Suppose you own a company that produces chocolate chip cookies. In mass-produced chocolate chip cookies, you prepare a large amount of dough, then mix in a large number of chips, and then chunk out individual cookies. In this process, the number of chips per cookie approximately follows a Poisson distribution (the number of chips per cookie) with some mean lambda (the average number of chips per cookie). You decide to carry out an experiment. You produce 150 test cookies: 30 from your location and then 30 from four other factory locations. Let’s take a look at the data you got:
Potential scale reduction factors:
Point est. Upper C.I.
lam[1] 1.00 1.00
lam[2] 1.00 1.00
lam[3] 1.00 1.00
lam[4] 1.00 1.00
lam[5] 1.00 1.00
mu 1.00 1.00
sig 1.01 1.02
Multivariate psrf
1
The Gelman and Rubin’s convergence diagnostic looks good as approximate convergence is diagnosed when the upper limit is close to 1.
lam[1] lam[2] lam[3] lam[4] lam[5]
Lag 0 1.0000000000 1.000000000 1.000000000 1.000000000 1.000000000
Lag 1 0.0093518171 0.125299590 0.021157613 0.023630411 0.077075415
Lag 5 0.0002784837 -0.004181718 -0.006751679 0.002617047 0.007110552
Lag 10 -0.0176500262 0.005656024 0.001876984 0.011418855 -0.010427011
Lag 50 -0.0026948190 -0.018116694 0.001672026 -0.001343748 0.007007317
mu sig
Lag 0 1.000000000 1.00000000
Lag 1 0.369341221 0.58415339
Lag 5 0.018586853 0.10616631
Lag 10 0.005823401 0.01955953
Lag 50 -0.007425217 -0.01253007
lam[1] lam[2] lam[3] lam[4] lam[5] mu sig
14927.946 10522.670 14285.616 14447.184 11385.385 6679.432 3457.466
Mean deviance: 783.6
penalty 4.787
Penalized deviance: 788.4