adjusted R-squared: 0.01197
## F-statistic: 1.751 on 5 and 305 DF, p-value: 0.1228
summary(lm(act11 ~ (IndD.d + IndR.d)*ctrl.d, data = d))
##
## Call:
## lm(formula = act11 ~ (IndD.d + IndR.d) * ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3509 -1.0528 0.4314 1.6491 2.4314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.35088 0.24847 5.437 1.11e-07 ***
## IndD.d -0.05777 0.34988 -0.165 0.8690
## IndR.d -0.61175 0.37181 -1.645 0.1009
## ctrl.d -0.78225 0.36158 -2.163 0.0313 *
## IndD.d:ctrl.d 0.30165 0.51452 0.586 0.5581
## IndR.d:ctrl.d 0.69018 0.52559 1.313 0.1901
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 305 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.0279, Adjusted R-squared: 0.01197
## F-statistic: 1.751 on 5 and 305 DF, p-value: 0.1228
summary(lm(act12 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3333 -1.9851 -0.1029 1.8971 4.0149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1626 0.1865 0.872 0.384
## IndD.d 0.1532 0.2698 0.568 0.571
## IndR.d -1.0607 0.2637 -4.022 6.97e-05 ***
## cond.c 0.1193 0.3730 0.320 0.749
## IndD.d:cond.c -0.1544 0.5396 -0.286 0.775
## IndR.d:cond.c -0.3530 0.5274 -0.669 0.504
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.133 on 376 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.06291, Adjusted R-squared: 0.05045
## F-statistic: 5.048 on 5 and 376 DF, p-value: 0.0001718
summary(lm(act13 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3803 -2.0000 0.1977 1.7533 3.8133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0345 0.1625 0.212 0.8320
## IndD.d 0.1556 0.2366 0.658 0.5110
## IndR.d -0.5641 0.2405 -2.346 0.0194 *
## cond.c 0.4643 0.3249 1.429 0.1537
## IndD.d:cond.c -0.8446 0.4732 -1.785 0.0750 .
## IndR.d:cond.c -1.0318 0.4810 -2.145 0.0325 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 434 degrees of freedom
## (105 observations deleted due to missingness)
## Multiple R-squared: 0.03544, Adjusted R-squared: 0.02433
## F-statistic: 3.189 on 5 and 434 DF, p-value: 0.007706
summary(lm(act14 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7209 -1.5370 -0.2321 1.7297 2.7679
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47654 0.20654 2.307 0.0218 *
## IndD.d 0.07198 0.28745 0.250 0.8025
## IndR.d -0.16362 0.30621 -0.534 0.5935
## cond.c 0.48879 0.41308 1.183 0.2377
## IndD.d:cond.c -0.46582 0.57490 -0.810 0.4185
## IndR.d:cond.c -0.40350 0.61241 -0.659 0.5105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.037 on 279 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.007218, Adjusted R-squared: -0.01057
## F-statistic: 0.4057 on 5 and 279 DF, p-value: 0.8447
summary(lm(act15 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8098 0.2069 1.6290 3.2069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06167 0.17542 0.352 0.7254
## IndD.d 0.47382 0.25518 1.857 0.0641 .
## IndR.d -0.25742 0.25483 -1.010 0.3131
## cond.c -0.28207 0.35084 -0.804 0.4219
## IndD.d:cond.c -0.04696 0.51035 -0.092 0.9267
## IndR.d:cond.c 0.30435 0.50966 0.597 0.5508
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.047 on 376 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.02432, Adjusted R-squared: 0.01135
## F-statistic: 1.875 on 5 and 376 DF, p-value: 0.09788
summary(lm(act16 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1887 -1.0385 0.1404 1.5000 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.84434 0.17144 4.925 1.35e-06 ***
## IndD.d 0.20998 0.24455 0.859 0.3912
## IndR.d 0.07548 0.24585 0.307 0.7590
## cond.c 0.68868 0.34287 2.009 0.0454 *
## IndD.d:cond.c -0.72039 0.48911 -1.473 0.1418
## IndR.d:cond.c -0.80903 0.49170 -1.645 0.1009
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 323 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.01546, Adjusted R-squared: 0.0002187
## F-statistic: 1.014 on 5 and 323 DF, p-value: 0.4091
summary(lm(act16 ~ (IndD.d + IndR.d)*clim.d, data = d))
##
## Call:
## lm(formula = act16 ~ (IndD.d + IndR.d) * clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1887 -1.0385 0.1404 1.5000 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1887 0.2498 4.758 2.96e-06 ***
## IndD.d -0.1502 0.3550 -0.423 0.6725
## IndR.d -0.3290 0.3471 -0.948 0.3438
## clim.d -0.6887 0.3429 -2.009 0.0454 *
## IndD.d:clim.d 0.7204 0.4891 1.473 0.1418
## IndR.d:clim.d 0.8090 0.4917 1.645 0.1009
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 323 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.01546, Adjusted R-squared: 0.0002187
## F-statistic: 1.014 on 5 and 323 DF, p-value: 0.4091
summary(lm(act16 ~ (IndD.d + IndR.d)*ctrl.d, data = d))
##
## Call:
## lm(formula = act16 ~ (IndD.d + IndR.d) * ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1887 -1.0385 0.1404 1.5000 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5000 0.2348 2.129 0.0340 *
## IndD.d 0.5702 0.3364 1.695 0.0911 .
## IndR.d 0.4800 0.3483 1.378 0.1691
## ctrl.d 0.6887 0.3429 2.009 0.0454 *
## IndD.d:ctrl.d -0.7204 0.4891 -1.473 0.1418
## IndR.d:ctrl.d -0.8090 0.4917 -1.645 0.1009
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 323 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.01546, Adjusted R-squared: 0.0002187
## F-statistic: 1.014 on 5 and 323 DF, p-value: 0.4091
summary(lm(act17 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6761 -1.4375 0.3239 1.6032 2.8108
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.41716 0.16936 2.463 0.0142 *
## IndD.d 0.23246 0.23995 0.969 0.3332
## IndR.d -0.10327 0.24512 -0.421 0.6738
## cond.c -0.04067 0.33873 -0.120 0.9045
## IndD.d:cond.c -0.01219 0.47990 -0.025 0.9797
## IndR.d:cond.c -0.20873 0.49023 -0.426 0.6705
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.011 on 408 degrees of freedom
## (131 observations deleted due to missingness)
## Multiple R-squared: 0.006561, Adjusted R-squared: -0.005614
## F-statistic: 0.5389 on 5 and 408 DF, p-value: 0.7468
summary(lm(act18 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1004 0.2778 1.3654 2.7115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.67842 0.16743 4.052 6.28e-05 ***
## IndD.d 0.16835 0.23687 0.711 0.478
## IndR.d -0.25641 0.24491 -1.047 0.296
## cond.c -0.08761 0.33485 -0.262 0.794
## IndD.d:cond.c 0.21864 0.47373 0.462 0.645
## IndR.d:cond.c 0.35470 0.48983 0.724 0.469
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.84 on 345 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.01071, Adjusted R-squared: -0.003625
## F-statistic: 0.7472 on 5 and 345 DF, p-value: 0.5886
summary(lm(act19 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5429 -1.0543 0.3455 1.5510 2.3455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.33319 0.18360 7.261 4.23e-12 ***
## IndD.d -0.19216 0.26623 -0.722 0.471
## IndR.d -0.23448 0.26665 -0.879 0.380
## cond.c -0.23159 0.36720 -0.631 0.529
## IndD.d:cond.c -0.05046 0.53246 -0.095 0.925
## IndR.d:cond.c -0.65672 0.53330 -1.231 0.219
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.789 on 266 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.0288, Adjusted R-squared: 0.01054
## F-statistic: 1.578 on 5 and 266 DF, p-value: 0.1666
summary(lm(act20 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5102 -1.2979 0.4444 1.4444 2.4444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.31287 0.16993 7.726 1.5e-13 ***
## IndD.d -0.22259 0.23825 -0.934 0.3509
## IndR.d -0.03925 0.24232 -0.162 0.8714
## cond.c -0.03000 0.33987 -0.088 0.9297
## IndD.d:cond.c -1.03945 0.47650 -2.181 0.0299 *
## IndR.d:cond.c -0.44317 0.48464 -0.914 0.3612
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.751 on 315 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.03972, Adjusted R-squared: 0.02447
## F-statistic: 2.606 on 5 and 315 DF, p-value: 0.02506
summary(lm(act21 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5667 -1.9565 0.0704 1.7143 3.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2481 0.1799 1.379 0.16871
## IndD.d -0.2421 0.2495 -0.970 0.33256
## IndR.d -0.7719 0.2565 -3.009 0.00279 **
## cond.c 0.6371 0.3599 1.770 0.07746 .
## IndD.d:cond.c -0.7361 0.4991 -1.475 0.14100
## IndR.d:cond.c -0.2561 0.5131 -0.499 0.61789
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.052 on 394 degrees of freedom
## (145 observations deleted due to missingness)
## Multiple R-squared: 0.03132, Adjusted R-squared: 0.01903
## F-statistic: 2.548 on 5 and 394 DF, p-value: 0.0276
summary(lm(act22 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9254 -1.5082 0.2647 1.7037 3.3103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4022 0.1659 2.425 0.01576 *
## IndD.d 0.4013 0.2373 1.691 0.09157 .
## IndR.d -0.6898 0.2410 -2.862 0.00444 **
## cond.c 0.2119 0.3318 0.639 0.52337
## IndD.d:cond.c -0.4555 0.4746 -0.960 0.33781
## IndR.d:cond.c -0.1663 0.4821 -0.345 0.73037
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 395 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05123, Adjusted R-squared: 0.03922
## F-statistic: 4.266 on 5 and 395 DF, p-value: 0.0008644
summary(lm(act23 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.661 -2.044 0.225 2.189 3.225
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3414 0.2221 1.537 0.125
## IndD.d -0.1861 0.3168 -0.587 0.557
## IndR.d -0.4317 0.3310 -1.304 0.193
## cond.c -0.6393 0.4443 -1.439 0.151
## IndD.d:cond.c 0.1655 0.6337 0.261 0.794
## IndR.d:cond.c 0.9087 0.6620 1.373 0.171
##
## Residual standard error: 2.259 on 284 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01883, Adjusted R-squared: 0.001555
## F-statistic: 1.09 on 5 and 284 DF, p-value: 0.366
summary(lm(act24 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1266 -1.9583 -0.1266 1.6133 3.6133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1034 0.1788 -0.578 0.563
## IndD.d -0.1131 0.2508 -0.451 0.652
## IndR.d -0.3843 0.2555 -1.504 0.133
## cond.c -0.4599 0.3576 -1.286 0.199
## IndD.d:cond.c 0.1103 0.5016 0.220 0.826
## IndR.d:cond.c 0.2087 0.5110 0.408 0.683
##
## Residual standard error: 2.088 on 407 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01483, Adjusted R-squared: 0.00273
## F-statistic: 1.226 on 5 and 407 DF, p-value: 0.2962
summary(lm(act25 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3194 -0.9688 0.0789 1.6562 2.8415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8550 0.1516 5.639 3.07e-08 ***
## IndD.d 0.2653 0.2137 1.241 0.21519
## IndR.d -0.6038 0.2152 -2.805 0.00525 **
## cond.c 0.2276 0.3032 0.751 0.45332
## IndD.d:cond.c 0.1708 0.4275 0.400 0.68963
## IndR.d:cond.c -0.4128 0.4305 -0.959 0.33814
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 437 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.04416, Adjusted R-squared: 0.03323
## F-statistic: 4.038 on 5 and 437 DF, p-value: 0.001359
summary(lm(act26 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6875 -1.4444 0.5556 1.5000 1.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.53105 0.20797 7.362 3.67e-12 ***
## IndD.d -0.14216 0.29404 -0.483 0.629
## IndR.d 0.04128 0.30555 0.135 0.893
## cond.c 0.17320 0.41594 0.416 0.678
## IndD.d:cond.c 0.04902 0.58809 0.083 0.934
## IndR.d:cond.c -0.40356 0.61110 -0.660 0.510
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.83 on 218 degrees of freedom
## (321 observations deleted due to missingness)
## Multiple R-squared: 0.004848, Adjusted R-squared: -0.01798
## F-statistic: 0.2124 on 5 and 218 DF, p-value: 0.957
summary(lm(act27 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2951 -0.9623 0.1417 1.7049 2.8113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.54386 0.18238 2.982 0.00309 **
## IndD.d 0.58481 0.25263 2.315 0.02127 *
## IndR.d -0.08588 0.26327 -0.326 0.74448
## cond.c -0.42105 0.36475 -1.154 0.24924
## IndD.d:cond.c 0.08823 0.50526 0.175 0.86148
## IndR.d:cond.c -0.11754 0.52654 -0.223 0.82350
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 310 degrees of freedom
## (229 observations deleted due to missingness)
## Multiple R-squared: 0.04058, Adjusted R-squared: 0.0251
## F-statistic: 2.622 on 5 and 310 DF, p-value: 0.0243
summary(lm(act28 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2188 1.6912 2.2188
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9713 0.1674 5.801 1.43e-08 ***
## IndD.d 0.2498 0.2324 1.075 0.283
## IndR.d -0.0117 0.2350 -0.050 0.960
## cond.c 0.3711 0.3349 1.108 0.268
## IndD.d:cond.c -0.5466 0.4647 -1.176 0.240
## IndR.d:cond.c -0.7278 0.4700 -1.549 0.122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
summary(lm(act29 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3438 -1.1250 0.0968 1.6562 2.0968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07699 0.15759 6.834 3.52e-11 ***
## IndD.d 0.24242 0.22229 1.091 0.276
## IndR.d -0.14356 0.22622 -0.635 0.526
## cond.c 0.09601 0.31518 0.305 0.761
## IndD.d:cond.c -0.04735 0.44459 -0.106 0.915
## IndR.d:cond.c -0.15643 0.45244 -0.346 0.730
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.752 on 361 degrees of freedom
## (178 observations deleted due to missingness)
## Multiple R-squared: 0.008834, Adjusted R-squared: -0.004894
## F-statistic: 0.6435 on 5 and 361 DF, p-value: 0.6667
summary(lm(act30 ~ (IndD.d + IndR.d)*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (IndD.d + IndR.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2545 -1.1167 0.7455 1.8615 2.1373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1965035 0.1714254 6.980 1.52e-11 ***
## IndD.d -0.1381702 0.2435923 -0.567 0.571
## IndR.d -0.2333849 0.2458645 -0.949 0.343
## cond.c 0.1160839 0.3428507 0.339 0.735
## IndD.d:cond.c 0.0005828 0.4871845 0.001 0.999
## IndR.d:cond.c 0.0846630 0.4917290 0.172 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 345 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.003928, Adjusted R-squared: -0.01051
## F-statistic: 0.2721 on 5 and 345 DF, p-value: 0.9282
Significant condition difference: 19
a. Means for condition diffs
describeBy(d$act19[d$party_factor=="Republican"], d$cond[d$party_factor=="Republican"]) # both supported, ctrl supported more
##
## Descriptive statistics by group
## group: climate
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 55 0.65 1.97 1 0.8 1.48 -3 3 6 -0.53 -0.81 0.27
## ------------------------------------------------------------
## group: ctrl
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 1.54 1.4 2 1.66 1.48 -3 3 6 -0.93 0.88 0.24
### is climate different from 0?
summary(lm(act28 ~ (RepD.d + RepI.d) * clim.d, data = d))
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2188 1.6912 2.2188
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7812 0.2274 3.436 0.000659 ***
## RepD.d 0.3521 0.3269 1.077 0.282157
## RepI.d 0.3756 0.3415 1.100 0.272035
## clim.d 0.3567 0.3298 1.082 0.280162
## RepD.d:clim.d -0.1812 0.4611 -0.393 0.694555
## RepI.d:clim.d -0.7278 0.4700 -1.549 0.122362
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
### Higher than 0 in the climate condition
summary(lm(act28 ~ (RepD.d + RepI.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = act28 ~ (RepD.d + RepI.d) * ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2188 1.6912 2.2187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1379 0.2389 4.764 2.74e-06 ***
## RepD.d 0.1709 0.3251 0.526 0.599
## RepI.d -0.3522 0.3230 -1.090 0.276
## ctrl.d -0.3567 0.3298 -1.082 0.280
## RepD.d:ctrl.d 0.1812 0.4611 0.393 0.695
## RepI.d:ctrl.d 0.7278 0.4700 1.549 0.122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
### Higher than 0 in the ctrl condition
2. Gender effects
Actions 15
summary(lm(act1 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act1 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3182 -2.0095 -0.0095 1.8462 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.08168 0.20140 0.406 0.68525
## IndD.d 0.19505 0.27944 0.698 0.48554
## IndR.d -0.80818 0.28565 -2.829 0.00488 **
## gend.mf 0.14432 0.40281 0.358 0.72030
## IndD.d:gend.mf -0.06143 0.55889 -0.110 0.91252
## IndR.d:gend.mf -0.69133 0.57131 -1.210 0.22690
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 438 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03231, Adjusted R-squared: 0.02127
## F-statistic: 2.925 on 5 and 438 DF, p-value: 0.01307
summary(lm(act2 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act2 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.292 -1.076 0.280 1.708 2.280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.14396 0.20903 5.473 9.87e-08 ***
## IndD.d 0.09311 0.28554 0.326 0.745
## IndR.d -0.24608 0.29896 -0.823 0.411
## gend.mf 0.17363 0.41805 0.415 0.678
## IndD.d:gend.mf -0.28412 0.57109 -0.497 0.619
## IndR.d:gend.mf -0.52938 0.59791 -0.885 0.377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.82 on 279 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.007276, Adjusted R-squared: -0.01051
## F-statistic: 0.409 on 5 and 279 DF, p-value: 0.8424
summary(lm(act3 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act3 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1845 -1.8571 0.1429 1.6667 3.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.16234 0.18229 -0.891 0.3737
## IndD.d 0.26544 0.25494 1.041 0.2984
## IndR.d -0.54600 0.26681 -2.046 0.0413 *
## gend.mf 0.03896 0.36459 0.107 0.9149
## IndD.d:gend.mf -0.20169 0.50988 -0.396 0.6926
## IndR.d:gend.mf -0.12229 0.53363 -0.229 0.8188
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 433 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.02799, Adjusted R-squared: 0.01676
## F-statistic: 2.493 on 5 and 433 DF, p-value: 0.0305
summary(lm(act4 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act4 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3721 -1.9412 0.2198 2.0588 3.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.24782 0.23080 -1.074 0.284
## IndD.d 0.57180 0.30655 1.865 0.063 .
## IndR.d -0.08804 0.32379 -0.272 0.786
## gend.mf -0.05608 0.46160 -0.121 0.903
## IndD.d:gend.mf 0.15231 0.61311 0.248 0.804
## IndR.d:gend.mf -0.49800 0.64757 -0.769 0.442
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.165 on 360 degrees of freedom
## (179 observations deleted due to missingness)
## Multiple R-squared: 0.01789, Adjusted R-squared: 0.004246
## F-statistic: 1.311 on 5 and 360 DF, p-value: 0.2585
summary(lm(act5 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act5 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2540 -1.1852 0.4133 1.7460 2.6061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98230 0.21178 4.638 5.35e-06 ***
## IndD.d 0.09013 0.28605 0.315 0.7529
## IndR.d -0.15834 0.29134 -0.544 0.5872
## gend.mf 0.40577 0.42357 0.958 0.3389
## IndD.d:gend.mf -0.60468 0.57210 -1.057 0.2914
## IndR.d:gend.mf -1.26580 0.58268 -2.172 0.0306 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 286 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.02198, Adjusted R-squared: 0.004878
## F-statistic: 1.285 on 5 and 286 DF, p-value: 0.2702
summary(lm(act6 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act6 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7273 -1.2184 0.6579 1.6579 2.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5049 0.1840 8.180 5.37e-15 ***
## IndD.d -0.4033 0.2598 -1.552 0.1215
## IndR.d -0.4957 0.2659 -1.865 0.0631 .
## gend.mf 0.4447 0.3679 1.209 0.2277
## IndD.d:gend.mf -0.9257 0.5196 -1.781 0.0757 .
## IndR.d:gend.mf -0.8631 0.5318 -1.623 0.1055
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 348 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01702, Adjusted R-squared: 0.002894
## F-statistic: 1.205 on 5 and 348 DF, p-value: 0.3064
summary(lm(act7 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act7 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1684 -1.9773 0.0472 1.8316 3.6563
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03524 0.20465 0.172 0.8634
## IndD.d 0.03761 0.27880 0.135 0.8928
## IndR.d -0.58559 0.29404 -1.991 0.0471 *
## gend.mf 0.16482 0.40929 0.403 0.6874
## IndD.d:gend.mf -0.35597 0.55761 -0.638 0.5236
## IndR.d:gend.mf -0.37662 0.58809 -0.640 0.5223
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 404 degrees of freedom
## (135 observations deleted due to missingness)
## Multiple R-squared: 0.01716, Adjusted R-squared: 0.004995
## F-statistic: 1.411 on 5 and 404 DF, p-value: 0.2193
summary(lm(act8 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act8 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4545 -1.8926 -0.1593 1.8407 4.1892
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.31942 0.19289 -1.656 0.09840 .
## IndD.d 0.62634 0.26931 2.326 0.02046 *
## IndR.d -0.82889 0.27691 -2.993 0.00291 **
## gend.mf 0.03884 0.38578 0.101 0.91984
## IndD.d:gend.mf 0.25641 0.53862 0.476 0.63426
## IndR.d:gend.mf -0.12059 0.55383 -0.218 0.82772
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.115 on 470 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.06738, Adjusted R-squared: 0.05746
## F-statistic: 6.791 on 5 and 470 DF, p-value: 3.961e-06
summary(lm(act9 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act9 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3564 -1.6055 0.0435 1.6436 3.5882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.18304 0.17844 1.026 0.3056
## IndD.d -0.02656 0.25022 -0.106 0.9155
## IndR.d -0.67440 0.26338 -2.561 0.0108 *
## gend.mf -0.08036 0.35687 -0.225 0.8220
## IndD.d:gend.mf -0.31956 0.50045 -0.639 0.5235
## IndR.d:gend.mf -0.11338 0.52675 -0.215 0.8297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 438 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02744, Adjusted R-squared: 0.01634
## F-statistic: 2.472 on 5 and 438 DF, p-value: 0.03179
summary(lm(act10 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act10 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.9722 0.2857 1.7034 4.0278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32231 0.18009 1.790 0.0742 .
## IndD.d 0.30715 0.25825 1.189 0.2349
## IndR.d -1.18790 0.26528 -4.478 9.49e-06 ***
## gend.mf -0.09917 0.36019 -0.275 0.7832
## IndD.d:gend.mf 0.26882 0.51651 0.520 0.6030
## IndR.d:gend.mf -0.22521 0.53056 -0.424 0.6714
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 467 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.07975, Adjusted R-squared: 0.0699
## F-statistic: 8.094 on 5 and 467 DF, p-value: 2.448e-07
summary(lm(act11 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act11 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0519 -1.0519 0.3382 1.7105 2.3382
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9292 0.2017 4.607 6.03e-06 ***
## IndD.d 0.1928 0.2792 0.690 0.490
## IndR.d -0.2190 0.2914 -0.752 0.453
## gend.mf -0.2455 0.4034 -0.609 0.543
## IndD.d:gend.mf 0.5804 0.5585 1.039 0.299
## IndR.d:gend.mf 0.3424 0.5828 0.587 0.557
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.897 on 303 degrees of freedom
## (236 observations deleted due to missingness)
## Multiple R-squared: 0.01116, Adjusted R-squared: -0.005162
## F-statistic: 0.6836 on 5 and 303 DF, p-value: 0.6362
summary(lm(act12 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act12 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4217 -2.1579 -0.1579 1.8355 4.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.162281 0.208468 0.778 0.437
## IndD.d 0.048563 0.299241 0.162 0.871
## IndR.d -1.206498 0.299027 -4.035 6.63e-05 ***
## gend.mf 0.008772 0.416936 0.021 0.983
## IndD.d:gend.mf -0.430459 0.598482 -0.719 0.472
## IndR.d:gend.mf -0.587003 0.598055 -0.982 0.327
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.13 on 374 degrees of freedom
## (165 observations deleted due to missingness)
## Multiple R-squared: 0.06734, Adjusted R-squared: 0.05487
## F-statistic: 5.401 on 5 and 374 DF, p-value: 8.241e-05
summary(lm(act13 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act13 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5000 -2.0784 -0.0784 1.8067 3.6990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1415 0.1846 -0.766 0.4438
## IndD.d 0.4307 0.2662 1.618 0.1064
## IndR.d -0.2687 0.2764 -0.972 0.3315
## gend.mf -0.6695 0.3691 -1.814 0.0704 .
## IndD.d:gend.mf 1.0910 0.5324 2.049 0.0410 *
## IndR.d:gend.mf 1.2473 0.5527 2.257 0.0245 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 433 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.03722, Adjusted R-squared: 0.0261
## F-statistic: 3.347 on 5 and 433 DF, p-value: 0.005603
summary(lm(act14 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act14 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.730 -1.520 0.322 1.538 3.609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3642 0.2371 1.536 0.126
## IndD.d 0.2315 0.3155 0.734 0.464
## IndR.d -0.3295 0.3435 -0.959 0.338
## gend.mf -0.3117 0.4742 -0.657 0.512
## IndD.d:gend.mf 0.5799 0.6311 0.919 0.359
## IndR.d:gend.mf -0.9750 0.6870 -1.419 0.157
##
## Residual standard error: 2.022 on 277 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.02875, Adjusted R-squared: 0.01121
## F-statistic: 1.64 on 5 and 277 DF, p-value: 0.1496
summary(lm(act15 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act15 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5581 -1.5581 0.4634 1.5278 3.5278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08067 0.19015 -0.424 0.6716
## IndD.d 0.62256 0.27135 2.294 0.0223 *
## IndR.d -0.21196 0.27740 -0.764 0.4453
## gend.mf -0.76550 0.38030 -2.013 0.0448 *
## IndD.d:gend.mf 0.79800 0.54271 1.470 0.1423
## IndR.d:gend.mf 0.29519 0.55480 0.532 0.5950
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.038 on 375 degrees of freedom
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.03469, Adjusted R-squared: 0.02182
## F-statistic: 2.695 on 5 and 375 DF, p-value: 0.02078
summary(lm(act16 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act16 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2692 -0.9860 0.1667 1.3103 2.3103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97944 0.20379 4.806 2.36e-06 ***
## IndD.d 0.03108 0.27438 0.113 0.910
## IndR.d -0.08875 0.28291 -0.314 0.754
## gend.mf 0.57958 0.40758 1.422 0.156
## IndD.d:gend.mf -0.75852 0.54876 -1.382 0.168
## IndR.d:gend.mf -0.69429 0.56582 -1.227 0.221
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.824 on 322 degrees of freedom
## (217 observations deleted due to missingness)
## Multiple R-squared: 0.009561, Adjusted R-squared: -0.005818
## F-statistic: 0.6217 on 5 and 322 DF, p-value: 0.6834
summary(lm(act17 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act17 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8837 -1.4362 0.4583 1.5741 3.0541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.41296 0.19534 2.114 0.0351 *
## IndD.d 0.29973 0.26855 1.116 0.2650
## IndR.d -0.22190 0.27595 -0.804 0.4218
## gend.mf -0.02593 0.39068 -0.066 0.9471
## IndD.d:gend.mf 0.36798 0.53711 0.685 0.4937
## IndR.d:gend.mf -0.46430 0.55190 -0.841 0.4007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.009 on 407 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01111, Adjusted R-squared: -0.001043
## F-statistic: 0.9141 on 5 and 407 DF, p-value: 0.4717
summary(lm(act18 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act18 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9730 -1.3947 0.2561 1.5000 2.6053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6046 0.1887 3.204 0.00148 **
## IndD.d 0.2538 0.2623 0.968 0.33386
## IndR.d -0.1573 0.2738 -0.574 0.56605
## gend.mf -0.3342 0.3775 -0.885 0.37653
## IndD.d:gend.mf 0.5633 0.5246 1.074 0.28364
## IndR.d:gend.mf 0.4395 0.5475 0.803 0.42268
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 343 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01109, Adjusted R-squared: -0.003321
## F-statistic: 0.7696 on 5 and 343 DF, p-value: 0.5722
summary(lm(act19 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act19 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3538 -1.1719 0.4231 1.6462 2.4231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.32692 0.19888 6.672 1.47e-10 ***
## IndD.d -0.21048 0.28876 -0.729 0.467
## IndR.d -0.45252 0.28890 -1.566 0.118
## gend.mf -0.05385 0.39776 -0.135 0.892
## IndD.d:gend.mf 0.11725 0.57753 0.203 0.839
## IndR.d:gend.mf -0.54111 0.57781 -0.936 0.350
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.802 on 265 degrees of freedom
## (274 observations deleted due to missingness)
## Multiple R-squared: 0.01397, Adjusted R-squared: -0.00463
## F-statistic: 0.7511 on 5 and 265 DF, p-value: 0.5859
summary(lm(act20 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act20 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5139 -1.1429 0.4861 1.5556 2.3226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2589 0.1946 6.470 3.78e-10 ***
## IndD.d -0.1345 0.2641 -0.509 0.611
## IndR.d -0.1633 0.2722 -0.600 0.549
## gend.mf -0.2321 0.3892 -0.596 0.551
## IndD.d:gend.mf 0.5096 0.5282 0.965 0.335
## IndR.d:gend.mf -0.6043 0.5445 -1.110 0.268
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.772 on 313 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02125, Adjusted R-squared: 0.005613
## F-statistic: 1.359 on 5 and 313 DF, p-value: 0.2396
summary(lm(act21 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act21 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.308 -1.850 0.150 1.760 3.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20551 0.20292 1.013 0.31180
## IndD.d -0.12666 0.28074 -0.451 0.65212
## IndR.d -0.82386 0.28634 -2.877 0.00423 **
## gend.mf -0.06815 0.40583 -0.168 0.86672
## IndD.d:gend.mf 0.52585 0.56148 0.937 0.34957
## IndR.d:gend.mf -0.47291 0.57268 -0.826 0.40943
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.055 on 392 degrees of freedom
## (147 observations deleted due to missingness)
## Multiple R-squared: 0.02841, Adjusted R-squared: 0.01602
## F-statistic: 2.293 on 5 and 392 DF, p-value: 0.04499
summary(lm(act22 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act22 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.5263 0.2421 1.5686 3.4194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4314 0.1855 2.326 0.02055 *
## IndD.d 0.4127 0.2644 1.561 0.11942
## IndR.d -0.7622 0.2746 -2.776 0.00577 **
## gend.mf 0.1898 0.3710 0.511 0.60929
## IndD.d:gend.mf 0.1221 0.5288 0.231 0.81760
## IndR.d:gend.mf -0.3670 0.5492 -0.668 0.50430
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 393 degrees of freedom
## (146 observations deleted due to missingness)
## Multiple R-squared: 0.04966, Adjusted R-squared: 0.03757
## F-statistic: 4.107 on 5 and 393 DF, p-value: 0.001201
summary(lm(act23 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act23 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6667 -2.2821 0.0678 2.0678 3.1154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4744 0.2531 1.874 0.062 .
## IndD.d -0.3210 0.3477 -0.923 0.357
## IndR.d -0.5659 0.3678 -1.539 0.125
## gend.mf 0.3846 0.5063 0.760 0.448
## IndD.d:gend.mf -0.2342 0.6954 -0.337 0.737
## IndR.d:gend.mf -0.4322 0.7357 -0.587 0.557
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.267 on 283 degrees of freedom
## (256 observations deleted due to missingness)
## Multiple R-squared: 0.009342, Adjusted R-squared: -0.008161
## F-statistic: 0.5337 on 5 and 283 DF, p-value: 0.7507
summary(lm(act24 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act24 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.13 -2.00 -0.13 1.59 3.59
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2299 0.1965 -1.170 0.2428
## IndD.d 0.0615 0.2747 0.224 0.8230
## IndR.d -0.2570 0.2802 -0.917 0.3597
## gend.mf -0.7197 0.3930 -1.831 0.0678 .
## IndD.d:gend.mf 1.0565 0.5495 1.923 0.0552 .
## IndR.d:gend.mf 0.7987 0.5605 1.425 0.1549
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.082 on 406 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.01727, Adjusted R-squared: 0.005164
## F-statistic: 1.427 on 5 and 406 DF, p-value: 0.2135
summary(lm(act25 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act25 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2791 -1.0194 0.0833 1.6847 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.77541 0.16828 4.608 5.35e-06 ***
## IndD.d 0.37384 0.23677 1.579 0.115
## IndR.d -0.61775 0.24484 -2.523 0.012 *
## gend.mf -0.28252 0.33656 -0.839 0.402
## IndD.d:gend.mf 0.54217 0.47354 1.145 0.253
## IndR.d:gend.mf -0.03279 0.48967 -0.067 0.947
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.04154, Adjusted R-squared: 0.03052
## F-statistic: 3.77 on 5 and 435 DF, p-value: 0.002362
summary(lm(act26 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act26 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7609 -1.1429 0.5614 1.3929 1.8571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.58293 0.22877 6.919 5.03e-11 ***
## IndD.d -0.15691 0.31458 -0.499 0.618
## IndR.d -0.13107 0.33159 -0.395 0.693
## gend.mf 0.28868 0.45754 0.631 0.529
## IndD.d:gend.mf 0.07357 0.62915 0.117 0.907
## IndR.d:gend.mf -0.90669 0.66318 -1.367 0.173
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.823 on 217 degrees of freedom
## (322 observations deleted due to missingness)
## Multiple R-squared: 0.01451, Adjusted R-squared: -0.008199
## F-statistic: 0.6389 on 5 and 217 DF, p-value: 0.6702
summary(lm(act27 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act27 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4324 -0.9467 0.0533 1.5676 2.6000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6233 0.2017 3.090 0.00219 **
## IndD.d 0.5662 0.2755 2.055 0.04071 *
## IndR.d -0.1733 0.2853 -0.608 0.54389
## gend.mf 0.2867 0.4035 0.710 0.47796
## IndD.d:gend.mf 0.1991 0.5510 0.361 0.71810
## IndR.d:gend.mf -0.1867 0.5705 -0.327 0.74376
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.868 on 308 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.03174, Adjusted R-squared: 0.01602
## F-statistic: 2.019 on 5 and 308 DF, p-value: 0.07577
summary(lm(act28 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act28 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2151 -1.0449 0.2069 1.7849 2.3030
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89112 0.19439 4.584 6.28e-06 ***
## IndD.d 0.32247 0.26831 1.202 0.230
## IndR.d -0.02016 0.26906 -0.075 0.940
## gend.mf -0.19603 0.38877 -0.504 0.614
## IndD.d:gend.mf 0.19309 0.53663 0.360 0.719
## IndR.d:gend.mf -0.15195 0.53812 -0.282 0.778
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 363 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.007968, Adjusted R-squared: -0.005696
## F-statistic: 0.5831 on 5 and 363 DF, p-value: 0.7129
summary(lm(act29 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act29 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.056 0.069 1.667 2.069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.083645 0.173308 6.253 1.15e-09 ***
## IndD.d 0.226699 0.245500 0.923 0.356
## IndR.d -0.151462 0.254062 -0.596 0.551
## gend.mf 0.054931 0.346617 0.158 0.874
## IndD.d:gend.mf -0.008954 0.491001 -0.018 0.985
## IndR.d:gend.mf -0.052632 0.508124 -0.104 0.918
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.755 on 359 degrees of freedom
## (180 observations deleted due to missingness)
## Multiple R-squared: 0.00763, Adjusted R-squared: -0.006191
## F-statistic: 0.552 on 5 and 359 DF, p-value: 0.7368
summary(lm(act30 ~ (IndD.d + IndR.d)*gend.mf, data = d))
##
## Call:
## lm(formula = act30 ~ (IndD.d + IndR.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2581 -1.1685 0.7419 1.8228 2.4194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.21330 0.19464 6.234 1.34e-09 ***
## IndD.d -0.24969 0.27038 -0.924 0.356
## IndR.d -0.36274 0.27654 -1.312 0.190
## gend.mf 0.08953 0.38927 0.230 0.818
## IndD.d:gend.mf -0.51674 0.54075 -0.956 0.340
## IndR.d:gend.mf -0.62936 0.55308 -1.138 0.256
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 343 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01173, Adjusted R-squared: -0.002672
## F-statistic: 0.8145 on 5 and 343 DF, p-value: 0.5399
3. Condition x Gender effects
Actions: 23, 24
summary(lm(act1 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7273 -2.0492 -0.0019 1.9273 3.6522
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0356908 0.2033129 0.176 0.86073
## IndD.d 0.2472073 0.2813081 0.879 0.38001
## IndR.d -0.8168107 0.2903803 -2.813 0.00513 **
## gend.mf 0.0676558 0.4066258 0.166 0.86793
## cond.c -0.7050714 0.4066258 -1.734 0.08364 .
## IndD.d:gend.mf -0.0001188 0.5626162 0.000 0.99983
## IndR.d:gend.mf -0.7290185 0.5807605 -1.255 0.21005
## IndD.d:cond.c 0.5120025 0.5626162 0.910 0.36331
## IndR.d:cond.c 1.0651374 0.5807605 1.834 0.06734 .
## gend.mf:cond.c -1.2208731 0.8132516 -1.501 0.13403
## IndD.d:gend.mf:cond.c 1.5403445 1.1252324 1.369 0.17174
## IndR.d:gend.mf:cond.c 2.3392506 1.1615211 2.014 0.04463 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 432 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.04596, Adjusted R-squared: 0.02167
## F-statistic: 1.892 on 11 and 432 DF, p-value: 0.03851
summary(lm(act2 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6765 -0.9062 0.3235 1.3889 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08949 0.21248 5.127 5.57e-07 ***
## IndD.d 0.11681 0.28796 0.406 0.685
## IndR.d -0.15133 0.30540 -0.496 0.621
## gend.mf 0.19677 0.42497 0.463 0.644
## cond.c -0.50990 0.42497 -1.200 0.231
## IndD.d:gend.mf -0.33160 0.57593 -0.576 0.565
## IndR.d:gend.mf -0.46198 0.61081 -0.756 0.450
## IndD.d:cond.c 0.57937 0.57593 1.006 0.315
## IndR.d:cond.c 0.03982 0.61081 0.065 0.948
## gend.mf:cond.c -0.09535 0.84993 -0.112 0.911
## IndD.d:gend.mf:cond.c 1.84530 1.15185 1.602 0.110
## IndR.d:gend.mf:cond.c -0.18671 1.22162 -0.153 0.879
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 273 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.03645, Adjusted R-squared: -0.002379
## F-statistic: 0.9387 on 11 and 273 DF, p-value: 0.5035
summary(lm(act3 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4808 -1.7697 0.1176 1.5192 3.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15779 0.18373 -0.859 0.391
## IndD.d 0.24714 0.25649 0.964 0.336
## IndR.d -0.61337 0.27451 -2.234 0.026 *
## gend.mf 0.01809 0.36746 0.049 0.961
## cond.c 0.04122 0.36746 0.112 0.911
## IndD.d:gend.mf -0.20251 0.51299 -0.395 0.693
## IndR.d:gend.mf -0.22579 0.54903 -0.411 0.681
## IndD.d:cond.c -0.02487 0.51299 -0.048 0.961
## IndR.d:cond.c 0.30109 0.54903 0.548 0.584
## gend.mf:cond.c -0.32958 0.73491 -0.448 0.654
## IndD.d:gend.mf:cond.c -0.83455 1.02597 -0.813 0.416
## IndR.d:gend.mf:cond.c 1.14497 1.09805 1.043 0.298
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.013 on 427 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.03842, Adjusted R-squared: 0.01365
## F-statistic: 1.551 on 11 and 427 DF, p-value: 0.1107
summary(lm(act4 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6923 -1.9844 0.1636 1.9750 4.0625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.20985 0.23295 -0.901 0.3683
## IndD.d 0.53810 0.31030 1.734 0.0838 .
## IndR.d -0.10829 0.32839 -0.330 0.7418
## gend.mf 0.04950 0.46590 0.106 0.9154
## cond.c -0.94836 0.46590 -2.036 0.0425 *
## IndD.d:gend.mf 0.09264 0.62060 0.149 0.8814
## IndR.d:gend.mf -0.56673 0.65678 -0.863 0.3888
## IndD.d:cond.c 1.31063 0.62060 2.112 0.0354 *
## IndR.d:cond.c 0.84780 0.65678 1.291 0.1976
## gend.mf:cond.c -1.61289 0.93179 -1.731 0.0843 .
## IndD.d:gend.mf:cond.c 1.40871 1.24121 1.135 0.2572
## IndR.d:gend.mf:cond.c 1.17367 1.31356 0.893 0.3722
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.164 on 354 degrees of freedom
## (179 observations deleted due to missingness)
## Multiple R-squared: 0.03473, Adjusted R-squared: 0.004739
## F-statistic: 1.158 on 11 and 354 DF, p-value: 0.3153
summary(lm(act5 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2647 -1.2414 0.2432 1.4847 2.9048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.98696 0.21253 4.644 5.27e-06 ***
## IndD.d 0.07293 0.28697 0.254 0.7996
## IndR.d -0.10746 0.29590 -0.363 0.7168
## gend.mf 0.41070 0.42506 0.966 0.3348
## cond.c -0.16746 0.42506 -0.394 0.6939
## IndD.d:gend.mf -0.58310 0.57395 -1.016 0.3105
## IndR.d:gend.mf -1.15779 0.59180 -1.956 0.0514 .
## IndD.d:cond.c -0.27160 0.57395 -0.473 0.6364
## IndR.d:cond.c -0.23159 0.59180 -0.391 0.6958
## gend.mf:cond.c -0.43431 0.85012 -0.511 0.6098
## IndD.d:gend.mf:cond.c 1.20717 1.14789 1.052 0.2939
## IndR.d:gend.mf:cond.c -0.41044 1.18360 -0.347 0.7290
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 280 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03883, Adjusted R-squared: 0.001066
## F-statistic: 1.028 on 11 and 280 DF, p-value: 0.4213
summary(lm(act6 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.500 -1.108 0.600 1.600 2.400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.48732 0.18616 7.989 2.1e-14 ***
## IndD.d -0.40436 0.26343 -1.535 0.1257
## IndR.d -0.46530 0.27469 -1.694 0.0912 .
## gend.mf 0.46653 0.37233 1.253 0.2111
## cond.c -0.36653 0.37233 -0.984 0.3256
## IndD.d:gend.mf -0.98483 0.52686 -1.869 0.0624 .
## IndR.d:gend.mf -0.86058 0.54938 -1.566 0.1182
## IndD.d:cond.c 0.16904 0.52686 0.321 0.7485
## IndR.d:cond.c 0.27249 0.54938 0.496 0.6202
## gend.mf:cond.c -0.14928 0.74466 -0.200 0.8412
## IndD.d:gend.mf:cond.c -0.35097 1.05371 -0.333 0.7393
## IndR.d:gend.mf:cond.c 0.03738 1.09875 0.034 0.9729
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 342 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.02172, Adjusted R-squared: -0.009744
## F-statistic: 0.6903 on 11 and 342 DF, p-value: 0.7479
summary(lm(act7 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3725 -1.9167 0.0893 1.6275 3.5600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.05019 0.20623 0.243 0.8078
## IndD.d 0.01296 0.28062 0.046 0.9632
## IndR.d -0.64266 0.29949 -2.146 0.0325 *
## gend.mf 0.13572 0.41245 0.329 0.7423
## cond.c 0.20239 0.41245 0.491 0.6239
## IndD.d:gend.mf -0.31379 0.56125 -0.559 0.5764
## IndR.d:gend.mf -0.43413 0.59897 -0.725 0.4690
## IndD.d:cond.c -0.05138 0.56125 -0.092 0.9271
## IndR.d:cond.c 0.25601 0.59897 0.427 0.6693
## gend.mf:cond.c -0.37700 0.82491 -0.457 0.6479
## IndD.d:gend.mf:cond.c -0.20244 1.12250 -0.180 0.8570
## IndR.d:gend.mf:cond.c 0.82687 1.19795 0.690 0.4904
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.084 on 398 degrees of freedom
## (135 observations deleted due to missingness)
## Multiple R-squared: 0.02484, Adjusted R-squared: -0.002116
## F-statistic: 0.9215 on 11 and 398 DF, p-value: 0.5194
summary(lm(act8 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5909 -1.6719 -0.1404 1.8596 4.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.31114 0.19372 -1.606 0.10893
## IndD.d 0.61869 0.27021 2.290 0.02249 *
## IndR.d -0.78228 0.28314 -2.763 0.00596 **
## gend.mf 0.02228 0.38745 0.058 0.95417
## cond.c -0.06640 0.38745 -0.171 0.86400
## IndD.d:gend.mf 0.27171 0.54043 0.503 0.61537
## IndR.d:gend.mf -0.02134 0.56627 -0.038 0.96995
## IndD.d:cond.c 0.34578 0.54043 0.640 0.52261
## IndR.d:cond.c -0.49156 0.56627 -0.868 0.38581
## gend.mf:cond.c -0.66720 0.77489 -0.861 0.38967
## IndD.d:gend.mf:cond.c 0.65390 1.08086 0.605 0.54549
## IndR.d:gend.mf:cond.c 0.48824 1.13254 0.431 0.66659
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 464 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07492, Adjusted R-squared: 0.05299
## F-statistic: 3.416 on 11 and 464 DF, p-value: 0.0001407
summary(lm(act9 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4615 -1.6087 0.2381 1.6512 3.4182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19487 0.18067 1.079 0.28136
## IndD.d -0.04778 0.25273 -0.189 0.85013
## IndR.d -0.73983 0.27319 -2.708 0.00703 **
## gend.mf -0.10403 0.36133 -0.288 0.77357
## cond.c -0.04090 0.36133 -0.113 0.90993
## IndD.d:gend.mf -0.30824 0.50547 -0.610 0.54231
## IndR.d:gend.mf -0.19735 0.54638 -0.361 0.71813
## IndD.d:cond.c -0.02983 0.50547 -0.059 0.95298
## IndR.d:cond.c 0.32134 0.54638 0.588 0.55675
## gend.mf:cond.c -0.48962 0.72267 -0.678 0.49844
## IndD.d:gend.mf:cond.c -0.08511 1.01094 -0.084 0.93294
## IndR.d:gend.mf:cond.c 1.14613 1.09276 1.049 0.29484
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 432 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03168, Adjusted R-squared: 0.007022
## F-statistic: 1.285 on 11 and 432 DF, p-value: 0.2302
summary(lm(act10 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9000 -1.7391 0.4211 1.5789 4.2609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.31685 0.18107 1.750 0.0808 .
## IndD.d 0.31652 0.25957 1.219 0.2233
## IndR.d -1.13557 0.27107 -4.189 3.36e-05 ***
## gend.mf -0.08825 0.36215 -0.244 0.8076
## cond.c 0.12556 0.36215 0.347 0.7290
## IndD.d:gend.mf 0.26695 0.51914 0.514 0.6073
## IndR.d:gend.mf -0.15057 0.54215 -0.278 0.7813
## IndD.d:cond.c 0.01679 0.51914 0.032 0.9742
## IndR.d:cond.c -0.56866 0.54215 -1.049 0.2948
## gend.mf:cond.c 0.65797 0.72429 0.908 0.3641
## IndD.d:gend.mf:cond.c -0.23357 1.03827 -0.225 0.8221
## IndR.d:gend.mf:cond.c -1.06273 1.08430 -0.980 0.3275
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.054 on 461 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.08452, Adjusted R-squared: 0.06267
## F-statistic: 3.869 on 11 and 461 DF, p-value: 2.315e-05
summary(lm(act11 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -1.1111 0.3636 1.4286 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8886 0.2018 4.403 1.49e-05 ***
## IndD.d 0.2090 0.2796 0.747 0.4554
## IndR.d -0.1641 0.2943 -0.558 0.5775
## gend.mf -0.3066 0.4037 -0.760 0.4481
## cond.c -0.9934 0.4037 -2.461 0.0144 *
## IndD.d:gend.mf 0.6240 0.5592 1.116 0.2654
## IndR.d:gend.mf 0.4334 0.5886 0.736 0.4621
## IndD.d:cond.c 0.5061 0.5592 0.905 0.3662
## IndR.d:cond.c 0.8475 0.5886 1.440 0.1510
## gend.mf:cond.c -0.9544 0.8073 -1.182 0.2381
## IndD.d:gend.mf:cond.c 0.6686 1.1184 0.598 0.5505
## IndR.d:gend.mf:cond.c 0.7613 1.1773 0.647 0.5184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.891 on 297 degrees of freedom
## (236 observations deleted due to missingness)
## Multiple R-squared: 0.03642, Adjusted R-squared: 0.0007281
## F-statistic: 1.02 on 11 and 297 DF, p-value: 0.428
summary(lm(act12 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4359 -2.0600 -0.1111 1.9130 4.2381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.165000 0.209997 0.786 0.433
## IndD.d 0.045430 0.301504 0.151 0.880
## IndR.d -1.231631 0.305849 -4.027 6.87e-05 ***
## gend.mf 0.003333 0.419994 0.008 0.994
## cond.c 0.047778 0.419994 0.114 0.909
## IndD.d:gend.mf -0.427461 0.603009 -0.709 0.479
## IndR.d:gend.mf -0.608167 0.611698 -0.994 0.321
## IndD.d:cond.c -0.091564 0.603009 -0.152 0.879
## IndR.d:cond.c -0.065655 0.611698 -0.107 0.915
## gend.mf:cond.c -0.317778 0.839988 -0.378 0.705
## IndD.d:gend.mf:cond.c 0.176592 1.206017 0.146 0.884
## IndR.d:gend.mf:cond.c 0.877341 1.223396 0.717 0.474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 368 degrees of freedom
## (165 observations deleted due to missingness)
## Multiple R-squared: 0.06951, Adjusted R-squared: 0.04169
## F-statistic: 2.499 on 11 and 368 DF, p-value: 0.004871
summary(lm(act13 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7778 -1.8242 0.0923 1.5417 3.9444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.12691 0.18395 -0.690 0.4906
## IndD.d 0.43931 0.26573 1.653 0.0990 .
## IndR.d -0.21039 0.27991 -0.752 0.4527
## gend.mf -0.69856 0.36790 -1.899 0.0583 .
## cond.c 0.36229 0.36790 0.985 0.3253
## IndD.d:gend.mf 1.12427 0.53147 2.115 0.0350 *
## IndR.d:gend.mf 1.39697 0.55981 2.495 0.0130 *
## IndD.d:cond.c -0.46856 0.53147 -0.882 0.3785
## IndR.d:cond.c -1.10832 0.55981 -1.980 0.0484 *
## gend.mf:cond.c -0.53411 0.73579 -0.726 0.4683
## IndD.d:gend.mf:cond.c 1.75675 1.06293 1.653 0.0991 .
## IndR.d:gend.mf:cond.c 0.07379 1.11963 0.066 0.9475
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.047 on 427 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.05903, Adjusted R-squared: 0.03479
## F-statistic: 2.435 on 11 and 427 DF, p-value: 0.00595
summary(lm(act14 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8947 -1.5556 0.2667 1.6471 3.2667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.37877 0.24008 1.578 0.116
## IndD.d 0.21720 0.31854 0.682 0.496
## IndR.d -0.41885 0.35298 -1.187 0.236
## gend.mf -0.38691 0.48017 -0.806 0.421
## cond.c 0.53733 0.48017 1.119 0.264
## IndD.d:gend.mf 0.64526 0.63708 1.013 0.312
## IndR.d:gend.mf -1.04959 0.70596 -1.487 0.138
## IndD.d:cond.c -0.59307 0.63708 -0.931 0.353
## IndR.d:cond.c -0.05716 0.70596 -0.081 0.936
## gend.mf:cond.c 0.03023 0.96033 0.031 0.975
## IndD.d:gend.mf:cond.c -0.59711 1.27416 -0.469 0.640
## IndR.d:gend.mf:cond.c 0.97610 1.41191 0.691 0.490
##
## Residual standard error: 2.032 on 271 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.04048, Adjusted R-squared: 0.001535
## F-statistic: 1.039 on 11 and 271 DF, p-value: 0.4117
summary(lm(act15 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8421 -1.7727 0.1579 1.7727 3.7727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09037 0.19098 -0.473 0.6364
## IndD.d 0.63745 0.27232 2.341 0.0198 *
## IndR.d -0.16628 0.28103 -0.592 0.5544
## gend.mf -0.74546 0.38195 -1.952 0.0517 .
## cond.c -0.17624 0.38195 -0.461 0.6448
## IndD.d:gend.mf 0.77251 0.54463 1.418 0.1569
## IndR.d:gend.mf 0.34316 0.56206 0.611 0.5419
## IndD.d:cond.c -0.02625 0.54463 -0.048 0.9616
## IndR.d:cond.c 0.03308 0.56206 0.059 0.9531
## gend.mf:cond.c 0.40487 0.76390 0.530 0.5964
## IndD.d:gend.mf:cond.c 0.42436 1.08927 0.390 0.6971
## IndR.d:gend.mf:cond.c -1.37829 1.12412 -1.226 0.2209
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 369 degrees of freedom
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.0454, Adjusted R-squared: 0.01694
## F-statistic: 1.595 on 11 and 369 DF, p-value: 0.09792
summary(lm(act16 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2121 -1.0500 0.0526 1.3846 2.6170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99286 0.20433 4.859 1.86e-06 ***
## IndD.d 0.02070 0.27508 0.075 0.9401
## IndR.d -0.07506 0.28729 -0.261 0.7941
## gend.mf 0.55274 0.40866 1.353 0.1772
## cond.c 0.67966 0.40866 1.663 0.0973 .
## IndD.d:gend.mf -0.73775 0.55017 -1.341 0.1809
## IndR.d:gend.mf -0.61322 0.57458 -1.067 0.2867
## IndD.d:cond.c -0.75781 0.55017 -1.377 0.1694
## IndR.d:cond.c -0.88369 0.57458 -1.538 0.1251
## gend.mf:cond.c 0.02529 0.81732 0.031 0.9753
## IndD.d:gend.mf:cond.c -0.60583 1.10034 -0.551 0.5823
## IndR.d:gend.mf:cond.c -0.43064 1.14916 -0.375 0.7081
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.827 on 316 degrees of freedom
## (217 observations deleted due to missingness)
## Multiple R-squared: 0.02432, Adjusted R-squared: -0.009643
## F-statistic: 0.7161 on 11 and 316 DF, p-value: 0.7231
summary(lm(act17 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.5111 0.2941 1.6667 3.1304
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42330 0.19720 2.147 0.0324 *
## IndD.d 0.29084 0.27066 1.075 0.2832
## IndR.d -0.21518 0.28129 -0.765 0.4447
## gend.mf -0.02960 0.39439 -0.075 0.9402
## cond.c -0.22437 0.39439 -0.569 0.5697
## IndD.d:gend.mf 0.37406 0.54131 0.691 0.4899
## IndR.d:gend.mf -0.44564 0.56258 -0.792 0.4287
## IndD.d:cond.c 0.12202 0.54131 0.225 0.8218
## IndR.d:cond.c 0.01103 0.56258 0.020 0.9844
## gend.mf:cond.c -0.74080 0.78879 -0.939 0.3482
## IndD.d:gend.mf:cond.c 0.49095 1.08263 0.453 0.6504
## IndR.d:gend.mf:cond.c 0.76375 1.12516 0.679 0.4977
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.02 on 401 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01457, Adjusted R-squared: -0.01246
## F-statistic: 0.539 on 11 and 401 DF, p-value: 0.8766
summary(lm(act18 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.167 -1.150 0.250 1.333 2.850
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.600079 0.191017 3.141 0.00183 **
## IndD.d 0.260666 0.264757 0.985 0.32555
## IndR.d -0.125080 0.278311 -0.449 0.65341
## gend.mf -0.329571 0.382034 -0.863 0.38893
## cond.c -0.070429 0.382034 -0.184 0.85385
## IndD.d:gend.mf 0.564220 0.529513 1.066 0.28739
## IndR.d:gend.mf 0.462904 0.556622 0.832 0.40621
## IndD.d:cond.c 0.252447 0.529513 0.477 0.63385
## IndR.d:cond.c 0.120429 0.556622 0.216 0.82884
## gend.mf:cond.c -0.000318 0.764068 0.000 0.99967
## IndD.d:gend.mf:cond.c 0.390669 1.059026 0.369 0.71244
## IndR.d:gend.mf:cond.c -0.933015 1.113244 -0.838 0.40257
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 337 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01772, Adjusted R-squared: -0.01434
## F-statistic: 0.5527 on 11 and 337 DF, p-value: 0.8662
summary(lm(act19 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4722 -1.1034 0.2222 1.5331 3.0588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.32476 0.19957 6.638 1.85e-10 ***
## IndD.d -0.19223 0.28937 -0.664 0.507
## IndR.d -0.28621 0.29502 -0.970 0.333
## gend.mf -0.02960 0.39914 -0.074 0.941
## cond.c -0.20732 0.39914 -0.519 0.604
## IndD.d:gend.mf 0.09789 0.57873 0.169 0.866
## IndR.d:gend.mf -0.32853 0.59004 -0.557 0.578
## IndD.d:cond.c -0.12022 0.57873 -0.208 0.836
## IndR.d:cond.c -0.95490 0.59004 -1.618 0.107
## gend.mf:cond.c 0.11600 0.79827 0.145 0.885
## IndD.d:gend.mf:cond.c -0.12758 1.15747 -0.110 0.912
## IndR.d:gend.mf:cond.c -1.46475 1.18008 -1.241 0.216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.794 on 259 degrees of freedom
## (274 observations deleted due to missingness)
## Multiple R-squared: 0.045, Adjusted R-squared: 0.004435
## F-statistic: 1.109 on 11 and 259 DF, p-value: 0.354
summary(lm(act20 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6111 -1.2857 0.3889 1.5000 2.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2649 0.1926 6.566 2.2e-10 ***
## IndD.d -0.1470 0.2611 -0.563 0.574
## IndR.d -0.1308 0.2702 -0.484 0.629
## gend.mf -0.2440 0.3853 -0.633 0.527
## cond.c -0.1466 0.3853 -0.380 0.704
## IndD.d:gend.mf 0.5083 0.5221 0.973 0.331
## IndR.d:gend.mf -0.5156 0.5403 -0.954 0.341
## IndD.d:cond.c -0.8034 0.5221 -1.539 0.125
## IndR.d:cond.c -0.4271 0.5403 -0.790 0.430
## gend.mf:cond.c -0.5640 0.7705 -0.732 0.465
## IndD.d:gend.mf:cond.c 1.4640 1.0443 1.402 0.162
## IndR.d:gend.mf:cond.c -0.1946 1.0807 -0.180 0.857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.747 on 307 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.06688, Adjusted R-squared: 0.03345
## F-statistic: 2 on 11 and 307 DF, p-value: 0.02801
summary(lm(act21 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7442 -1.8400 0.1698 1.6250 3.6250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2286 0.2031 1.126 0.26103
## IndD.d -0.1567 0.2810 -0.558 0.57730
## IndR.d -0.9165 0.2926 -3.132 0.00187 **
## gend.mf -0.1173 0.4061 -0.289 0.77295
## cond.c 0.4047 0.4061 0.997 0.31961
## IndD.d:gend.mf 0.5609 0.5620 0.998 0.31886
## IndR.d:gend.mf -0.5485 0.5853 -0.937 0.34930
## IndD.d:cond.c -0.5773 0.5620 -1.027 0.30497
## IndR.d:cond.c 0.1587 0.5853 0.271 0.78637
## gend.mf:cond.c -1.0186 0.8122 -1.254 0.21058
## IndD.d:gend.mf:cond.c 0.6335 1.1239 0.564 0.57333
## IndR.d:gend.mf:cond.c 1.4750 1.1706 1.260 0.20840
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.053 on 386 degrees of freedom
## (147 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: 0.01812
## F-statistic: 1.666 on 11 and 386 DF, p-value: 0.07902
summary(lm(act22 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7021 -1.4886 0.1667 1.5238 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4438 0.1876 2.365 0.01851 *
## IndD.d 0.3878 0.2666 1.455 0.14659
## IndR.d -0.7584 0.2817 -2.692 0.00741 **
## gend.mf 0.1769 0.3752 0.471 0.63757
## cond.c 0.1780 0.3752 0.474 0.63551
## IndD.d:gend.mf 0.1101 0.5331 0.206 0.83654
## IndR.d:gend.mf -0.3204 0.5635 -0.569 0.56998
## IndD.d:cond.c -0.6389 0.5331 -1.198 0.23151
## IndR.d:cond.c -0.2154 0.5635 -0.382 0.70248
## gend.mf:cond.c -0.1319 0.7505 -0.176 0.86058
## IndD.d:gend.mf:cond.c -0.8463 1.0663 -0.794 0.42785
## IndR.d:gend.mf:cond.c -0.2479 1.1269 -0.220 0.82603
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.965 on 387 degrees of freedom
## (146 observations deleted due to missingness)
## Multiple R-squared: 0.05667, Adjusted R-squared: 0.02986
## F-statistic: 2.114 on 11 and 387 DF, p-value: 0.01862
summary(lm(act23 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5294 -2.2500 0.1563 1.9412 3.8000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32223 0.25895 1.244 0.2144
## IndD.d -0.17124 0.35131 -0.487 0.6263
## IndR.d -0.45898 0.37477 -1.225 0.2217
## gend.mf 0.08494 0.51789 0.164 0.8698
## cond.c -1.19447 0.51789 -2.306 0.0218 *
## IndD.d:gend.mf 0.06079 0.70262 0.087 0.9311
## IndR.d:gend.mf -0.22395 0.74953 -0.299 0.7653
## IndD.d:cond.c 0.79506 0.70262 1.132 0.2588
## IndR.d:cond.c 1.62098 0.74953 2.163 0.0314 *
## gend.mf:cond.c -2.26989 1.03578 -2.191 0.0293 *
## IndD.d:gend.mf:cond.c 2.40857 1.40525 1.714 0.0877 .
## IndR.d:gend.mf:cond.c 2.99187 1.49906 1.996 0.0469 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.258 on 277 degrees of freedom
## (256 observations deleted due to missingness)
## Multiple R-squared: 0.03833, Adjusted R-squared: 0.0001456
## F-statistic: 1.004 on 11 and 277 DF, p-value: 0.4431
summary(lm(act24 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3182 -1.6875 -0.1455 1.5822 4.5263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.23475 0.19636 -1.196 0.2326
## IndD.d 0.05701 0.27397 0.208 0.8353
## IndR.d -0.19715 0.28317 -0.696 0.4867
## gend.mf -0.75681 0.39273 -1.927 0.0547 .
## cond.c -0.83730 0.39273 -2.132 0.0336 *
## IndD.d:gend.mf 1.08049 0.54794 1.972 0.0493 *
## IndR.d:gend.mf 0.94204 0.56634 1.663 0.0970 .
## IndD.d:cond.c 0.36363 0.54794 0.664 0.5073
## IndR.d:cond.c 0.40208 0.56634 0.710 0.4781
## gend.mf:cond.c -1.97803 0.78545 -2.518 0.0122 *
## IndD.d:gend.mf:cond.c 1.58902 1.09588 1.450 0.1478
## IndR.d:gend.mf:cond.c 1.20562 1.13268 1.064 0.2878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.07 on 400 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.04277, Adjusted R-squared: 0.01644
## F-statistic: 1.625 on 11 and 400 DF, p-value: 0.08932
summary(lm(act25 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3125 -1.1591 0.2364 1.6875 3.0435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.79334 0.16954 4.679 3.86e-06 ***
## IndD.d 0.36591 0.23823 1.536 0.1253
## IndR.d -0.62310 0.25140 -2.479 0.0136 *
## gend.mf -0.32240 0.33909 -0.951 0.3422
## cond.c 0.12240 0.33909 0.361 0.7183
## IndD.d:gend.mf 0.56477 0.47646 1.185 0.2365
## IndR.d:gend.mf 0.02176 0.50280 0.043 0.9655
## IndD.d:cond.c 0.13246 0.47646 0.278 0.7811
## IndR.d:cond.c -0.26909 0.50280 -0.535 0.5928
## gend.mf:cond.c -0.57338 0.67817 -0.845 0.3983
## IndD.d:gend.mf:cond.c -0.01462 0.95292 -0.015 0.9878
## IndR.d:gend.mf:cond.c 0.61312 1.00560 0.610 0.5424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 429 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.05022, Adjusted R-squared: 0.02587
## F-statistic: 2.062 on 11 and 429 DF, p-value: 0.02189
summary(lm(act26 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2400 0.6111 1.4762 2.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.58715 0.23370 6.791 1.11e-10 ***
## IndD.d -0.17819 0.31904 -0.559 0.5771
## IndR.d -0.02290 0.33845 -0.068 0.9461
## gend.mf 0.26160 0.46741 0.560 0.5763
## cond.c 0.11874 0.46741 0.254 0.7997
## IndD.d:gend.mf 0.06632 0.63808 0.104 0.9173
## IndR.d:gend.mf -0.67856 0.67689 -1.002 0.3173
## IndD.d:cond.c 0.11584 0.63808 0.182 0.8561
## IndR.d:cond.c -0.74025 0.67689 -1.094 0.2754
## gend.mf:cond.c -0.03236 0.93482 -0.035 0.9724
## IndD.d:gend.mf:cond.c 0.52152 1.27615 0.409 0.6832
## IndR.d:gend.mf:cond.c -2.30156 1.35378 -1.700 0.0906 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 211 degrees of freedom
## (322 observations deleted due to missingness)
## Multiple R-squared: 0.04338, Adjusted R-squared: -0.006486
## F-statistic: 0.8699 on 11 and 211 DF, p-value: 0.5707
summary(lm(act27 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act27 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7895 -1.0714 0.1471 1.6544 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.61815 0.20246 3.053 0.00247 **
## IndD.d 0.56244 0.27610 2.037 0.04251 *
## IndR.d -0.10789 0.28739 -0.375 0.70760
## gend.mf 0.33513 0.40493 0.828 0.40853
## cond.c -0.48630 0.40493 -1.201 0.23071
## IndD.d:gend.mf 0.14872 0.55220 0.269 0.78787
## IndR.d:gend.mf -0.12487 0.57477 -0.217 0.82816
## IndD.d:cond.c 0.03361 0.55220 0.061 0.95150
## IndR.d:cond.c -0.24009 0.57477 -0.418 0.67645
## gend.mf:cond.c -0.17027 0.80986 -0.210 0.83362
## IndD.d:gend.mf:cond.c -0.39220 1.10440 -0.355 0.72274
## IndR.d:gend.mf:cond.c -0.83849 1.14954 -0.729 0.46631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 302 degrees of freedom
## (231 observations deleted due to missingness)
## Multiple R-squared: 0.05283, Adjusted R-squared: 0.01833
## F-statistic: 1.531 on 11 and 302 DF, p-value: 0.1192
summary(lm(act28 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3421 -1.0652 0.2593 1.6579 2.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.90893 0.19550 4.649 4.7e-06 ***
## IndD.d 0.28502 0.26929 1.058 0.291
## IndR.d 0.03878 0.27334 0.142 0.887
## gend.mf -0.26498 0.39100 -0.678 0.498
## cond.c 0.13962 0.39100 0.357 0.721
## IndD.d:gend.mf 0.22153 0.53859 0.411 0.681
## IndR.d:gend.mf 0.07193 0.54668 0.132 0.895
## IndD.d:cond.c -0.56692 0.53859 -1.053 0.293
## IndR.d:cond.c -0.72608 0.54668 -1.328 0.185
## gend.mf:cond.c -0.92348 0.78200 -1.181 0.238
## IndD.d:gend.mf:cond.c 0.02251 1.07718 0.021 0.983
## IndR.d:gend.mf:cond.c -0.16551 1.09337 -0.151 0.880
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 357 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02841, Adjusted R-squared: -0.001523
## F-statistic: 0.9491 on 11 and 357 DF, p-value: 0.4931
summary(lm(act29 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -1.0541 0.1053 1.6905 2.1053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.079020 0.175578 6.146 2.15e-09 ***
## IndD.d 0.231694 0.248081 0.934 0.351
## IndR.d -0.139955 0.260526 -0.537 0.591
## gend.mf 0.046294 0.351157 0.132 0.895
## cond.c 0.159172 0.351157 0.453 0.651
## IndD.d:gend.mf -0.001056 0.496162 -0.002 0.998
## IndR.d:gend.mf -0.029687 0.521051 -0.057 0.955
## IndD.d:cond.c -0.069489 0.496162 -0.140 0.889
## IndR.d:cond.c -0.235588 0.521051 -0.452 0.651
## gend.mf:cond.c 0.325620 0.702314 0.464 0.643
## IndD.d:gend.mf:cond.c -0.060540 0.992324 -0.061 0.951
## IndR.d:gend.mf:cond.c -0.383314 1.042103 -0.368 0.713
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.768 on 353 degrees of freedom
## (180 observations deleted due to missingness)
## Multiple R-squared: 0.009013, Adjusted R-squared: -0.02187
## F-statistic: 0.2919 on 11 and 353 DF, p-value: 0.9872
summary(lm(act30 ~ (IndD.d + IndR.d)*gend.mf*cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (IndD.d + IndR.d) * gend.mf * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.1579 0.5556 1.7368 2.7273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.201238 0.196943 6.099 2.92e-09 ***
## IndD.d -0.236059 0.272785 -0.865 0.387
## IndR.d -0.386981 0.283606 -1.365 0.173
## gend.mf 0.068111 0.393885 0.173 0.863
## cond.c 0.226006 0.393885 0.574 0.566
## IndD.d:gend.mf -0.498471 0.545570 -0.914 0.362
## IndR.d:gend.mf -0.673899 0.567213 -1.188 0.236
## IndD.d:cond.c -0.003249 0.545570 -0.006 0.995
## IndR.d:cond.c 0.104781 0.567213 0.185 0.854
## gend.mf:cond.c 0.489164 0.787771 0.621 0.535
## IndD.d:gend.mf:cond.c 0.287544 1.091140 0.264 0.792
## IndR.d:gend.mf:cond.c -0.196194 1.134425 -0.173 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.877 on 337 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01829, Adjusted R-squared: -0.01375
## F-statistic: 0.5709 on 11 and 337 DF, p-value: 0.8523
a. Means, etc.
aggregate(d$act23[d$party_factor == "Independent" & d$gend == "Female"], list(d$cond[d$party_factor == "Independent" & d$gend == "Female"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 climate 0.2500000
## 2 ctrl 0.3095238
aggregate(d$act23[d$party_factor == "Independent" & d$gend == "Male"], list(d$cond[d$party_factor == "Independent" & d$gend == "Male"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 climate -0.800000
## 2 ctrl 1.529412
aggregate(d$act24[d$party_factor == "Independent" & d$gend == "Female"], list(d$cond[d$party_factor == "Independent" & d$gend == "Female"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 climate 0.21951220
## 2 ctrl 0.06779661
aggregate(d$act24[d$party_factor == "Independent" & d$gend == "Male"], list(d$cond[d$party_factor == "Independent" & d$gend == "Male"]), FUN = mean, na.rm = T)
## Group.1 x
## 1 climate -1.526316
## 2 ctrl 0.300000
iii. Democrats
Support: 2, 5, 6, 10, 11,14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27,
28, 29, 30 Oppose: None Neutral:
# Action 1
dem.b1 <- lm(act1 ~ (DemR.d + DemI.d), data = d)
summary(dem.b1)
##
## Call:
## lm(formula = act1 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2770 -2.2199 -0.0486 1.7230 3.5844
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2770 0.1761 1.573 0.116448
## DemR.d -0.8614 0.2466 -3.493 0.000526 ***
## DemI.d -0.2284 0.2508 -0.911 0.362916
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.143 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02882, Adjusted R-squared: 0.02443
## F-statistic: 6.572 on 2 and 443 DF, p-value: 0.001539
# Action 2
dem.b2 <- lm(act2 ~ (DemR.d + DemI.d), data = d)
summary(dem.b2) # yes, above 0
##
## Call:
## lm(formula = act2 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.280 -1.104 0.022 1.720 2.022
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2800 0.1811 7.069 1.21e-11 ***
## DemR.d -0.3020 0.2623 -1.151 0.251
## DemI.d -0.1758 0.2587 -0.680 0.497
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.811 on 284 degrees of freedom
## (258 observations deleted due to missingness)
## Multiple R-squared: 0.004714, Adjusted R-squared: -0.002295
## F-statistic: 0.6726 on 2 and 284 DF, p-value: 0.5112
# Action 3
dem.b3 <- lm(act3 ~ (DemR.d + DemI.d), data = d)
summary(dem.b3)
##
## Call:
## lm(formula = act3 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1325 -1.8289 0.1711 1.6884 3.6884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1325 0.1627 0.814 0.416010
## DemR.d -0.8209 0.2354 -3.487 0.000539 ***
## DemI.d -0.3035 0.2297 -1.321 0.187085
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.999 on 438 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.02743, Adjusted R-squared: 0.02299
## F-statistic: 6.176 on 2 and 438 DF, p-value: 0.002265
# Action 4
dem.b4 <- lm(act4 ~ (DemR.d + DemI.d), data = d)
summary(dem.b4)
##
## Call:
## lm(formula = act4 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3030 -1.7931 0.2069 2.2069 3.2333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3030 0.1875 1.616 0.1070
## DemR.d -0.5099 0.2742 -1.860 0.0637 .
## DemI.d -0.5364 0.2718 -1.974 0.0492 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.155 on 365 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.01352, Adjusted R-squared: 0.008119
## F-statistic: 2.502 on 2 and 365 DF, p-value: 0.08333
# Action 5
dem.b5 <- lm(act5 ~ (DemR.d + DemI.d), data = d)
summary(dem.b5) # yes, above 0
##
## Call:
## lm(formula = act5 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1165 -1.1165 0.1053 1.8835 2.1053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1165 0.1841 6.066 4.07e-09 ***
## DemR.d -0.1582 0.2650 -0.597 0.551
## DemI.d -0.2218 0.2657 -0.835 0.405
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.868 on 291 degrees of freedom
## (251 observations deleted due to missingness)
## Multiple R-squared: 0.002558, Adjusted R-squared: -0.004298
## F-statistic: 0.3731 on 2 and 291 DF, p-value: 0.6889
# Action 6
dem.b6 <- lm(act6 ~ (DemR.d + DemI.d), data = d)
summary(dem.b6) # yes, above 0
##
## Call:
## lm(formula = act6 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.400 -1.111 0.600 1.600 1.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20175 0.16992 7.072 8.22e-12 ***
## DemR.d -0.09064 0.23876 -0.380 0.704
## DemI.d 0.19825 0.23496 0.844 0.399
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 353 degrees of freedom
## (189 observations deleted due to missingness)
## Multiple R-squared: 0.004549, Adjusted R-squared: -0.001091
## F-statistic: 0.8065 on 2 and 353 DF, p-value: 0.4472
# Action 7
dem.b7 <- lm(act7 ~ (DemR.d + DemI.d), data = d)
summary(dem.b7)
##
## Call:
## lm(formula = act7 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0993 -1.9929 0.0071 1.9007 3.4962
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09929 0.17402 0.571 0.569
## DemR.d -0.59547 0.25075 -2.375 0.018 *
## DemI.d -0.10643 0.24654 -0.432 0.666
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 409 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.01527, Adjusted R-squared: 0.01046
## F-statistic: 3.172 on 2 and 409 DF, p-value: 0.04296
# Action 8
dem.b8 <- lm(act8 ~ (DemR.d + DemI.d), data = d)
summary(dem.b8) # yes, below 0
##
## Call:
## lm(formula = act8 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2327 -1.8734 -0.2327 1.7673 4.1266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2327 0.1670 1.393 0.1642
## DemR.d -1.3593 0.2366 -5.745 1.64e-08 ***
## DemI.d -0.5619 0.2355 -2.386 0.0174 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.106 on 475 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.06556, Adjusted R-squared: 0.06162
## F-statistic: 16.66 on 2 and 475 DF, p-value: 1.014e-07
# Action 9
dem.b9 <- lm(act9 ~ (DemR.d + DemI.d), data = d)
summary(dem.b9)
##
## Call:
## lm(formula = act9 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2617 -1.5594 0.1196 1.7383 3.4406
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26174 0.16146 1.621 0.10571
## DemR.d -0.70230 0.23072 -3.044 0.00247 **
## DemI.d -0.06045 0.22648 -0.267 0.78967
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.971 on 443 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02498, Adjusted R-squared: 0.02058
## F-statistic: 5.676 on 2 and 443 DF, p-value: 0.003682
# Action 10
dem.b10 <- lm(act10 ~ (DemR.d + DemI.d), data = d)
summary(dem.b10) # yes, above 0
##
## Call:
## lm(formula = act10 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5935 -2.2208 0.4065 1.6545 3.7792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5935 0.1638 3.623 0.000323 ***
## DemR.d -1.3728 0.2320 -5.916 6.36e-09 ***
## DemI.d -0.2481 0.2281 -1.087 0.277382
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 471 degrees of freedom
## (71 observations deleted due to missingness)
## Multiple R-squared: 0.07812, Adjusted R-squared: 0.07421
## F-statistic: 19.96 on 2 and 471 DF, p-value: 4.791e-09
# Action 11
dem.b11 <- lm(act11 ~ (DemR.d + DemI.d), data = d)
summary(dem.b11) # yes, above 0
##
## Call:
## lm(formula = act11 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0755 -1.0755 0.3093 1.9245 2.3093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07547 0.18323 5.870 1.13e-08 ***
## DemR.d -0.38475 0.26507 -1.452 0.148
## DemI.d -0.09399 0.25792 -0.364 0.716
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.886 on 308 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.007306, Adjusted R-squared: 0.0008601
## F-statistic: 1.133 on 2 and 308 DF, p-value: 0.3233
# Action 12
dem.b12 <- lm(act12 ~ (DemR.d + DemI.d), data = d)
summary(dem.b12)
##
## Call:
## lm(formula = act12 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3167 -2.0992 -0.1603 1.8397 3.9008
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3167 0.1941 1.632 0.104
## DemR.d -1.2174 0.2687 -4.531 7.86e-06 ***
## DemI.d -0.1564 0.2687 -0.582 0.561
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.126 on 379 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.06166, Adjusted R-squared: 0.0567
## F-statistic: 12.45 on 2 and 379 DF, p-value: 5.789e-06
# Action 13
dem.b13 <- lm(act13 ~ (DemR.d + DemI.d), data = d)
summary(dem.b13)
##
## Call:
## lm(formula = act13 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1888 -2.0186 -0.0186 1.8112 3.5588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1888 0.1725 1.094 0.27443
## DemR.d -0.7476 0.2471 -3.025 0.00263 **
## DemI.d -0.1702 0.2371 -0.718 0.47328
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.063 on 437 degrees of freedom
## (105 observations deleted due to missingness)
## Multiple R-squared: 0.0225, Adjusted R-squared: 0.01802
## F-statistic: 5.029 on 2 and 437 DF, p-value: 0.006932
# Action 14
dem.b14 <- lm(act14 ~ (DemR.d + DemI.d), data = d)
summary(dem.b14) # yes, above 0
##
## Call:
## lm(formula = act14 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5481 -1.4444 -0.3171 1.5556 2.6829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5481 0.1992 2.751 0.00632 **
## DemR.d -0.2310 0.3000 -0.770 0.44200
## DemI.d -0.1036 0.2853 -0.363 0.71667
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.032 on 282 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.002098, Adjusted R-squared: -0.00498
## F-statistic: 0.2964 on 2 and 282 DF, p-value: 0.7437
# Action 15
dem.b15 <- lm(act15 ~ (DemR.d + DemI.d), data = d)
summary(dem.b15)
##
## Call:
## lm(formula = act15 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5328 -1.8049 0.1951 1.4672 3.1951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5328 0.1849 2.881 0.00419 **
## DemR.d -0.7279 0.2610 -2.789 0.00555 **
## DemI.d -0.4598 0.2542 -1.808 0.07132 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.042 on 379 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.02059, Adjusted R-squared: 0.01542
## F-statistic: 3.984 on 2 and 379 DF, p-value: 0.0194
# Action 16
dem.b16 <- lm(act16 ~ (DemR.d + DemI.d), data = d)
summary(dem.b16) # yes, above 0
##
## Call:
## lm(formula = act16 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0550 -1.0550 0.0841 1.1770 2.1770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0550 0.1745 6.045 4.08e-09 ***
## DemR.d -0.1392 0.2480 -0.561 0.575
## DemI.d -0.2320 0.2446 -0.949 0.344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 326 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.002782, Adjusted R-squared: -0.003336
## F-statistic: 0.4547 on 2 and 326 DF, p-value: 0.6351
# Action 17
dem.b17 <- lm(act17 ~ (DemR.d + DemI.d), data = d)
summary(dem.b17) # yes, above 0
##
## Call:
## lm(formula = act17 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.650 -1.420 0.350 1.702 2.702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6500 0.1694 3.836 0.000145 ***
## DemR.d -0.3523 0.2437 -1.446 0.149075
## DemI.d -0.2304 0.2384 -0.967 0.334292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.005 on 411 degrees of freedom
## (131 observations deleted due to missingness)
## Multiple R-squared: 0.005261, Adjusted R-squared: 0.0004204
## F-statistic: 1.087 on 2 and 411 DF, p-value: 0.3382
# Action 18
dem.b18 <- lm(act18 ~ (DemR.d + DemI.d), data = d)
summary(dem.b18) # yes, above 0
##
## Call:
## lm(formula = act18 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8430 -1.1338 0.3145 1.3145 2.5755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8430 0.1667 5.056 6.95e-07 ***
## DemR.d -0.4184 0.2440 -1.715 0.0872 .
## DemI.d -0.1575 0.2344 -0.672 0.5020
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.834 on 348 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.008477, Adjusted R-squared: 0.002779
## F-statistic: 1.488 on 2 and 348 DF, p-value: 0.2273
# Action 19
dem.b19 <- lm(act19 ~ (DemR.d + DemI.d), data = d)
summary(dem.b19) # yes, above 0
##
## Call:
## lm(formula = act19 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.337 -1.032 0.000 1.663 2.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1264 0.1929 5.840 1.51e-08 ***
## DemR.d -0.1264 0.2705 -0.467 0.641
## DemI.d 0.2104 0.2670 0.788 0.431
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.799 on 269 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.006131, Adjusted R-squared: -0.001258
## F-statistic: 0.8297 on 2 and 269 DF, p-value: 0.4373
# Action 20
dem.b20 <- lm(act20 ~ (DemR.d + DemI.d), data = d)
summary(dem.b20) # yes, above 0
##
## Call:
## lm(formula = act20 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3148 -1.2621 0.6852 1.6852 1.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1000 0.1693 6.496 3.18e-10 ***
## DemR.d 0.1621 0.2435 0.666 0.506
## DemI.d 0.2148 0.2406 0.893 0.373
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.776 on 318 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.002716, Adjusted R-squared: -0.003556
## F-statistic: 0.433 on 2 and 318 DF, p-value: 0.6489
# Action 21
dem.b21 <- lm(act21 ~ (DemR.d + DemI.d), data = d)
summary(dem.b21)
##
## Call:
## lm(formula = act21 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2214 -2.0071 -0.0071 1.7786 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.007092 0.173115 0.041 0.967
## DemR.d -0.507092 0.250961 -2.021 0.044 *
## DemI.d 0.214282 0.249451 0.859 0.391
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.056 on 397 degrees of freedom
## (145 observations deleted due to missingness)
## Multiple R-squared: 0.02074, Adjusted R-squared: 0.01581
## F-statistic: 4.205 on 2 and 397 DF, p-value: 0.01559
# Action 22
dem.b22 <- lm(act22 ~ (DemR.d + DemI.d), data = d)
summary(dem.b22) # yes, above 0
##
## Call:
## lm(formula = act22 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8045 -1.3873 0.1955 1.6127 3.2857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8045 0.1693 4.753 2.80e-06 ***
## DemR.d -1.0902 0.2427 -4.493 9.22e-06 ***
## DemI.d -0.4172 0.2355 -1.771 0.0773 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.952 on 398 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.04897, Adjusted R-squared: 0.04419
## F-statistic: 10.25 on 2 and 398 DF, p-value: 4.577e-05
# Action 23
dem.b23 <- lm(act23 ~ (DemR.d + DemI.d), data = d)
summary(dem.b23)
##
## Call:
## lm(formula = act23 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3810 -2.3810 0.0824 2.0824 3.0824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1600 0.2261 0.708 0.480
## DemR.d -0.2424 0.3335 -0.727 0.468
## DemI.d 0.2210 0.3159 0.700 0.485
##
## Residual standard error: 2.261 on 287 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.006836, Adjusted R-squared: -8.474e-05
## F-statistic: 0.9878 on 2 and 287 DF, p-value: 0.3737
# Action 24
dem.b24 <- lm(act24 ~ (DemR.d + DemI.d), data = d)
summary(dem.b24)
##
## Call:
## lm(formula = act24 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9281 -1.9281 0.0719 1.5038 3.5038
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2128 0.1759 -1.210 0.227
## DemR.d -0.2910 0.2524 -1.153 0.250
## DemI.d 0.1408 0.2496 0.564 0.573
##
## Residual standard error: 2.088 on 410 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.007291, Adjusted R-squared: 0.002448
## F-statistic: 1.506 on 2 and 410 DF, p-value: 0.2231
# Action 25
dem.b25 <- lm(act25 ~ (DemR.d + DemI.d), data = d)
summary(dem.b25) # yes, above 0
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1149 -1.1149 0.1611 1.7603 2.7603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1149 0.1505 7.406 6.71e-13 ***
## DemR.d -0.8751 0.2136 -4.097 4.99e-05 ***
## DemI.d -0.2759 0.2125 -1.298 0.195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.831 on 440 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.0383, Adjusted R-squared: 0.03393
## F-statistic: 8.762 on 2 and 440 DF, p-value: 0.0001856
# Action 26
dem.b26 <- lm(act26 ~ (DemR.d + DemI.d), data = d)
summary(dem.b26) # yes, above 0
##
## Call:
## lm(formula = act26 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5672 -1.3974 0.6026 1.4810 1.6026
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3974 0.2062 6.777 1.1e-10 ***
## DemR.d 0.1697 0.3033 0.560 0.576
## DemI.d 0.1216 0.2907 0.418 0.676
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 221 degrees of freedom
## (321 observations deleted due to missingness)
## Multiple R-squared: 0.001544, Adjusted R-squared: -0.007492
## F-statistic: 0.1709 on 2 and 221 DF, p-value: 0.843
# Action 27
dem.b27 <- lm(act27 ~ (DemR.d + DemI.d), data = d)
summary(dem.b27) # yes, above 0
##
## Call:
## lm(formula = act27 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1404 -1.1404 0.1489 1.5670 2.5670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1404 0.1747 6.526 2.71e-10 ***
## DemR.d -0.7074 0.2577 -2.745 0.0064 **
## DemI.d -0.5784 0.2523 -2.292 0.0226 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 313 degrees of freedom
## (229 observations deleted due to missingness)
## Multiple R-squared: 0.02742, Adjusted R-squared: 0.02121
## F-statistic: 4.413 on 2 and 313 DF, p-value: 0.01288
# Action 28
dem.b28 <- lm(act28 ~ (DemR.d + DemI.d), data = d)
summary(dem.b28) # yes, above 0
##
## Call:
## lm(formula = act28 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2266 -0.9508 0.0579 1.7734 2.0579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2266 0.1607 7.632 2.01e-13 ***
## DemR.d -0.2757 0.2301 -1.199 0.231
## DemI.d -0.2844 0.2306 -1.234 0.218
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.818 on 368 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.005379, Adjusted R-squared: -2.643e-05
## F-statistic: 0.9951 on 2 and 368 DF, p-value: 0.3707
# Action 29
dem.b29 <- lm(act29 ~ (DemR.d + DemI.d), data = d)
summary(dem.b29) # yes, above 0
##
## Call:
## lm(formula = act29 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3200 -1.0720 0.0684 1.6800 2.0684
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3200 0.1561 8.455 6.83e-16 ***
## DemR.d -0.3884 0.2245 -1.730 0.0845 .
## DemI.d -0.2480 0.2208 -1.123 0.2621
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.745 on 364 degrees of freedom
## (178 observations deleted due to missingness)
## Multiple R-squared: 0.008418, Adjusted R-squared: 0.00297
## F-statistic: 1.545 on 2 and 364 DF, p-value: 0.2147
# Action 30
dem.b30 <- lm(act30 ~ (DemR.d + DemI.d), data = d)
summary(dem.b30) # yes, above 0
##
## Call:
## lm(formula = act30 ~ (DemR.d + DemI.d), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1917 -1.0598 0.8083 1.8083 2.0263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.05983 0.17240 6.148 2.16e-09 ***
## DemR.d -0.08614 0.24540 -0.351 0.726
## DemI.d 0.13184 0.24228 0.544 0.587
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.865 on 348 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.002333, Adjusted R-squared: -0.003401
## F-statistic: 0.4068 on 2 and 348 DF, p-value: 0.6661
Significantly above 0:
1. condition differences?
Actions: 20
# Action 1
summary(lm(act1 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act1 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.417 -2.229 0.026 1.771 3.591
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2807 0.1764 1.591 0.112242
## DemR.d -0.8656 0.2473 -3.500 0.000513 ***
## DemI.d -0.2646 0.2526 -1.047 0.295522
## cond.c -0.2719 0.3528 -0.771 0.441224
## DemR.d:cond.c 0.2852 0.4947 0.576 0.564587
## DemI.d:cond.c -0.1537 0.5053 -0.304 0.761124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 440 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.03317, Adjusted R-squared: 0.02218
## F-statistic: 3.019 on 5 and 440 DF, p-value: 0.01084
# Action 2
summary(lm(act2 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act2 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3800 -1.1947 0.2292 1.6200 2.2292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2800 0.1810 7.072 1.22e-11 ***
## DemR.d -0.2899 0.2624 -1.105 0.270
## DemI.d -0.2356 0.2630 -0.896 0.371
## cond.c -0.2000 0.3620 -0.552 0.581
## DemR.d:cond.c -0.2385 0.5249 -0.454 0.650
## DemI.d:cond.c -0.2778 0.5260 -0.528 0.598
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.81 on 281 degrees of freedom
## (258 observations deleted due to missingness)
## Multiple R-squared: 0.01593, Adjusted R-squared: -0.001575
## F-statistic: 0.91 on 5 and 281 DF, p-value: 0.4749
# Action 3
summary(lm(act3 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act3 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2568 -1.8939 0.1061 1.6351 3.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1349 0.1631 0.827 0.408823
## DemR.d -0.8274 0.2364 -3.501 0.000512 ***
## DemI.d -0.2984 0.2313 -1.290 0.197769
## cond.c 0.2438 0.3263 0.747 0.455373
## DemR.d:cond.c -0.1289 0.4727 -0.273 0.785236
## DemI.d:cond.c -0.1289 0.4626 -0.279 0.780660
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.004 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.0292, Adjusted R-squared: 0.01804
## F-statistic: 2.617 on 5 and 435 DF, p-value: 0.024
# Action 4
summary(lm(act4 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act4 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4923 -2.0000 0.2258 2.0000 3.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3059 0.1876 1.630 0.1039
## DemR.d -0.5114 0.2746 -1.862 0.0634 .
## DemI.d -0.5751 0.2731 -2.106 0.0359 *
## cond.c 0.3729 0.3752 0.994 0.3209
## DemR.d:cond.c -0.4135 0.5493 -0.753 0.4520
## DemI.d:cond.c -0.9114 0.5462 -1.668 0.0961 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.155 on 362 degrees of freedom
## (177 observations deleted due to missingness)
## Multiple R-squared: 0.0212, Adjusted R-squared: 0.007677
## F-statistic: 1.568 on 5 and 362 DF, p-value: 0.1683
# Action 5
summary(lm(act5 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act5 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3585 -0.9200 0.1818 1.6415 2.1818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1092 0.1843 6.020 5.31e-09 ***
## DemR.d -0.1270 0.2667 -0.476 0.634
## DemI.d -0.2159 0.2662 -0.811 0.418
## cond.c -0.4985 0.3685 -1.353 0.177
## DemR.d:cond.c 0.1703 0.5335 0.319 0.750
## DemI.d:cond.c 0.4452 0.5323 0.836 0.404
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.869 on 288 degrees of freedom
## (251 observations deleted due to missingness)
## Multiple R-squared: 0.01139, Adjusted R-squared: -0.005774
## F-statistic: 0.6636 on 5 and 288 DF, p-value: 0.6514
# Action 6
summary(lm(act6 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act6 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5278 -1.1731 0.4722 1.7736 1.9385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20093 0.17065 7.037 1.04e-11 ***
## DemR.d -0.08362 0.24036 -0.348 0.728
## DemI.d 0.17617 0.23714 0.743 0.458
## cond.c -0.03148 0.34130 -0.092 0.927
## DemR.d:cond.c -0.08006 0.48072 -0.167 0.868
## DemI.d:cond.c -0.26988 0.47428 -0.569 0.570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.82 on 350 degrees of freedom
## (189 observations deleted due to missingness)
## Multiple R-squared: 0.007256, Adjusted R-squared: -0.006926
## F-statistic: 0.5116 on 5 and 350 DF, p-value: 0.7675
# Action 7
summary(lm(act7 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act7 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2192 -1.9706 0.0294 1.7808 3.6613
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09488 0.17434 0.544 0.5866
## DemR.d -0.59944 0.25132 -2.385 0.0175 *
## DemI.d -0.08254 0.24796 -0.333 0.7394
## cond.c 0.24859 0.34868 0.713 0.4763
## DemR.d:cond.c 0.06487 0.50264 0.129 0.8974
## DemI.d:cond.c 0.05459 0.49591 0.110 0.9124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 406 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.02009, Adjusted R-squared: 0.008026
## F-statistic: 1.665 on 5 and 406 DF, p-value: 0.1419
# Action 8
summary(lm(act8 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act8 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.367 -1.648 -0.100 1.843 4.352
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2335 0.1670 1.398 0.1627
## DemR.d -1.3311 0.2374 -5.607 3.5e-08 ***
## DemI.d -0.5580 0.2360 -2.364 0.0185 *
## cond.c 0.2671 0.3341 0.799 0.4244
## DemR.d:cond.c -0.7765 0.4748 -1.636 0.1026
## DemI.d:cond.c -0.1661 0.4720 -0.352 0.7251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.106 on 472 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.07148, Adjusted R-squared: 0.06165
## F-statistic: 7.267 on 5 and 472 DF, p-value: 1.426e-06
# Action 9
summary(lm(act9 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act9 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2973 -1.5231 0.1162 1.7027 3.4769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.261982 0.161993 1.617 0.10654
## DemR.d -0.705572 0.231972 -3.042 0.00249 **
## DemI.d -0.055906 0.228857 -0.244 0.80713
## cond.c 0.070631 0.323986 0.218 0.82753
## DemR.d:cond.c -0.003964 0.463945 -0.009 0.99319
## DemI.d:cond.c -0.014033 0.457713 -0.031 0.97555
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 440 degrees of freedom
## (99 observations deleted due to missingness)
## Multiple R-squared: 0.02525, Adjusted R-squared: 0.01417
## F-statistic: 2.279 on 5 and 440 DF, p-value: 0.04594
# Action 10
summary(lm(act10 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act10 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6133 -2.0595 0.3867 1.6404 3.9405
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59417 0.16422 3.618 0.000329 ***
## DemR.d -1.35726 0.23305 -5.824 1.07e-08 ***
## DemI.d -0.24992 0.22899 -1.091 0.275657
## cond.c 0.03833 0.32844 0.117 0.907139
## DemR.d:cond.c -0.39310 0.46609 -0.843 0.399445
## DemI.d:cond.c -0.06894 0.45797 -0.151 0.880416
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 468 degrees of freedom
## (71 observations deleted due to missingness)
## Multiple R-squared: 0.08043, Adjusted R-squared: 0.0706
## F-statistic: 8.187 on 5 and 468 DF, p-value: 2.004e-07
# Action 11
summary(lm(act11 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act11 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3509 -1.0528 0.4314 1.6491 2.4314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.05280 0.18302 5.752 2.14e-08 ***
## DemR.d -0.35971 0.26434 -1.361 0.175
## DemI.d -0.09305 0.25726 -0.362 0.718
## cond.c -0.48060 0.36605 -1.313 0.190
## DemR.d:cond.c 0.38853 0.52867 0.735 0.463
## DemI.d:cond.c -0.30165 0.51452 -0.586 0.558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 305 degrees of freedom
## (234 observations deleted due to missingness)
## Multiple R-squared: 0.0279, Adjusted R-squared: 0.01197
## F-statistic: 1.751 on 5 and 305 DF, p-value: 0.1228
# Action 12
summary(lm(act12 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act12 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3333 -1.9851 -0.1029 1.8971 4.0149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.31579 0.19498 1.620 0.106
## DemR.d -1.21388 0.26976 -4.500 9.08e-06 ***
## DemI.d -0.15321 0.26982 -0.568 0.571
## cond.c -0.03509 0.38996 -0.090 0.928
## DemR.d:cond.c -0.19859 0.53953 -0.368 0.713
## DemI.d:cond.c 0.15437 0.53965 0.286 0.775
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.133 on 376 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.06291, Adjusted R-squared: 0.05045
## F-statistic: 5.048 on 5 and 376 DF, p-value: 0.0001718
# Action 13
summary(lm(act13 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act13 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3803 -2.0000 0.1977 1.7533 3.8133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1901 0.1720 1.106 0.26954
## DemR.d -0.7198 0.2470 -2.914 0.00375 **
## DemI.d -0.1556 0.2366 -0.658 0.51098
## cond.c -0.3803 0.3440 -1.106 0.26954
## DemR.d:cond.c -0.1872 0.4940 -0.379 0.70500
## DemI.d:cond.c 0.8446 0.4732 1.785 0.07496 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 434 degrees of freedom
## (105 observations deleted due to missingness)
## Multiple R-squared: 0.03544, Adjusted R-squared: 0.02433
## F-statistic: 3.189 on 5 and 434 DF, p-value: 0.007706
# Action 14
summary(lm(act14 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act14 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7209 -1.5370 -0.2321 1.7297 2.7679
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.54852 0.19992 2.744 0.00647 **
## DemR.d -0.23561 0.30178 -0.781 0.43563
## DemI.d -0.07198 0.28745 -0.250 0.80245
## cond.c 0.02296 0.39984 0.057 0.95424
## DemR.d:cond.c 0.06232 0.60356 0.103 0.91783
## DemI.d:cond.c 0.46582 0.57490 0.810 0.41848
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.037 on 279 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.007218, Adjusted R-squared: -0.01057
## F-statistic: 0.4057 on 5 and 279 DF, p-value: 0.8447
# Action 15
summary(lm(act15 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act15 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7000 -1.8098 0.2069 1.6290 3.2069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.53548 0.18532 2.890 0.00408 **
## DemR.d -0.73124 0.26174 -2.794 0.00548 **
## DemI.d -0.47382 0.25518 -1.857 0.06412 .
## cond.c -0.32903 0.37063 -0.888 0.37524
## DemR.d:cond.c 0.35131 0.52348 0.671 0.50256
## DemI.d:cond.c 0.04696 0.51035 0.092 0.92673
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.047 on 376 degrees of freedom
## (163 observations deleted due to missingness)
## Multiple R-squared: 0.02432, Adjusted R-squared: 0.01135
## F-statistic: 1.875 on 5 and 376 DF, p-value: 0.09788
# Action 16
summary(lm(act16 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act16 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1887 -1.0385 0.1404 1.5000 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.05432 0.17440 6.045 4.11e-09 ***
## DemR.d -0.13449 0.24793 -0.542 0.588
## DemI.d -0.20998 0.24455 -0.859 0.391
## cond.c -0.03171 0.34881 -0.091 0.928
## DemR.d:cond.c -0.08864 0.49586 -0.179 0.858
## DemI.d:cond.c 0.72039 0.48911 1.473 0.142
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 323 degrees of freedom
## (216 observations deleted due to missingness)
## Multiple R-squared: 0.01546, Adjusted R-squared: 0.0002187
## F-statistic: 1.014 on 5 and 323 DF, p-value: 0.4091
# Action 17
summary(lm(act17 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act17 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6761 -1.4375 0.3239 1.6032 2.8108
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.64962 0.16997 3.822 0.000153 ***
## DemR.d -0.33573 0.24554 -1.367 0.172277
## DemI.d -0.23246 0.23995 -0.969 0.333223
## cond.c -0.05287 0.33995 -0.156 0.876489
## DemR.d:cond.c -0.19654 0.49108 -0.400 0.689203
## DemI.d:cond.c 0.01219 0.47990 0.025 0.979742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.011 on 408 degrees of freedom
## (131 observations deleted due to missingness)
## Multiple R-squared: 0.006561, Adjusted R-squared: -0.005614
## F-statistic: 0.5389 on 5 and 408 DF, p-value: 0.7468
# Action 18
summary(lm(act18 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act18 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9123 -1.1004 0.2778 1.3654 2.7115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8468 0.1676 5.054 7.04e-07 ***
## DemR.d -0.4248 0.2450 -1.734 0.0839 .
## DemI.d -0.1683 0.2369 -0.711 0.4777
## cond.c 0.1310 0.3351 0.391 0.6960
## DemR.d:cond.c 0.1361 0.4900 0.278 0.7814
## DemI.d:cond.c -0.2186 0.4737 -0.462 0.6447
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.84 on 345 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.01071, Adjusted R-squared: -0.003625
## F-statistic: 0.7472 on 5 and 345 DF, p-value: 0.5886
# Action 19
summary(lm(act19 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act19 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5429 -1.0543 0.3455 1.5510 2.3455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.14103 0.19279 5.918 9.98e-09 ***
## DemR.d -0.04232 0.27306 -0.155 0.877
## DemI.d 0.19216 0.26623 0.722 0.471
## cond.c -0.28205 0.38559 -0.731 0.465
## DemR.d:cond.c -0.60626 0.54612 -1.110 0.268
## DemI.d:cond.c 0.05046 0.53246 0.095 0.925
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.789 on 266 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.0288, Adjusted R-squared: 0.01054
## F-statistic: 1.578 on 5 and 266 DF, p-value: 0.1666
# Action 20
summary(lm(act20 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act20 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5102 -1.2979 0.4444 1.4444 2.4444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0903 0.1670 6.529 2.65e-10 ***
## DemR.d 0.1833 0.2403 0.763 0.4460
## DemI.d 0.2226 0.2382 0.934 0.3509
## cond.c -1.0694 0.3340 -3.202 0.0015 **
## DemR.d:cond.c 0.5963 0.4805 1.241 0.2156
## DemI.d:cond.c 1.0394 0.4765 2.181 0.0299 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.751 on 315 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.03972, Adjusted R-squared: 0.02447
## F-statistic: 2.606 on 5 and 315 DF, p-value: 0.02506
summary(lm(act20 ~ (DemR.d + DemI.d) * ctrl.d, data = d))
##
## Call:
## lm(formula = act20 ~ (DemR.d + DemI.d) * ctrl.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5102 -1.2979 0.4444 1.4444 2.4444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6250 0.2340 6.944 2.18e-11 ***
## DemR.d -0.1148 0.3425 -0.335 0.7378
## DemI.d -0.2971 0.3241 -0.917 0.3599
## ctrl.d -1.0694 0.3340 -3.202 0.0015 **
## DemR.d:ctrl.d 0.5963 0.4805 1.241 0.2156
## DemI.d:ctrl.d 1.0394 0.4765 2.181 0.0299 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.751 on 315 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.03972, Adjusted R-squared: 0.02447
## F-statistic: 2.606 on 5 and 315 DF, p-value: 0.02506
summary(lm(act20 ~ (DemR.d + DemI.d) * clim.d, data = d))
##
## Call:
## lm(formula = act20 ~ (DemR.d + DemI.d) * clim.d, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5102 -1.2979 0.4444 1.4444 2.4444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5556 0.2383 2.331 0.0204 *
## DemR.d 0.4815 0.3370 1.429 0.1541
## DemI.d 0.7423 0.3493 2.125 0.0344 *
## clim.d 1.0694 0.3340 3.202 0.0015 **
## DemR.d:clim.d -0.5963 0.4805 -1.241 0.2156
## DemI.d:clim.d -1.0394 0.4765 -2.181 0.0299 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.751 on 315 degrees of freedom
## (224 observations deleted due to missingness)
## Multiple R-squared: 0.03972, Adjusted R-squared: 0.02447
## F-statistic: 2.606 on 5 and 315 DF, p-value: 0.02506
# Action 21
summary(lm(act21 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act21 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5667 -1.9565 0.0704 1.7143 3.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.006039 0.172872 0.035 0.9722
## DemR.d -0.529848 0.251618 -2.106 0.0359 *
## DemI.d 0.242083 0.249528 0.970 0.3326
## cond.c -0.099034 0.345743 -0.286 0.7747
## DemR.d:cond.c 0.479986 0.503236 0.954 0.3408
## DemI.d:cond.c 0.736123 0.499056 1.475 0.1410
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.052 on 394 degrees of freedom
## (145 observations deleted due to missingness)
## Multiple R-squared: 0.03132, Adjusted R-squared: 0.01903
## F-statistic: 2.548 on 5 and 394 DF, p-value: 0.0276
# Action 22
summary(lm(act22 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act22 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9254 -1.5082 0.2647 1.7037 3.3103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8036 0.1697 4.736 3.05e-06 ***
## DemR.d -1.0911 0.2437 -4.478 9.89e-06 ***
## DemI.d -0.4013 0.2373 -1.691 0.0916 .
## cond.c -0.2436 0.3394 -0.718 0.4734
## DemR.d:cond.c 0.2892 0.4874 0.593 0.5533
## DemI.d:cond.c 0.4555 0.4746 0.960 0.3378
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 395 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05123, Adjusted R-squared: 0.03922
## F-statistic: 4.266 on 5 and 395 DF, p-value: 0.0008644
# Action 23
summary(lm(act23 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act23 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.661 -2.044 0.225 2.189 3.225
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1553 0.2259 0.687 0.492
## DemR.d -0.2455 0.3336 -0.736 0.462
## DemI.d 0.1861 0.3168 0.587 0.557
## cond.c -0.4738 0.4518 -1.049 0.295
## DemR.d:cond.c 0.7432 0.6671 1.114 0.266
## DemI.d:cond.c -0.1655 0.6337 -0.261 0.794
##
## Residual standard error: 2.259 on 284 degrees of freedom
## (255 observations deleted due to missingness)
## Multiple R-squared: 0.01883, Adjusted R-squared: 0.001555
## F-statistic: 1.09 on 5 and 284 DF, p-value: 0.366
# Action 24
summary(lm(act24 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act24 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1266 -1.9583 -0.1266 1.6133 3.6133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21649 0.17589 -1.231 0.219
## DemR.d -0.27122 0.25350 -1.070 0.285
## DemI.d 0.11311 0.25080 0.451 0.652
## cond.c -0.34964 0.35178 -0.994 0.321
## DemR.d:cond.c 0.09837 0.50701 0.194 0.846
## DemI.d:cond.c -0.11028 0.50160 -0.220 0.826
##
## Residual standard error: 2.088 on 407 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01483, Adjusted R-squared: 0.00273
## F-statistic: 1.226 on 5 and 407 DF, p-value: 0.2962
# Action 25
summary(lm(act25 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3194 -0.9687 0.0789 1.6562 2.8415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1202 0.1507 7.436 5.53e-13 ***
## DemR.d -0.8691 0.2146 -4.050 6.05e-05 ***
## DemI.d -0.2653 0.2137 -1.241 0.215
## cond.c 0.3984 0.3013 1.322 0.187
## DemR.d:cond.c -0.5836 0.4291 -1.360 0.175
## DemI.d:cond.c -0.1708 0.4275 -0.400 0.690
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 437 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.04416, Adjusted R-squared: 0.03323
## F-statistic: 4.038 on 5 and 437 DF, p-value: 0.001359
# Action 26
summary(lm(act26 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act26 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6875 -1.4444 0.5556 1.5000 1.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.38889 0.20787 6.681 1.95e-10 ***
## DemR.d 0.18343 0.30548 0.600 0.549
## DemI.d 0.14216 0.29404 0.483 0.629
## cond.c 0.22222 0.41575 0.535 0.594
## DemR.d:cond.c -0.45258 0.61097 -0.741 0.460
## DemI.d:cond.c -0.04902 0.58809 -0.083 0.934
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.83 on 218 degrees of freedom
## (321 observations deleted due to missingness)
## Multiple R-squared: 0.004848, Adjusted R-squared: -0.01798
## F-statistic: 0.2124 on 5 and 218 DF, p-value: 0.957
# Action 27
summary(lm(act25 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3194 -0.9687 0.0789 1.6562 2.8415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1202 0.1507 7.436 5.53e-13 ***
## DemR.d -0.8691 0.2146 -4.050 6.05e-05 ***
## DemI.d -0.2653 0.2137 -1.241 0.215
## cond.c 0.3984 0.3013 1.322 0.187
## DemR.d:cond.c -0.5836 0.4291 -1.360 0.175
## DemI.d:cond.c -0.1708 0.4275 -0.400 0.690
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.832 on 437 degrees of freedom
## (102 observations deleted due to missingness)
## Multiple R-squared: 0.04416, Adjusted R-squared: 0.03323
## F-statistic: 4.038 on 5 and 437 DF, p-value: 0.001359
# Action 28
summary(lm(act28 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act28 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3088 -1.1333 0.2187 1.6912 2.2187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2211 0.1611 7.580 2.89e-13 ***
## DemR.d -0.2615 0.2305 -1.134 0.257
## DemI.d -0.2498 0.2324 -1.075 0.283
## cond.c -0.1755 0.3222 -0.545 0.586
## DemR.d:cond.c -0.1812 0.4611 -0.393 0.695
## DemI.d:cond.c 0.5466 0.4647 1.176 0.240
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.819 on 365 degrees of freedom
## (174 observations deleted due to missingness)
## Multiple R-squared: 0.01267, Adjusted R-squared: -0.0008569
## F-statistic: 0.9366 on 5 and 365 DF, p-value: 0.4571
# Action 29
summary(lm(act29 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act29 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3438 -1.1250 0.0968 1.6562 2.0968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.31942 0.15678 8.416 9.26e-16 ***
## DemR.d -0.38598 0.22565 -1.711 0.088 .
## DemI.d -0.24242 0.22229 -1.091 0.276
## cond.c 0.04867 0.31356 0.155 0.877
## DemR.d:cond.c -0.10908 0.45131 -0.242 0.809
## DemI.d:cond.c 0.04735 0.44459 0.106 0.915
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.752 on 361 degrees of freedom
## (178 observations deleted due to missingness)
## Multiple R-squared: 0.008834, Adjusted R-squared: -0.004894
## F-statistic: 0.6435 on 5 and 361 DF, p-value: 0.6667
# Action 30
summary(lm(act30 ~ (DemR.d + DemI.d) * cond.c, data = d))
##
## Call:
## lm(formula = act30 ~ (DemR.d + DemI.d) * cond.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2545 -1.1167 0.7455 1.8615 2.1373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0583333 0.1730622 6.115 2.61e-09 ***
## DemR.d -0.0952148 0.2470086 -0.385 0.700
## DemI.d 0.1381702 0.2435923 0.567 0.571
## cond.c 0.1166667 0.3461245 0.337 0.736
## DemR.d:cond.c 0.0840803 0.4940171 0.170 0.865
## DemI.d:cond.c -0.0005828 0.4871845 -0.001 0.999
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.871 on 345 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.003928, Adjusted R-squared: -0.01051
## F-statistic: 0.2721 on 5 and 345 DF, p-value: 0.9282
2. gender effects
none
# Action 1
summary(lm(act1 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act1 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3182 -2.0095 -0.0095 1.8462 4.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27674 0.19371 1.429 0.153835
## DemR.d -1.00323 0.28029 -3.579 0.000383 ***
## DemI.d -0.19505 0.27944 -0.698 0.485543
## gend.mf 0.08289 0.38743 0.214 0.830691
## DemR.d:gend.mf -0.62990 0.56057 -1.124 0.261770
## DemI.d:gend.mf 0.06143 0.55889 0.110 0.912520
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 438 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03231, Adjusted R-squared: 0.02127
## F-statistic: 2.925 on 5 and 438 DF, p-value: 0.01307
# Action 2
summary(lm(act2 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act2 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.292 -1.076 0.280 1.708 2.280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.23706 0.19454 6.359 8.27e-10 ***
## DemR.d -0.33918 0.28901 -1.174 0.242
## DemI.d -0.09311 0.28554 -0.326 0.745
## gend.mf -0.11049 0.38907 -0.284 0.777
## DemR.d:gend.mf -0.24527 0.57802 -0.424 0.672
## DemI.d:gend.mf 0.28412 0.57109 0.497 0.619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.82 on 279 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.007276, Adjusted R-squared: -0.01051
## F-statistic: 0.409 on 5 and 279 DF, p-value: 0.8424
# Action 3
summary(lm(act3 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act3 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1845 -1.8571 0.1429 1.6667 3.7500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.10310 0.17822 0.579 0.56323
## DemR.d -0.81144 0.26405 -3.073 0.00225 **
## DemI.d -0.26544 0.25494 -1.041 0.29837
## gend.mf -0.16273 0.35645 -0.457 0.64824
## DemR.d:gend.mf 0.07939 0.52810 0.150 0.88057
## DemI.d:gend.mf 0.20169 0.50988 0.396 0.69263
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 433 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.02799, Adjusted R-squared: 0.01676
## F-statistic: 2.493 on 5 and 433 DF, p-value: 0.0305
# Action 4
summary(lm(act4 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act4 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3721 -1.9412 0.2198 2.0588 3.6129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32398 0.20176 1.606 0.1092
## DemR.d -0.65984 0.30377 -2.172 0.0305 *
## DemI.d -0.57180 0.30655 -1.865 0.0630 .
## gend.mf 0.09623 0.40352 0.238 0.8116
## DemR.d:gend.mf -0.65031 0.60755 -1.070 0.2852
## DemI.d:gend.mf -0.15231 0.61311 -0.248 0.8039
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.165 on 360 degrees of freedom
## (179 observations deleted due to missingness)
## Multiple R-squared: 0.01789, Adjusted R-squared: 0.004246
## F-statistic: 1.311 on 5 and 360 DF, p-value: 0.2585
# Action 5
summary(lm(act5 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act5 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2540 -1.1852 0.4133 1.7460 2.6061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07242 0.19228 5.577 5.66e-08 ***
## DemR.d -0.24847 0.27749 -0.895 0.371
## DemI.d -0.09013 0.28605 -0.315 0.753
## gend.mf -0.19890 0.38456 -0.517 0.605
## DemR.d:gend.mf -0.66113 0.55498 -1.191 0.235
## DemI.d:gend.mf 0.60468 0.57210 1.057 0.291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 286 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.02198, Adjusted R-squared: 0.004878
## F-statistic: 1.285 on 5 and 286 DF, p-value: 0.2702
# Action 6
summary(lm(act6 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act6 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7273 -1.2184 0.6579 1.6579 2.2000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10161 0.18344 6.005 4.81e-09 ***
## DemR.d -0.09241 0.26552 -0.348 0.7280
## DemI.d 0.40333 0.25980 1.552 0.1215
## gend.mf -0.48099 0.36688 -1.311 0.1907
## DemR.d:gend.mf 0.06260 0.53104 0.118 0.9062
## DemI.d:gend.mf 0.92566 0.51960 1.781 0.0757 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 348 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.01702, Adjusted R-squared: 0.002894
## F-statistic: 1.205 on 5 and 348 DF, p-value: 0.3064
# Action 7
summary(lm(act7 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act7 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1684 -1.9773 0.0472 1.8316 3.6562
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07285 0.18934 0.385 0.7006
## DemR.d -0.62319 0.28361 -2.197 0.0286 *
## DemI.d -0.03761 0.27880 -0.135 0.8928
## gend.mf -0.19115 0.37869 -0.505 0.6140
## DemR.d:gend.mf -0.02066 0.56721 -0.036 0.9710
## DemI.d:gend.mf 0.35597 0.55761 0.638 0.5236
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.077 on 404 degrees of freedom
## (135 observations deleted due to missingness)
## Multiple R-squared: 0.01716, Adjusted R-squared: 0.004995
## F-statistic: 1.411 on 5 and 404 DF, p-value: 0.2193
# Action 8
summary(lm(act8 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act8 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4545 -1.8926 -0.1593 1.8407 4.1892
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3069 0.1879 1.633 0.1031
## DemR.d -1.4552 0.2735 -5.321 1.6e-07 ***
## DemI.d -0.6263 0.2693 -2.326 0.0205 *
## gend.mf 0.2953 0.3759 0.786 0.4325
## DemR.d:gend.mf -0.3770 0.5470 -0.689 0.4910
## DemI.d:gend.mf -0.2564 0.5386 -0.476 0.6343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.115 on 470 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.06738, Adjusted R-squared: 0.05746
## F-statistic: 6.791 on 5 and 470 DF, p-value: 3.961e-06
# Action 9
summary(lm(act9 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act9 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3564 -1.6055 0.0435 1.6436 3.5882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.15648 0.17542 0.892 0.3729
## DemR.d -0.64784 0.26134 -2.479 0.0136 *
## DemI.d 0.02656 0.25022 0.106 0.9155
## gend.mf -0.39991 0.35084 -1.140 0.2550
## DemR.d:gend.mf 0.20617 0.52268 0.394 0.6934
## DemI.d:gend.mf 0.31956 0.50045 0.639 0.5235
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 438 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.02744, Adjusted R-squared: 0.01634
## F-statistic: 2.472 on 5 and 438 DF, p-value: 0.03179
# Action 10
summary(lm(act10 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act10 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7143 -1.9722 0.2857 1.7034 4.0278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6295 0.1851 3.401 0.00073 ***
## DemR.d -1.4950 0.2687 -5.564 4.45e-08 ***
## DemI.d -0.3072 0.2583 -1.189 0.23491
## gend.mf 0.1696 0.3702 0.458 0.64699
## DemR.d:gend.mf -0.4940 0.5374 -0.919 0.35842
## DemI.d:gend.mf -0.2688 0.5165 -0.520 0.60300
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 467 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.07975, Adjusted R-squared: 0.0699
## F-statistic: 8.094 on 5 and 467 DF, p-value: 2.448e-07
# Action 11
summary(lm(act11 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act11 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0519 -1.0519 0.3382 1.7105 2.3382
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1220 0.1931 5.810 1.58e-08 ***
## DemR.d -0.4118 0.2855 -1.442 0.150
## DemI.d -0.1928 0.2792 -0.690 0.490
## gend.mf 0.3349 0.3862 0.867 0.386
## DemR.d:gend.mf -0.2381 0.5710 -0.417 0.677
## DemI.d:gend.mf -0.5804 0.5585 -1.039 0.299
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.897 on 303 degrees of freedom
## (236 observations deleted due to missingness)
## Multiple R-squared: 0.01116, Adjusted R-squared: -0.005162
## F-statistic: 0.6836 on 5 and 303 DF, p-value: 0.6362
# Action 12
summary(lm(act12 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act12 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4217 -2.1579 -0.1579 1.8355 4.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.21084 0.21468 0.982 0.327
## DemR.d -1.25506 0.30339 -4.137 4.35e-05 ***
## DemI.d -0.04856 0.29924 -0.162 0.871
## gend.mf -0.42169 0.42935 -0.982 0.327
## DemR.d:gend.mf -0.15654 0.60678 -0.258 0.797
## DemI.d:gend.mf 0.43046 0.59848 0.719 0.472
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.13 on 374 degrees of freedom
## (165 observations deleted due to missingness)
## Multiple R-squared: 0.06734, Adjusted R-squared: 0.05487
## F-statistic: 5.401 on 5 and 374 DF, p-value: 8.241e-05
# Action 13
summary(lm(act13 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act13 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5000 -2.0784 -0.0784 1.8067 3.6990
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2892 0.1918 1.508 0.1324
## DemR.d -0.6993 0.2813 -2.486 0.0133 *
## DemI.d -0.4307 0.2662 -1.618 0.1064
## gend.mf 0.4216 0.3837 1.099 0.2725
## DemR.d:gend.mf 0.1562 0.5626 0.278 0.7813
## DemI.d:gend.mf -1.0910 0.5324 -2.049 0.0410 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.057 on 433 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.03722, Adjusted R-squared: 0.0261
## F-statistic: 3.347 on 5 and 433 DF, p-value: 0.005603
# Action 14
summary(lm(act14 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act14 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.730 -1.520 0.322 1.538 3.609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5956 0.2082 2.861 0.00455 **
## DemR.d -0.5610 0.3242 -1.730 0.08468 .
## DemI.d -0.2315 0.3155 -0.734 0.46384
## gend.mf 0.2682 0.4164 0.644 0.52007
## DemR.d:gend.mf -1.5549 0.6484 -2.398 0.01715 *
## DemI.d:gend.mf -0.5799 0.6311 -0.919 0.35898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.022 on 277 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.02875, Adjusted R-squared: 0.01121
## F-statistic: 1.64 on 5 and 277 DF, p-value: 0.1496
# Action 15
summary(lm(act15 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act15 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5581 -1.5581 0.4634 1.5278 3.5278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5419 0.1936 2.799 0.00539 **
## DemR.d -0.8345 0.2798 -2.983 0.00304 **
## DemI.d -0.6226 0.2713 -2.294 0.02233 *
## gend.mf 0.0325 0.3872 0.084 0.93315
## DemR.d:gend.mf -0.5028 0.5595 -0.899 0.36944
## DemI.d:gend.mf -0.7980 0.5427 -1.470 0.14229
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.038 on 375 degrees of freedom
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.03469, Adjusted R-squared: 0.02182
## F-statistic: 2.695 on 5 and 375 DF, p-value: 0.02078
# Action 16
summary(lm(act16 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act16 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2692 -0.9860 0.1667 1.3103 2.3103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01053 0.18372 5.500 7.74e-08 ***
## DemR.d -0.11983 0.26881 -0.446 0.656
## DemI.d -0.03108 0.27438 -0.113 0.910
## gend.mf -0.17895 0.36744 -0.487 0.627
## DemR.d:gend.mf 0.06423 0.53763 0.119 0.905
## DemI.d:gend.mf 0.75852 0.54876 1.382 0.168
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.824 on 322 degrees of freedom
## (217 observations deleted due to missingness)
## Multiple R-squared: 0.009561, Adjusted R-squared: -0.005818
## F-statistic: 0.6217 on 5 and 322 DF, p-value: 0.6834
# Action 17
summary(lm(act17 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act17 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8837 -1.4362 0.4583 1.5741 3.0541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7127 0.1843 3.867 0.000128 ***
## DemR.d -0.5216 0.2682 -1.945 0.052507 .
## DemI.d -0.2997 0.2686 -1.116 0.265041
## gend.mf 0.3421 0.3686 0.928 0.353945
## DemR.d:gend.mf -0.8323 0.5365 -1.551 0.121595
## DemI.d:gend.mf -0.3680 0.5371 -0.685 0.493661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.009 on 407 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01111, Adjusted R-squared: -0.001043
## F-statistic: 0.9141 on 5 and 407 DF, p-value: 0.4717
# Action 18
summary(lm(act18 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act18 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9730 -1.3947 0.2561 1.5000 2.6053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8584 0.1821 4.713 3.55e-06 ***
## DemR.d -0.4111 0.2692 -1.527 0.128
## DemI.d -0.2538 0.2623 -0.968 0.334
## gend.mf 0.2291 0.3643 0.629 0.530
## DemR.d:gend.mf -0.1238 0.5385 -0.230 0.818
## DemI.d:gend.mf -0.5633 0.5246 -1.074 0.284
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 343 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01109, Adjusted R-squared: -0.003321
## F-statistic: 0.7696 on 5 and 343 DF, p-value: 0.5722
# Action 19
summary(lm(act19 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act19 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3538 -1.1719 0.4231 1.6462 2.4231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1164 0.2094 5.333 2.07e-07 ***
## DemR.d -0.2420 0.2962 -0.817 0.415
## DemI.d 0.2105 0.2888 0.729 0.467
## gend.mf 0.0634 0.4187 0.151 0.880
## DemR.d:gend.mf -0.6583 0.5924 -1.111 0.267
## DemI.d:gend.mf -0.1172 0.5775 -0.203 0.839
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.802 on 265 degrees of freedom
## (274 observations deleted due to missingness)
## Multiple R-squared: 0.01397, Adjusted R-squared: -0.00463
## F-statistic: 0.7511 on 5 and 265 DF, p-value: 0.5859
# Action 20
summary(lm(act20 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act20 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5139 -1.1429 0.4861 1.5556 2.3226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12444 0.17857 6.297 1.03e-09 ***
## DemR.d -0.02878 0.26102 -0.110 0.9123
## DemI.d 0.13449 0.26411 0.509 0.6110
## gend.mf 0.27744 0.35714 0.777 0.4378
## DemR.d:gend.mf -1.11391 0.52204 -2.134 0.0336 *
## DemI.d:gend.mf -0.50959 0.52822 -0.965 0.3354
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.772 on 313 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.02125, Adjusted R-squared: 0.005613
## F-statistic: 1.359 on 5 and 313 DF, p-value: 0.2396
# Action 21
summary(lm(act21 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act21 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.308 -1.850 0.150 1.760 3.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07885 0.19401 0.406 0.6847
## DemR.d -0.69720 0.28010 -2.489 0.0132 *
## DemI.d 0.12666 0.28074 0.451 0.6521
## gend.mf 0.45769 0.38802 1.180 0.2389
## DemR.d:gend.mf -0.99876 0.56020 -1.783 0.0754 .
## DemI.d:gend.mf -0.52585 0.56148 -0.937 0.3496
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.055 on 392 degrees of freedom
## (147 observations deleted due to missingness)
## Multiple R-squared: 0.02841, Adjusted R-squared: 0.01602
## F-statistic: 2.293 on 5 and 392 DF, p-value: 0.04499
# Action 22
summary(lm(act22 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act22 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.5263 0.2421 1.5686 3.4194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8441 0.1884 4.480 9.81e-06 ***
## DemR.d -1.1748 0.2766 -4.248 2.69e-05 ***
## DemI.d -0.4127 0.2644 -1.561 0.119
## gend.mf 0.3118 0.3768 0.827 0.408
## DemR.d:gend.mf -0.4891 0.5531 -0.884 0.377
## DemI.d:gend.mf -0.1221 0.5288 -0.231 0.818
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.957 on 393 degrees of freedom
## (146 observations deleted due to missingness)
## Multiple R-squared: 0.04966, Adjusted R-squared: 0.03757
## F-statistic: 4.107 on 5 and 393 DF, p-value: 0.001201
# Action 23
summary(lm(act23 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act23 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6667 -2.2821 0.0678 2.0678 3.1154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1533 0.2383 0.643 0.520
## DemR.d -0.2449 0.3578 -0.685 0.494
## DemI.d 0.3210 0.3477 0.923 0.357
## gend.mf 0.1504 0.4767 0.316 0.753
## DemR.d:gend.mf -0.1980 0.7156 -0.277 0.782
## DemI.d:gend.mf 0.2342 0.6954 0.337 0.737
##
## Residual standard error: 2.267 on 283 degrees of freedom
## (256 observations deleted due to missingness)
## Multiple R-squared: 0.009342, Adjusted R-squared: -0.008161
## F-statistic: 0.5337 on 5 and 283 DF, p-value: 0.7507
# Action 24
summary(lm(act24 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act24 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.13 -2.00 -0.13 1.59 3.59
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1684 0.1920 -0.877 0.3810
## DemR.d -0.3185 0.2771 -1.149 0.2511
## DemI.d -0.0615 0.2747 -0.224 0.8230
## gend.mf 0.3367 0.3840 0.877 0.3810
## DemR.d:gend.mf -0.2578 0.5542 -0.465 0.6421
## DemI.d:gend.mf -1.0565 0.5495 -1.923 0.0552 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.082 on 406 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.01727, Adjusted R-squared: 0.005164
## F-statistic: 1.427 on 5 and 406 DF, p-value: 0.2135
# Action 25
summary(lm(act25 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2791 -1.0194 0.0833 1.6847 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1492 0.1666 6.900 1.85e-11 ***
## DemR.d -0.9916 0.2437 -4.070 5.59e-05 ***
## DemI.d -0.3738 0.2368 -1.579 0.115
## gend.mf 0.2597 0.3331 0.779 0.436
## DemR.d:gend.mf -0.5750 0.4873 -1.180 0.239
## DemI.d:gend.mf -0.5422 0.4735 -1.145 0.253
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.04154, Adjusted R-squared: 0.03052
## F-statistic: 3.77 on 5 and 435 DF, p-value: 0.002362
# Action 26
summary(lm(act26 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act26 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7609 -1.1429 0.5614 1.3929 1.8571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.42602 0.21592 6.604 3.03e-10 ***
## DemR.d 0.02584 0.32286 0.080 0.936
## DemI.d 0.15691 0.31458 0.499 0.618
## gend.mf 0.36224 0.43185 0.839 0.402
## DemR.d:gend.mf -0.98026 0.64573 -1.518 0.130
## DemI.d:gend.mf -0.07357 0.62915 -0.117 0.907
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.823 on 217 degrees of freedom
## (322 observations deleted due to missingness)
## Multiple R-squared: 0.01451, Adjusted R-squared: -0.008199
## F-statistic: 0.6389 on 5 and 217 DF, p-value: 0.6702
# Action 27
summary(lm(act25 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2791 -1.0194 0.0833 1.6847 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1492 0.1666 6.900 1.85e-11 ***
## DemR.d -0.9916 0.2437 -4.070 5.59e-05 ***
## DemI.d -0.3738 0.2368 -1.579 0.115
## gend.mf 0.2597 0.3331 0.779 0.436
## DemR.d:gend.mf -0.5750 0.4873 -1.180 0.239
## DemI.d:gend.mf -0.5422 0.4735 -1.145 0.253
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.835 on 435 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.04154, Adjusted R-squared: 0.03052
## F-statistic: 3.77 on 5 and 435 DF, p-value: 0.002362
# Action 28
summary(lm(act28 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act28 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2151 -1.0449 0.2069 1.7849 2.3030
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.213587 0.184949 6.562 1.84e-10 ***
## DemR.d -0.342631 0.262326 -1.306 0.192
## DemI.d -0.322471 0.268313 -1.202 0.230
## gend.mf -0.002933 0.369898 -0.008 0.994
## DemR.d:gend.mf -0.345042 0.524651 -0.658 0.511
## DemI.d:gend.mf -0.193094 0.536626 -0.360 0.719
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.826 on 363 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.007968, Adjusted R-squared: -0.005696
## F-statistic: 0.5831 on 5 and 363 DF, p-value: 0.7129
# Action 29
summary(lm(act29 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act29 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.333 -1.056 0.069 1.667 2.069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.310345 0.173881 7.536 3.99e-13 ***
## DemR.d -0.378161 0.254453 -1.486 0.138
## DemI.d -0.226699 0.245500 -0.923 0.356
## gend.mf 0.045977 0.347762 0.132 0.895
## DemR.d:gend.mf -0.043678 0.508906 -0.086 0.932
## DemI.d:gend.mf 0.008954 0.491001 0.018 0.985
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.755 on 359 degrees of freedom
## (180 observations deleted due to missingness)
## Multiple R-squared: 0.00763, Adjusted R-squared: -0.006191
## F-statistic: 0.552 on 5 and 359 DF, p-value: 0.7368
# Action 30
summary(lm(act30 ~ (DemR.d + DemI.d) * gend.mf, data = d))
##
## Call:
## lm(formula = act30 ~ (DemR.d + DemI.d) * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2581 -1.1685 0.7419 1.8228 2.4194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9636 0.1877 5.135 4.75e-07 ***
## DemR.d -0.1130 0.2717 -0.416 0.678
## DemI.d 0.2497 0.2704 0.924 0.356
## gend.mf -0.4272 0.3753 -1.138 0.256
## DemR.d:gend.mf -0.1126 0.5434 -0.207 0.836
## DemI.d:gend.mf 0.5167 0.5408 0.956 0.340
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.867 on 343 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01173, Adjusted R-squared: -0.002672
## F-statistic: 0.8145 on 5 and 343 DF, p-value: 0.5399
3. condition x gender effects
Action 2
# Action 1
summary(lm(act1 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act1 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7273 -2.0492 -0.0019 1.9273 3.6522
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2828981 0.1944174 1.455 0.146366
## DemR.d -1.0640180 0.2842229 -3.744 0.000206 ***
## DemI.d -0.2472073 0.2813081 -0.879 0.380010
## cond.c -0.1930690 0.3888347 -0.497 0.619771
## gend.mf 0.0675371 0.3888347 0.174 0.862190
## DemR.d:cond.c 0.5531349 0.5684459 0.973 0.331065
## DemI.d:cond.c -0.5120025 0.5626162 -0.910 0.363310
## DemR.d:gend.mf -0.7288997 0.5684459 -1.282 0.200436
## DemI.d:gend.mf 0.0001188 0.5626162 0.000 0.999832
## cond.c:gend.mf 0.3194713 0.7776695 0.411 0.681418
## DemR.d:cond.c:gend.mf 0.7989062 1.1368918 0.703 0.482614
## DemI.d:cond.c:gend.mf -1.5403445 1.1252324 -1.369 0.171738
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 432 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.04596, Adjusted R-squared: 0.02167
## F-statistic: 1.892 on 11 and 432 DF, p-value: 0.03851
# Action 2
summary(lm(act2 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act2 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6765 -0.9063 0.3235 1.3889 2.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20630 0.19435 6.207 2e-09 ***
## DemR.d -0.26814 0.29308 -0.915 0.3611
## DemI.d -0.11681 0.28796 -0.406 0.6853
## cond.c 0.06947 0.38871 0.179 0.8583
## gend.mf -0.13483 0.38871 -0.347 0.7290
## DemR.d:cond.c -0.53955 0.58616 -0.920 0.3581
## DemI.d:cond.c -0.57937 0.57593 -1.006 0.3153
## DemR.d:gend.mf -0.13039 0.58616 -0.222 0.8241
## DemI.d:gend.mf 0.33160 0.57593 0.576 0.5652
## cond.c:gend.mf 1.74995 0.77742 2.251 0.0252 *
## DemR.d:cond.c:gend.mf -2.03201 1.17232 -1.733 0.0842 .
## DemI.d:cond.c:gend.mf -1.84530 1.15185 -1.602 0.1103
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 273 degrees of freedom
## (260 observations deleted due to missingness)
## Multiple R-squared: 0.03645, Adjusted R-squared: -0.002379
## F-statistic: 0.9387 on 11 and 273 DF, p-value: 0.5035
# Action 3
summary(lm(act3 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act3 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4808 -1.7697 0.1176 1.5192 3.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.08935 0.17898 0.499 0.61787
## DemR.d -0.86051 0.27136 -3.171 0.00163 **
## DemI.d -0.24714 0.25649 -0.964 0.33582
## cond.c 0.01635 0.35796 0.046 0.96359
## gend.mf -0.18442 0.35796 -0.515 0.60668
## DemR.d:cond.c 0.32596 0.54271 0.601 0.54842
## DemI.d:cond.c 0.02487 0.51299 0.048 0.96136
## DemR.d:gend.mf -0.02327 0.54271 -0.043 0.96581
## DemI.d:gend.mf 0.20251 0.51299 0.395 0.69321
## cond.c:gend.mf -1.16413 0.71591 -1.626 0.10467
## DemR.d:cond.c:gend.mf 1.97952 1.08543 1.824 0.06889 .
## DemI.d:cond.c:gend.mf 0.83455 1.02597 0.813 0.41643
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.013 on 427 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.03842, Adjusted R-squared: 0.01365
## F-statistic: 1.551 on 11 and 427 DF, p-value: 0.1107
# Action 4
summary(lm(act4 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act4 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6923 -1.9844 0.1636 1.9750 4.0625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32825 0.20499 1.601 0.1102
## DemR.d -0.64639 0.30919 -2.091 0.0373 *
## DemI.d -0.53810 0.31030 -1.734 0.0838 .
## cond.c 0.36227 0.40999 0.884 0.3775
## gend.mf 0.14214 0.40999 0.347 0.7290
## DemR.d:cond.c -0.46284 0.61838 -0.748 0.4547
## DemI.d:cond.c -1.31063 0.62060 -2.112 0.0354 *
## DemR.d:gend.mf -0.65937 0.61838 -1.066 0.2870
## DemI.d:gend.mf -0.09264 0.62060 -0.149 0.8814
## cond.c:gend.mf -0.20418 0.81998 -0.249 0.8035
## DemR.d:cond.c:gend.mf -0.23504 1.23676 -0.190 0.8494
## DemI.d:cond.c:gend.mf -1.40871 1.24121 -1.135 0.2572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.164 on 354 degrees of freedom
## (179 observations deleted due to missingness)
## Multiple R-squared: 0.03473, Adjusted R-squared: 0.004739
## F-statistic: 1.158 on 11 and 354 DF, p-value: 0.3153
# Action 5
summary(lm(act5 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act5 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2647 -1.2414 0.2432 1.4847 2.9048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.05988 0.19283 5.496 8.72e-08 ***
## DemR.d -0.18038 0.28208 -0.639 0.523
## DemI.d -0.07293 0.28697 -0.254 0.800
## cond.c -0.43906 0.38567 -1.138 0.256
## gend.mf -0.17239 0.38567 -0.447 0.655
## DemR.d:cond.c 0.04001 0.56417 0.071 0.944
## DemI.d:cond.c 0.27160 0.57395 0.473 0.636
## DemR.d:gend.mf -0.57470 0.56417 -1.019 0.309
## DemI.d:gend.mf 0.58310 0.57395 1.016 0.311
## cond.c:gend.mf 0.77286 0.77133 1.002 0.317
## DemR.d:cond.c:gend.mf -1.61761 1.12834 -1.434 0.153
## DemI.d:cond.c:gend.mf -1.20717 1.14789 -1.052 0.294
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.866 on 280 degrees of freedom
## (253 observations deleted due to missingness)
## Multiple R-squared: 0.03883, Adjusted R-squared: 0.001066
## F-statistic: 1.028 on 11 and 280 DF, p-value: 0.4213
# Action 6
summary(lm(act6 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act6 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.500 -1.108 0.600 1.600 2.400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08296 0.18638 5.810 1.43e-08 ***
## DemR.d -0.06093 0.27483 -0.222 0.8247
## DemI.d 0.40436 0.26343 1.535 0.1257
## cond.c -0.19749 0.37276 -0.530 0.5966
## gend.mf -0.51830 0.37276 -1.390 0.1653
## DemR.d:cond.c 0.10345 0.54967 0.188 0.8508
## DemI.d:cond.c -0.16904 0.52686 -0.321 0.7485
## DemR.d:gend.mf 0.12425 0.54967 0.226 0.8213
## DemI.d:gend.mf 0.98483 0.52686 1.869 0.0624 .
## cond.c:gend.mf -0.50025 0.74552 -0.671 0.5027
## DemR.d:cond.c:gend.mf 0.38835 1.09934 0.353 0.7241
## DemI.d:cond.c:gend.mf 0.35097 1.05371 0.333 0.7393
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.825 on 342 degrees of freedom
## (191 observations deleted due to missingness)
## Multiple R-squared: 0.02172, Adjusted R-squared: -0.009744
## F-statistic: 0.6903 on 11 and 342 DF, p-value: 0.7479
# Action 7
summary(lm(act7 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act7 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3725 -1.9167 0.0893 1.6275 3.5600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06315 0.19032 0.332 0.7402
## DemR.d -0.65562 0.28876 -2.270 0.0237 *
## DemI.d -0.01296 0.28062 -0.046 0.9632
## cond.c 0.15101 0.38064 0.397 0.6918
## gend.mf -0.17806 0.38064 -0.468 0.6402
## DemR.d:cond.c 0.30739 0.57753 0.532 0.5948
## DemI.d:cond.c 0.05138 0.56125 0.092 0.9271
## DemR.d:gend.mf -0.12034 0.57753 -0.208 0.8350
## DemI.d:gend.mf 0.31379 0.56125 0.559 0.5764
## cond.c:gend.mf -0.57945 0.76127 -0.761 0.4470
## DemR.d:cond.c:gend.mf 1.02931 1.15505 0.891 0.3734
## DemI.d:cond.c:gend.mf 0.20244 1.12250 0.180 0.8570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.084 on 398 degrees of freedom
## (135 observations deleted due to missingness)
## Multiple R-squared: 0.02484, Adjusted R-squared: -0.002116
## F-statistic: 0.9215 on 11 and 398 DF, p-value: 0.5194
# Action 8
summary(lm(act8 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act8 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5909 -1.6719 -0.1404 1.8596 4.4167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3075 0.1884 1.633 0.1032
## DemR.d -1.4010 0.2795 -5.012 7.67e-07 ***
## DemI.d -0.6187 0.2702 -2.290 0.0225 *
## cond.c 0.2794 0.3768 0.742 0.4588
## gend.mf 0.2940 0.3768 0.780 0.4356
## DemR.d:cond.c -0.8373 0.5590 -1.498 0.1348
## DemI.d:cond.c -0.3458 0.5404 -0.640 0.5226
## DemR.d:gend.mf -0.2930 0.5590 -0.524 0.6004
## DemI.d:gend.mf -0.2717 0.5404 -0.503 0.6154
## cond.c:gend.mf -0.0133 0.7535 -0.018 0.9859
## DemR.d:cond.c:gend.mf -0.1657 1.1180 -0.148 0.8823
## DemI.d:cond.c:gend.mf -0.6539 1.0809 -0.605 0.5455
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.12 on 464 degrees of freedom
## (69 observations deleted due to missingness)
## Multiple R-squared: 0.07492, Adjusted R-squared: 0.05299
## F-statistic: 3.416 on 11 and 464 DF, p-value: 0.0001407
# Action 9
summary(lm(act9 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act9 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4615 -1.6087 0.2381 1.6512 3.4182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.14709 0.17673 0.832 0.4057
## DemR.d -0.69205 0.27060 -2.557 0.0109 *
## DemI.d 0.04778 0.25273 0.189 0.8501
## cond.c -0.07073 0.35346 -0.200 0.8415
## gend.mf -0.41227 0.35346 -1.166 0.2441
## DemR.d:cond.c 0.35117 0.54121 0.649 0.5168
## DemI.d:cond.c 0.02983 0.50547 0.059 0.9530
## DemR.d:gend.mf 0.11089 0.54121 0.205 0.8378
## DemI.d:gend.mf 0.30824 0.50547 0.610 0.5423
## cond.c:gend.mf -0.57474 0.70693 -0.813 0.4167
## DemR.d:cond.c:gend.mf 1.23124 1.08241 1.137 0.2560
## DemI.d:cond.c:gend.mf 0.08511 1.01094 0.084 0.9329
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 432 degrees of freedom
## (101 observations deleted due to missingness)
## Multiple R-squared: 0.03168, Adjusted R-squared: 0.007022
## F-statistic: 1.285 on 11 and 432 DF, p-value: 0.2302
# Action 10
summary(lm(act10 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act10 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9000 -1.7391 0.4211 1.5789 4.2609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.63337 0.18598 3.406 0.000718 ***
## DemR.d -1.45209 0.27437 -5.292 1.87e-07 ***
## DemI.d -0.31652 0.25957 -1.219 0.223307
## cond.c 0.14234 0.37196 0.383 0.702124
## gend.mf 0.17871 0.37196 0.480 0.631131
## DemR.d:cond.c -0.58545 0.54875 -1.067 0.286585
## DemI.d:cond.c -0.01679 0.51914 -0.032 0.974220
## DemR.d:gend.mf -0.41753 0.54875 -0.761 0.447126
## DemI.d:gend.mf -0.26695 0.51914 -0.514 0.607339
## cond.c:gend.mf 0.42440 0.74391 0.571 0.568616
## DemR.d:cond.c:gend.mf -0.82916 1.09750 -0.756 0.450334
## DemI.d:cond.c:gend.mf 0.23357 1.03827 0.225 0.822109
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.054 on 461 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.08452, Adjusted R-squared: 0.06267
## F-statistic: 3.869 on 11 and 461 DF, p-value: 2.315e-05
# Action 11
summary(lm(act11 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act11 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4706 -1.1111 0.3636 1.4286 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.09760 0.19351 5.672 3.35e-08 ***
## DemR.d -0.37314 0.28868 -1.293 0.197
## DemI.d -0.20900 0.27961 -0.747 0.455
## cond.c -0.48735 0.38702 -1.259 0.209
## gend.mf 0.31741 0.38702 0.820 0.413
## DemR.d:cond.c 0.34146 0.57736 0.591 0.555
## DemI.d:cond.c -0.50605 0.55922 -0.905 0.366
## DemR.d:gend.mf -0.19057 0.57736 -0.330 0.742
## DemI.d:gend.mf -0.62401 0.55922 -1.116 0.265
## cond.c:gend.mf -0.28581 0.77404 -0.369 0.712
## DemR.d:cond.c:gend.mf 0.09273 1.15472 0.080 0.936
## DemI.d:cond.c:gend.mf -0.66856 1.11844 -0.598 0.550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.891 on 297 degrees of freedom
## (236 observations deleted due to missingness)
## Multiple R-squared: 0.03642, Adjusted R-squared: 0.0007281
## F-statistic: 1.02 on 11 and 297 DF, p-value: 0.428
# Action 12
summary(lm(act12 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act12 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4359 -2.0600 -0.1111 1.9130 4.2381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.21043 0.21635 0.973 0.331
## DemR.d -1.27706 0.31024 -4.116 4.76e-05 ***
## DemI.d -0.04543 0.30150 -0.151 0.880
## cond.c -0.04379 0.43269 -0.101 0.919
## gend.mf -0.42413 0.43269 -0.980 0.328
## DemR.d:cond.c 0.02591 0.62049 0.042 0.967
## DemI.d:cond.c 0.09156 0.60301 0.152 0.879
## DemR.d:gend.mf -0.18071 0.62049 -0.291 0.771
## DemI.d:gend.mf 0.42746 0.60301 0.709 0.479
## cond.c:gend.mf -0.14119 0.86539 -0.163 0.870
## DemR.d:cond.c:gend.mf 0.70075 1.24097 0.565 0.573
## DemI.d:cond.c:gend.mf -0.17659 1.20602 -0.146 0.884
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.145 on 368 degrees of freedom
## (165 observations deleted due to missingness)
## Multiple R-squared: 0.06951, Adjusted R-squared: 0.04169
## F-statistic: 2.499 on 11 and 368 DF, p-value: 0.004871
# Action 13
summary(lm(act13 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act13 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7778 -1.8242 0.0923 1.5417 3.9444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3124 0.1918 1.629 0.1041
## DemR.d -0.6497 0.2851 -2.279 0.0232 *
## DemI.d -0.4393 0.2657 -1.653 0.0990 .
## cond.c -0.1063 0.3835 -0.277 0.7819
## gend.mf 0.4257 0.3835 1.110 0.2676
## DemR.d:cond.c -0.6398 0.5702 -1.122 0.2625
## DemI.d:cond.c 0.4686 0.5315 0.882 0.3785
## DemR.d:gend.mf 0.2727 0.5702 0.478 0.6327
## DemI.d:gend.mf -1.1243 0.5315 -2.115 0.0350 *
## cond.c:gend.mf 1.2226 0.7671 1.594 0.1117
## DemR.d:cond.c:gend.mf -1.6830 1.1404 -1.476 0.1408
## DemI.d:cond.c:gend.mf -1.7567 1.0629 -1.653 0.0991 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.047 on 427 degrees of freedom
## (106 observations deleted due to missingness)
## Multiple R-squared: 0.05903, Adjusted R-squared: 0.03479
## F-statistic: 2.435 on 11 and 427 DF, p-value: 0.00595
# Action 14
summary(lm(act14 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act14 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8947 -1.5556 0.2667 1.6471 3.2667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59597 0.20935 2.847 0.00475 **
## DemR.d -0.63606 0.33284 -1.911 0.05706 .
## DemI.d -0.21720 0.31854 -0.682 0.49591
## cond.c -0.05574 0.41870 -0.133 0.89420
## gend.mf 0.25835 0.41870 0.617 0.53773
## DemR.d:cond.c 0.53591 0.66568 0.805 0.42149
## DemI.d:cond.c 0.59307 0.63708 0.931 0.35272
## DemR.d:gend.mf -1.69485 0.66568 -2.546 0.01145 *
## DemI.d:gend.mf -0.64526 0.63708 -1.013 0.31204
## cond.c:gend.mf -0.56689 0.83740 -0.677 0.49901
## DemR.d:cond.c:gend.mf 1.57321 1.33135 1.182 0.23838
## DemI.d:cond.c:gend.mf 0.59711 1.27416 0.469 0.63971
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.032 on 271 degrees of freedom
## (262 observations deleted due to missingness)
## Multiple R-squared: 0.04048, Adjusted R-squared: 0.001535
## F-statistic: 1.039 on 11 and 271 DF, p-value: 0.4117
# Action 15
summary(lm(act15 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act15 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8421 -1.7727 0.1579 1.7727 3.7727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.54708 0.19412 2.818 0.00509 **
## DemR.d -0.80372 0.28318 -2.838 0.00479 **
## DemI.d -0.63745 0.27232 -2.341 0.01977 *
## cond.c -0.20249 0.38825 -0.522 0.60230
## gend.mf 0.02705 0.38825 0.070 0.94449
## DemR.d:cond.c 0.05933 0.56636 0.105 0.91662
## DemI.d:cond.c 0.02625 0.54463 0.048 0.96159
## DemR.d:gend.mf -0.42935 0.56636 -0.758 0.44889
## DemI.d:gend.mf -0.77251 0.54463 -1.418 0.15692
## cond.c:gend.mf 0.82923 0.77650 1.068 0.28626
## DemR.d:cond.c:gend.mf -1.80265 1.13272 -1.591 0.11237
## DemI.d:cond.c:gend.mf -0.42436 1.08927 -0.390 0.69707
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.043 on 369 degrees of freedom
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.0454, Adjusted R-squared: 0.01694
## F-statistic: 1.595 on 11 and 369 DF, p-value: 0.09792
# Action 16
summary(lm(act16 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act16 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2121 -1.0500 0.0526 1.3846 2.6170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01356 0.18418 5.503 7.72e-08 ***
## DemR.d -0.09576 0.27332 -0.350 0.726
## DemI.d -0.02070 0.27508 -0.075 0.940
## cond.c -0.07815 0.36835 -0.212 0.832
## gend.mf -0.18501 0.36835 -0.502 0.616
## DemR.d:cond.c -0.12587 0.54665 -0.230 0.818
## DemI.d:cond.c 0.75781 0.55017 1.377 0.169
## DemR.d:gend.mf 0.12452 0.54665 0.228 0.820
## DemI.d:gend.mf 0.73775 0.55017 1.341 0.181
## cond.c:gend.mf -0.58054 0.73670 -0.788 0.431
## DemR.d:cond.c:gend.mf 0.17519 1.09330 0.160 0.873
## DemI.d:cond.c:gend.mf 0.60583 1.10034 0.551 0.582
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.827 on 316 degrees of freedom
## (217 observations deleted due to missingness)
## Multiple R-squared: 0.02432, Adjusted R-squared: -0.009643
## F-statistic: 0.7161 on 11 and 316 DF, p-value: 0.7231
# Action 17
summary(lm(act17 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act17 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0000 -1.5111 0.2941 1.6667 3.1304
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7141 0.1854 3.852 0.000136 ***
## DemR.d -0.5060 0.2731 -1.853 0.064676 .
## DemI.d -0.2908 0.2707 -1.075 0.283217
## cond.c -0.1023 0.3708 -0.276 0.782663
## gend.mf 0.3445 0.3708 0.929 0.353430
## DemR.d:cond.c -0.1110 0.5463 -0.203 0.839105
## DemI.d:cond.c -0.1220 0.5413 -0.225 0.821767
## DemR.d:gend.mf -0.8197 0.5463 -1.501 0.134268
## DemI.d:gend.mf -0.3741 0.5413 -0.691 0.489950
## cond.c:gend.mf -0.2499 0.7415 -0.337 0.736344
## DemR.d:cond.c:gend.mf 0.2728 1.0926 0.250 0.802960
## DemI.d:cond.c:gend.mf -0.4910 1.0826 -0.453 0.650447
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.02 on 401 degrees of freedom
## (132 observations deleted due to missingness)
## Multiple R-squared: 0.01457, Adjusted R-squared: -0.01246
## F-statistic: 0.539 on 11 and 401 DF, p-value: 0.8766
# Action 18
summary(lm(act18 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act18 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.167 -1.150 0.250 1.333 2.850
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8607 0.1833 4.695 3.88e-06 ***
## DemR.d -0.3857 0.2731 -1.413 0.159
## DemI.d -0.2607 0.2648 -0.985 0.326
## cond.c 0.1820 0.3667 0.496 0.620
## gend.mf 0.2346 0.3667 0.640 0.523
## DemR.d:cond.c -0.1320 0.5462 -0.242 0.809
## DemI.d:cond.c -0.2524 0.5295 -0.477 0.634
## DemR.d:gend.mf -0.1013 0.5462 -0.185 0.853
## DemI.d:gend.mf -0.5642 0.5295 -1.066 0.287
## cond.c:gend.mf 0.3904 0.7333 0.532 0.595
## DemR.d:cond.c:gend.mf -1.3237 1.0924 -1.212 0.226
## DemI.d:cond.c:gend.mf -0.3907 1.0590 -0.369 0.712
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 337 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01772, Adjusted R-squared: -0.01434
## F-statistic: 0.5527 on 11 and 337 DF, p-value: 0.8662
# Action 19
summary(lm(act19 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act19 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4722 -1.1034 0.2222 1.5331 3.0588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.13252 0.20954 5.405 1.47e-07 ***
## DemR.d -0.09398 0.30185 -0.311 0.756
## DemI.d 0.19223 0.28937 0.664 0.507
## cond.c -0.32755 0.41908 -0.782 0.435
## gend.mf 0.06829 0.41908 0.163 0.871
## DemR.d:cond.c -0.83468 0.60371 -1.383 0.168
## DemI.d:cond.c 0.12022 0.57873 0.208 0.836
## DemR.d:gend.mf -0.42642 0.60371 -0.706 0.481
## DemI.d:gend.mf -0.09789 0.57873 -0.169 0.866
## cond.c:gend.mf -0.01157 0.83815 -0.014 0.989
## DemR.d:cond.c:gend.mf -1.33717 1.20742 -1.107 0.269
## DemI.d:cond.c:gend.mf 0.12758 1.15747 0.110 0.912
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.794 on 259 degrees of freedom
## (274 observations deleted due to missingness)
## Multiple R-squared: 0.045, Adjusted R-squared: 0.004435
## F-statistic: 1.109 on 11 and 259 DF, p-value: 0.354
# Action 20
summary(lm(act20 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act20 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6111 -1.2857 0.3889 1.5000 2.7222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11786 0.17621 6.344 8.02e-10 ***
## DemR.d 0.01622 0.25872 0.063 0.95004
## DemI.d 0.14700 0.26107 0.563 0.57382
## cond.c -0.95000 0.35242 -2.696 0.00741 **
## gend.mf 0.26429 0.35242 0.750 0.45388
## DemR.d:cond.c 0.37628 0.51744 0.727 0.46766
## DemI.d:cond.c 0.80341 0.52214 1.539 0.12491
## DemR.d:gend.mf -1.02390 0.51744 -1.979 0.04874 *
## DemI.d:gend.mf -0.50828 0.52214 -0.973 0.33110
## cond.c:gend.mf 0.90000 0.70485 1.277 0.20261
## DemR.d:cond.c:gend.mf -1.65855 1.03489 -1.603 0.11004
## DemI.d:cond.c:gend.mf -1.46397 1.04429 -1.402 0.16196
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.747 on 307 degrees of freedom
## (226 observations deleted due to missingness)
## Multiple R-squared: 0.06688, Adjusted R-squared: 0.03345
## F-statistic: 2 on 11 and 307 DF, p-value: 0.02801
# Action 21
summary(lm(act21 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act21 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7442 -1.8400 0.1698 1.6250 3.6250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07183 0.19422 0.370 0.71172
## DemR.d -0.75980 0.28658 -2.651 0.00835 **
## DemI.d 0.15674 0.28099 0.558 0.57730
## cond.c -0.17254 0.38844 -0.444 0.65715
## gend.mf 0.44365 0.38844 1.142 0.25410
## DemR.d:cond.c 0.73599 0.57316 1.284 0.19989
## DemI.d:cond.c 0.57725 0.56197 1.027 0.30497
## DemR.d:gend.mf -1.10937 0.57316 -1.936 0.05366 .
## DemI.d:gend.mf -0.56090 0.56197 -0.998 0.31886
## cond.c:gend.mf -0.38508 0.77687 -0.496 0.62040
## DemR.d:cond.c:gend.mf 0.84152 1.14633 0.734 0.46333
## DemI.d:cond.c:gend.mf -0.63349 1.12394 -0.564 0.57333
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.053 on 386 degrees of freedom
## (147 observations deleted due to missingness)
## Multiple R-squared: 0.04533, Adjusted R-squared: 0.01812
## F-statistic: 1.666 on 11 and 386 DF, p-value: 0.07902
# Action 22
summary(lm(act22 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act22 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7021 -1.4886 0.1667 1.5238 3.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8315 0.1894 4.391 1.46e-05 ***
## DemR.d -1.1461 0.2829 -4.051 6.15e-05 ***
## DemI.d -0.3878 0.2666 -1.455 0.147
## cond.c -0.4609 0.3787 -1.217 0.224
## gend.mf 0.2870 0.3787 0.758 0.449
## DemR.d:cond.c 0.4235 0.5658 0.748 0.455
## DemI.d:cond.c 0.6389 0.5331 1.198 0.232
## DemR.d:gend.mf -0.4304 0.5658 -0.761 0.447
## DemI.d:gend.mf -0.1101 0.5331 -0.206 0.837
## cond.c:gend.mf -0.9782 0.7575 -1.291 0.197
## DemR.d:cond.c:gend.mf 0.5985 1.1316 0.529 0.597
## DemI.d:cond.c:gend.mf 0.8463 1.0663 0.794 0.428
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.965 on 387 degrees of freedom
## (146 observations deleted due to missingness)
## Multiple R-squared: 0.05667, Adjusted R-squared: 0.02986
## F-statistic: 2.114 on 11 and 387 DF, p-value: 0.01862
# Action 23
summary(lm(act23 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act23 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5294 -2.2500 0.1562 1.9412 3.8000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.15099 0.23742 0.636 0.5253
## DemR.d -0.28774 0.36023 -0.799 0.4251
## DemI.d 0.17124 0.35131 0.487 0.6263
## cond.c -0.39941 0.47484 -0.841 0.4010
## gend.mf 0.14573 0.47484 0.307 0.7591
## DemR.d:cond.c 0.82592 0.72045 1.146 0.2526
## DemI.d:cond.c -0.79506 0.70262 -1.132 0.2588
## DemR.d:gend.mf -0.28474 0.72045 -0.395 0.6930
## DemI.d:gend.mf -0.06079 0.70262 -0.087 0.9311
## cond.c:gend.mf 0.13868 0.94967 0.146 0.8840
## DemR.d:cond.c:gend.mf 0.58330 1.44091 0.405 0.6859
## DemI.d:cond.c:gend.mf -2.40857 1.40525 -1.714 0.0877 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.258 on 277 degrees of freedom
## (256 observations deleted due to missingness)
## Multiple R-squared: 0.03833, Adjusted R-squared: 0.0001456
## F-statistic: 1.004 on 11 and 277 DF, p-value: 0.4431
# Action 24
summary(lm(act24 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act24 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3182 -1.6875 -0.1455 1.5822 4.5263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.17775 0.19105 -0.930 0.3527
## DemR.d -0.25415 0.27951 -0.909 0.3638
## DemI.d -0.05701 0.27397 -0.208 0.8353
## cond.c -0.47367 0.38210 -1.240 0.2158
## gend.mf 0.32367 0.38210 0.847 0.3975
## DemR.d:cond.c 0.03845 0.55903 0.069 0.9452
## DemI.d:cond.c -0.36363 0.54794 -0.664 0.5073
## DemR.d:gend.mf -0.13845 0.55903 -0.248 0.8045
## DemI.d:gend.mf -1.08049 0.54794 -1.972 0.0493 *
## cond.c:gend.mf -0.38902 0.76421 -0.509 0.6110
## DemR.d:cond.c:gend.mf -0.38339 1.11806 -0.343 0.7318
## DemI.d:cond.c:gend.mf -1.58902 1.09588 -1.450 0.1478
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.07 on 400 degrees of freedom
## (133 observations deleted due to missingness)
## Multiple R-squared: 0.04277, Adjusted R-squared: 0.01644
## F-statistic: 1.625 on 11 and 400 DF, p-value: 0.08932
# Action 25
summary(lm(act25 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3125 -1.1591 0.2364 1.6875 3.0435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15925 0.16736 6.927 1.58e-11 ***
## DemR.d -0.98900 0.24993 -3.957 8.88e-05 ***
## DemI.d -0.36591 0.23823 -1.536 0.125
## cond.c 0.25487 0.33472 0.761 0.447
## gend.mf 0.24237 0.33472 0.724 0.469
## DemR.d:cond.c -0.40155 0.49987 -0.803 0.422
## DemI.d:cond.c -0.13246 0.47646 -0.278 0.781
## DemR.d:gend.mf -0.54301 0.49987 -1.086 0.278
## DemI.d:gend.mf -0.56477 0.47646 -1.185 0.237
## cond.c:gend.mf -0.58799 0.66944 -0.878 0.380
## DemR.d:cond.c:gend.mf 0.62774 0.99973 0.628 0.530
## DemI.d:cond.c:gend.mf 0.01462 0.95292 0.015 0.988
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 429 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.05022, Adjusted R-squared: 0.02587
## F-statistic: 2.062 on 11 and 429 DF, p-value: 0.02189
# Action 26
summary(lm(act26 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act26 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -1.2400 0.6111 1.4762 2.5385
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.40896 0.21718 6.487 6.11e-10 ***
## DemR.d 0.15529 0.32726 0.475 0.6356
## DemI.d 0.17819 0.31904 0.559 0.5771
## cond.c 0.23458 0.43436 0.540 0.5897
## gend.mf 0.32792 0.43436 0.755 0.4511
## DemR.d:cond.c -0.85609 0.65451 -1.308 0.1923
## DemI.d:cond.c -0.11584 0.63808 -0.182 0.8561
## DemR.d:gend.mf -0.74487 0.65451 -1.138 0.2564
## DemI.d:gend.mf -0.06632 0.63808 -0.104 0.9173
## cond.c:gend.mf 0.48917 0.86873 0.563 0.5740
## DemR.d:cond.c:gend.mf -2.82308 1.30902 -2.157 0.0322 *
## DemI.d:cond.c:gend.mf -0.52152 1.27615 -0.409 0.6832
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.821 on 211 degrees of freedom
## (322 observations deleted due to missingness)
## Multiple R-squared: 0.04338, Adjusted R-squared: -0.006486
## F-statistic: 0.8699 on 11 and 211 DF, p-value: 0.5707
# Action 27
summary(lm(act25 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act25 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3125 -1.1591 0.2364 1.6875 3.0435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15925 0.16736 6.927 1.58e-11 ***
## DemR.d -0.98900 0.24993 -3.957 8.88e-05 ***
## DemI.d -0.36591 0.23823 -1.536 0.125
## cond.c 0.25487 0.33472 0.761 0.447
## gend.mf 0.24237 0.33472 0.724 0.469
## DemR.d:cond.c -0.40155 0.49987 -0.803 0.422
## DemI.d:cond.c -0.13246 0.47646 -0.278 0.781
## DemR.d:gend.mf -0.54301 0.49987 -1.086 0.278
## DemI.d:gend.mf -0.56477 0.47646 -1.185 0.237
## cond.c:gend.mf -0.58799 0.66944 -0.878 0.380
## DemR.d:cond.c:gend.mf 0.62774 0.99973 0.628 0.530
## DemI.d:cond.c:gend.mf 0.01462 0.95292 0.015 0.988
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.839 on 429 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.05022, Adjusted R-squared: 0.02587
## F-statistic: 2.062 on 11 and 429 DF, p-value: 0.02189
# Action 28
summary(lm(act28 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act28 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3421 -1.0652 0.2593 1.6579 2.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.19395 0.18520 6.447 3.71e-10 ***
## DemR.d -0.24624 0.26607 -0.925 0.355
## DemI.d -0.28502 0.26929 -1.058 0.291
## cond.c -0.42729 0.37040 -1.154 0.249
## gend.mf -0.04345 0.37040 -0.117 0.907
## DemR.d:cond.c -0.15916 0.53215 -0.299 0.765
## DemI.d:cond.c 0.56692 0.53859 1.053 0.293
## DemR.d:gend.mf -0.14959 0.53215 -0.281 0.779
## DemI.d:gend.mf -0.22153 0.53859 -0.411 0.681
## cond.c:gend.mf -0.90097 0.74081 -1.216 0.225
## DemR.d:cond.c:gend.mf -0.18802 1.06430 -0.177 0.860
## DemI.d:cond.c:gend.mf -0.02251 1.07718 -0.021 0.983
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 357 degrees of freedom
## (176 observations deleted due to missingness)
## Multiple R-squared: 0.02841, Adjusted R-squared: -0.001523
## F-statistic: 0.9491 on 11 and 357 DF, p-value: 0.4931
# Action 29
summary(lm(act29 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act29 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4444 -1.0541 0.1053 1.6905 2.1053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.310714 0.175261 7.479 6e-13 ***
## DemR.d -0.371650 0.260312 -1.428 0.154
## DemI.d -0.231694 0.248081 -0.934 0.351
## cond.c 0.089683 0.350522 0.256 0.798
## gend.mf 0.045238 0.350522 0.129 0.897
## DemR.d:cond.c -0.166098 0.520623 -0.319 0.750
## DemI.d:cond.c 0.069489 0.496162 0.140 0.889
## DemR.d:gend.mf -0.028631 0.520623 -0.055 0.956
## DemI.d:gend.mf 0.001056 0.496162 0.002 0.998
## cond.c:gend.mf 0.265079 0.701044 0.378 0.706
## DemR.d:cond.c:gend.mf -0.322774 1.041247 -0.310 0.757
## DemI.d:cond.c:gend.mf 0.060540 0.992324 0.061 0.951
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.768 on 353 degrees of freedom
## (180 observations deleted due to missingness)
## Multiple R-squared: 0.009013, Adjusted R-squared: -0.02187
## F-statistic: 0.2919 on 11 and 353 DF, p-value: 0.9872
# Action 30
summary(lm(act30 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d))
##
## Call:
## lm(formula = act30 ~ (DemR.d + DemI.d) * cond.c * gend.mf, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2632 -1.1579 0.5556 1.7368 2.7273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.965180 0.188747 5.114 5.31e-07 ***
## DemR.d -0.150922 0.277977 -0.543 0.588
## DemI.d 0.236059 0.272785 0.865 0.387
## cond.c 0.222757 0.377493 0.590 0.556
## gend.mf -0.430359 0.377493 -1.140 0.255
## DemR.d:cond.c 0.108030 0.555955 0.194 0.846
## DemI.d:cond.c 0.003249 0.545570 0.006 0.995
## DemR.d:gend.mf -0.175428 0.555955 -0.316 0.753
## DemI.d:gend.mf 0.498471 0.545570 0.914 0.362
## cond.c:gend.mf 0.776708 0.754986 1.029 0.304
## DemR.d:cond.c:gend.mf -0.483738 1.111909 -0.435 0.664
## DemI.d:cond.c:gend.mf -0.287544 1.091140 -0.264 0.792
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.877 on 337 degrees of freedom
## (196 observations deleted due to missingness)
## Multiple R-squared: 0.01829, Adjusted R-squared: -0.01375
## F-statistic: 0.5709 on 11 and 337 DF, p-value: 0.8523
a. Means
aggregate(d$act2[d$party_factor == "Democrat"], list(d$cond[d$party_factor == "Democrat"], d$gend.mf[d$party_factor == "Democrat"]), FUN = mean, na.rm = T)
## Group.1 Group.2 x
## 1 climate -0.5 0.8709677
## 2 ctrl -0.5 1.6764706
## 3 climate 0.5 1.6111111
## 4 ctrl 0.5 0.6666667