# Load packages
library(tidyverse)
library(tidyquant)
# choose stocks
symbols <- c("HD", "TSLA", "AMC", "WAL", "MSFT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 93 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 HD 2012-03-30 0.183
## 2 HD 2012-06-29 0.0578
## 3 HD 2012-09-28 0.136
## 4 HD 2012-12-31 0.0287
## 5 HD 2013-03-28 0.126
## 6 HD 2013-06-28 0.109
## 7 HD 2013-09-30 -0.0159
## 8 HD 2013-12-31 0.0870
## 9 HD 2014-03-31 -0.0340
## 10 HD 2014-06-30 0.0287
## # ℹ 83 more rows
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
geom_histogram(aes(fill = asset), show.legned = FALSE, alpha = 0.3, binwidth = 0.01) +
facet_wrap(~asset, ncol = 1) +
# labeling
labs(title = "Distribution of Monthly Returns, 2012-2016",
y = "frequency",
x = "Rate of Returns",
caption = "A typic monthly return is higher for HD than for MSFT, TSLA, WAL, and AMC.")
The stock that will make the strongest return and most consistent monthly return would be the Home Depot stock (HD).