rm(list=ls())

library(ggplot2)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.2.3
## corrplot 0.92 loaded
library(AER)
## Warning: package 'AER' was built under R version 4.2.3
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.2.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.2.3
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.2.3
## Loading required package: survival
library(rsconnect)

i.What is the bias of an estimator?

The bias of an estimator can be defined as positive, negative, or zero. When the bias of an estimator is positive, we know that the estimator is over-predicting the target variable. When the bias of an estimator is negative, the estimator is under-predicting the target variable. Lastly, when the bias of an estimator is zero, we can say that the estimator is unbiased and it is equal to the true parameter value. Unbiased estimators are desirable, however, bias is not always avoidable, and sometimes biased estimators might be preferred due to other properties, such as lower variance or simplicity. Bias quantifies the systematic deviation of an estimator from its true parameter. This helps to assess the accuracy and reliability of the estimator.

ii.Will the bias go away if we increase the same size or add more variables?

Increasing the sample size:

By increasing the sample population (n) we are able to make the bias go away due to the fact that the estimator will startto converge toward the true parameter value (creates lower bias).

Adding more variables:

By adding more variables we are able to reduce the bias of estimators, as long as the added variable is not orthogonal to the previous variables. If these variables are highly correlated, we can create more bias.

iii. Example of OVB

data("Guns")
fm1 <- lm(violent ~ state + year + murder + robbery + prisoners + afam + cauc + male + population + income + density + law, data = Guns)

First Example: Guns data set

The data set Guns is a set of 1,173 observations of 51 states over 23 years. This data is an example of panel data, and contains 13 variables.

Variables:

  1. state: factor indicating state

  2. year: factor indicating year

  3. violent: violent crime rate (incidents per 100,000 members of the population)

  4. murder: murder rate (incidents per 100,000)

  5. robbery: robbery rate (incidents per 100,000)

  6. prisoners: incarceration rate in state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year)

  7. afam: percent of the state population that is African American

  8. cauc: percent of state that is Caucasian, ages 10 to 64

  9. male: percent of state population that is male, ages 10 to 29

  10. population: state population, in millions of people

  11. income: real per capita personal income in the state (US dollars)

  12. density: population per square mile of land area, divided by 1,000

  13. law: factor. Does the state have a shall carry law in effect that year?

Model1:

\[ violent_i = \beta_0 + \beta_1state + \beta_2year + \beta_3murder + \beta_4robbery + \beta_5prisoners + \beta_6afam + \beta_7cauc + \]

\[\beta_8male + \beta_9population + \beta_10income + \beta_11density + \beta_12law + \epsilon_i\]

The key independent variable in this model is violent, which measures the violent crime rate in incidents per 100,000 members of the population

OBV Model1:

\[ violent_i = \beta_0 + \beta_1*state + \beta_2*year + \beta_3*murder + \beta_4*robbery + \beta_5prisoners + \beta_6afam + \beta_7cauc + \]

\[\beta_8*male + \beta_9*population + \beta_10*income + \beta_11*density + \epsilon_i\]

fm2 <- lm(violent ~ state + year + murder + prisoners + afam + cauc + male + population + income + density + law, data = Guns)
summary(fm2)
## 
## Call:
## lm(formula = violent ~ state + year + murder + prisoners + afam + 
##     cauc + male + population + income + density + law, data = Guns)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -310.89  -40.40    3.00   36.01  448.61 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                9.033e+01  2.466e+02   0.366 0.714232    
## stateAlaska                1.483e+02  3.686e+01   4.023 6.13e-05 ***
## stateArizona               1.737e+02  4.311e+01   4.029 5.99e-05 ***
## stateArkansas             -2.000e+01  3.277e+01  -0.610 0.541735    
## stateCalifornia            5.785e+01  1.089e+02   0.531 0.595453    
## stateColorado              1.518e+02  5.398e+01   2.812 0.005016 ** 
## stateConnecticut           1.582e+02  6.640e+01   2.382 0.017396 *  
## stateDelaware              2.372e+02  3.831e+01   6.192 8.38e-10 ***
## stateDistrict of Columbia  8.014e+02  3.890e+02   2.060 0.039599 *  
## stateFlorida               4.451e+02  5.386e+01   8.264 4.04e-16 ***
## stateGeorgia              -1.037e+01  2.641e+01  -0.393 0.694728    
## stateHawaii               -3.357e+02  1.250e+02  -2.686 0.007344 ** 
## stateIdaho                -2.836e+01  6.346e+01  -0.447 0.654982    
## stateIllinois              2.717e+02  5.028e+01   5.403 8.02e-08 ***
## stateIndiana              -1.065e+01  5.218e+01  -0.204 0.838394    
## stateIowa                 -1.150e+01  6.390e+01  -0.180 0.857210    
## stateKansas                4.809e+01  5.065e+01   0.949 0.342594    
## stateKentucky             -7.286e+01  5.021e+01  -1.451 0.147091    
## stateLouisiana             9.668e+01  2.675e+01   3.615 0.000315 ***
## stateMaine                -7.433e+01  6.492e+01  -1.145 0.252448    
## stateMaryland              3.538e+02  3.677e+01   9.621  < 2e-16 ***
## stateMassachusetts         3.169e+02  7.074e+01   4.480 8.26e-06 ***
## stateMichigan              1.660e+02  4.623e+01   3.591 0.000344 ***
## stateMinnesota            -6.633e+00  6.104e+01  -0.109 0.913491    
## stateMississippi          -2.855e+02  3.669e+01  -7.779 1.68e-14 ***
## stateMissouri              1.358e+02  4.336e+01   3.133 0.001777 ** 
## stateMontana              -1.052e+02  5.217e+01  -2.016 0.044078 *  
## stateNebraska              2.505e+01  5.821e+01   0.430 0.666979    
## stateNevada                3.313e+02  4.242e+01   7.809 1.34e-14 ***
## stateNew Hampshire        -6.473e+01  6.802e+01  -0.952 0.341501    
## stateNew Jersey            1.767e+02  6.437e+01   2.745 0.006153 ** 
## stateNew Mexico            2.828e+02  3.852e+01   7.344 4.06e-13 ***
## stateNew York              2.978e+02  7.236e+01   4.116 4.15e-05 ***
## stateNorth Carolina       -2.666e+01  2.590e+01  -1.029 0.303475    
## stateNorth Dakota         -1.988e+02  6.104e+01  -3.257 0.001161 ** 
## stateOhio                 -1.636e+01  5.863e+01  -0.279 0.780221    
## stateOklahoma              4.741e+01  3.277e+01   1.447 0.148195    
## stateOregon                2.024e+02  5.552e+01   3.645 0.000280 ***
## statePennsylvania         -6.536e+01  6.411e+01  -1.019 0.308250    
## stateRhode Island          1.156e+02  7.440e+01   1.554 0.120428    
## stateSouth Carolina        2.277e+02  2.673e+01   8.519  < 2e-16 ***
## stateSouth Dakota         -1.230e+02  5.314e+01  -2.315 0.020797 *  
## stateTennessee             9.732e+01  3.327e+01   2.925 0.003514 ** 
## stateTexas                -9.103e+01  6.662e+01  -1.366 0.172105    
## stateUtah                 -7.069e+01  6.802e+01  -1.039 0.298919    
## stateVermont              -9.099e+01  6.628e+01  -1.373 0.170088    
## stateVirginia             -1.611e+02  3.159e+01  -5.100 4.01e-07 ***
## stateWashington            1.042e+02  4.974e+01   2.094 0.036450 *  
## stateWest Virginia        -1.265e+02  5.890e+01  -2.147 0.031994 *  
## stateWisconsin            -1.030e+02  5.701e+01  -1.807 0.071027 .  
## stateWyoming               5.761e+00  6.145e+01   0.094 0.925325    
## year1978                   2.455e+01  1.467e+01   1.673 0.094556 .  
## year1979                   6.131e+01  1.492e+01   4.109 4.27e-05 ***
## year1980                   8.549e+01  1.522e+01   5.615 2.49e-08 ***
## year1981                   9.655e+01  1.575e+01   6.129 1.24e-09 ***
## year1982                   9.044e+01  1.657e+01   5.458 5.95e-08 ***
## year1983                   8.063e+01  1.771e+01   4.552 5.92e-06 ***
## year1984                   9.987e+01  1.955e+01   5.109 3.82e-07 ***
## year1985                   1.193e+02  2.137e+01   5.581 3.01e-08 ***
## year1986                   1.466e+02  2.344e+01   6.255 5.69e-10 ***
## year1987                   1.471e+02  2.559e+01   5.749 1.16e-08 ***
## year1988                   1.746e+02  2.799e+01   6.239 6.30e-10 ***
## year1989                   1.963e+02  3.022e+01   6.498 1.24e-10 ***
## year1990                   2.553e+02  3.708e+01   6.885 9.76e-12 ***
## year1991                   2.760e+02  3.892e+01   7.091 2.39e-12 ***
## year1992                   3.001e+02  4.106e+01   7.308 5.21e-13 ***
## year1993                   3.040e+02  4.268e+01   7.123 1.92e-12 ***
## year1994                   2.966e+02  4.463e+01   6.646 4.76e-11 ***
## year1995                   2.940e+02  4.651e+01   6.321 3.77e-10 ***
## year1996                   2.661e+02  4.829e+01   5.511 4.44e-08 ***
## year1997                   2.612e+02  5.000e+01   5.223 2.11e-07 ***
## year1998                   2.426e+02  5.202e+01   4.664 3.49e-06 ***
## year1999                   2.226e+02  5.388e+01   4.131 3.89e-05 ***
## murder                     1.729e+01  8.805e-01  19.638  < 2e-16 ***
## prisoners                  1.026e-02  4.797e-02   0.214 0.830693    
## afam                       4.338e+00  1.201e+01   0.361 0.718019    
## cauc                      -4.691e+00  4.111e+00  -1.141 0.254125    
## male                       2.394e+01  8.227e+00   2.911 0.003681 ** 
## population                 1.341e+01  4.143e+00   3.238 0.001241 ** 
## income                    -1.018e-02  3.466e-03  -2.937 0.003389 ** 
## density                   -5.827e+00  4.003e+01  -0.146 0.884298    
## lawyes                     7.590e-01  8.946e+00   0.085 0.932409    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 73.01 on 1091 degrees of freedom
## Multiple R-squared:  0.9556, Adjusted R-squared:  0.9523 
## F-statistic: 289.8 on 81 and 1091 DF,  p-value: < 2.2e-16

Comparison

stargazer(fm1, fm2, 
          type = "text"
          )
## 
## ===============================================================================
##                                            Dependent variable:                 
##                           -----------------------------------------------------
##                                                  violent                       
##                                      (1)                        (2)            
## -------------------------------------------------------------------------------
## stateAlaska                       86.744***                  148.294***        
##                                    (25.068)                   (36.858)         
##                                                                                
## stateArizona                       -31.880                   173.695***        
##                                    (29.811)                   (43.112)         
##                                                                                
## stateArkansas                     -64.629***                  -20.000          
##                                    (22.267)                   (32.766)         
##                                                                                
## stateCalifornia                   -135.755*                    57.847          
##                                    (74.101)                  (108.919)         
##                                                                                
## stateColorado                      -59.666                   151.774***        
##                                    (37.099)                   (53.979)         
##                                                                                
## stateConnecticut                 -177.362***                 158.162**         
##                                    (46.021)                   (66.403)         
##                                                                                
## stateDelaware                       27.685                   237.229***        
##                                    (26.646)                   (38.310)         
##                                                                                
## stateDistrict of Columbia          129.577                   801.437**         
##                                   (264.593)                  (388.977)         
##                                                                                
## stateFlorida                      134.715***                 445.100***        
##                                    (37.559)                   (53.858)         
##                                                                                
## stateGeorgia                      -61.312***                  -10.369          
##                                    (17.978)                   (26.414)         
##                                                                                
## stateHawaii                         30.791                  -335.689***        
##                                    (85.419)                  (124.983)         
##                                                                                
## stateIdaho                       -151.606***                  -28.365          
##                                    (43.195)                   (63.459)         
##                                                                                
## stateIllinois                      -41.351                   271.702***        
##                                    (35.222)                   (50.283)         
##                                                                                
## stateIndiana                     -139.874***                  -10.645          
##                                    (35.592)                   (52.185)         
##                                                                                
## stateIowa                        -177.910***                  -11.500          
##                                    (43.607)                   (63.901)         
##                                                                                
## stateKansas                      -128.971***                   48.094          
##                                    (34.724)                   (50.653)         
##                                                                                
## stateKentucky                    -179.145***                  -72.855          
##                                    (34.200)                   (50.213)         
##                                                                                
## stateLouisiana                    62.670***                  96.685***         
##                                    (18.174)                   (26.749)         
##                                                                                
## stateMaine                       -200.732***                  -74.335          
##                                    (44.190)                   (64.920)         
##                                                                                
## stateMaryland                      47.579*                   353.763***        
##                                    (26.376)                   (36.770)         
##                                                                                
## stateMassachusetts                  23.361                   316.915***        
##                                    (48.696)                   (70.743)         
##                                                                                
## stateMichigan                     -65.662**                  166.028***        
##                                    (32.030)                   (46.232)         
##                                                                                
## stateMinnesota                   -210.383***                   -6.633          
##                                    (41.806)                   (61.040)         
##                                                                                
## stateMississippi                 -120.194***                -285.459***        
##                                    (25.322)                   (36.694)         
##                                                                                
## stateMissouri                     -84.109***                 135.837***        
##                                    (30.055)                   (43.359)         
##                                                                                
## stateMontana                     -190.735***                 -105.167**        
##                                    (35.482)                   (52.174)         
##                                                                                
## stateNebraska                    -140.674***                   25.053          
##                                    (39.765)                   (58.208)         
##                                                                                
## stateNevada                       -96.602***                 331.275***        
##                                    (31.169)                   (42.421)         
##                                                                                
## stateNew Hampshire               -220.970***                  -64.727          
##                                    (46.357)                   (68.017)         
##                                                                                
## stateNew Jersey                  -131.260***                 176.698***        
##                                    (44.519)                   (64.374)         
##                                                                                
## stateNew Mexico                   182.425***                 282.848***        
##                                    (26.284)                   (38.516)         
##                                                                                
## stateNew York                    -189.162***                 297.805***        
##                                    (50.948)                   (72.357)         
##                                                                                
## stateNorth Carolina                -21.718                    -26.663          
##                                    (17.573)                   (25.899)         
##                                                                                
## stateNorth Dakota                -273.383***                -198.818***        
##                                    (41.472)                   (61.044)         
##                                                                                
## stateOhio                        -219.976***                  -16.365          
##                                    (40.190)                   (58.635)         
##                                                                                
## stateOklahoma                     -60.255***                   47.414          
##                                    (22.436)                   (32.768)         
##                                                                                
## stateOregon                        -59.087                   202.356***        
##                                    (38.373)                   (55.519)         
##                                                                                
## statePennsylvania                -236.312***                  -65.357          
##                                    (43.764)                   (64.115)         
##                                                                                
## stateRhode Island                  -99.087*                   115.626          
##                                    (50.834)                   (74.396)         
##                                                                                
## stateSouth Carolina               249.269***                 227.672***        
##                                    (18.144)                   (26.726)         
##                                                                                
## stateSouth Dakota                -203.141***                 -123.020**        
##                                    (36.126)                   (53.140)         
##                                                                                
## stateTennessee                     -43.347*                  97.320***         
##                                    (22.914)                   (33.270)         
##                                                                                
## stateTexas                       -208.368***                  -91.031          
##                                    (45.323)                   (66.622)         
##                                                                                
## stateUtah                        -204.625***                  -70.693          
##                                    (46.306)                   (68.023)         
##                                                                                
## stateVermont                     -215.010***                  -90.991          
##                                    (45.105)                   (66.280)         
##                                                                                
## stateVirginia                    -198.054***                -161.106***        
##                                    (21.460)                   (31.592)         
##                                                                                
## stateWashington                   -68.126**                  104.177**         
##                                    (34.091)                   (49.739)         
##                                                                                
## stateWest Virginia               -208.072***                 -126.469**        
##                                    (40.028)                   (58.898)         
##                                                                                
## stateWisconsin                   -266.551***                 -103.024*         
##                                    (38.952)                   (57.012)         
##                                                                                
## stateWyoming                     -133.177***                   5.761           
##                                    (41.877)                   (61.453)         
##                                                                                
## year1978                            13.840                    24.549*          
##                                    (9.959)                    (14.671)         
##                                                                                
## year1979                          33.720***                  61.310***         
##                                    (10.153)                   (14.920)         
##                                                                                
## year1980                          35.930***                  85.485***         
##                                    (10.423)                   (15.225)         
##                                                                                
## year1981                          33.268***                  96.547***         
##                                    (10.834)                   (15.753)         
##                                                                                
## year1982                          41.773***                  90.443***         
##                                    (11.325)                   (16.570)         
##                                                                                
## year1983                          42.516***                  80.626***         
##                                    (12.066)                   (17.713)         
##                                                                                
## year1984                          62.836***                  99.870***         
##                                    (13.304)                   (19.548)         
##                                                                                
## year1985                          77.153***                  119.253***        
##                                    (14.545)                   (21.367)         
##                                                                                
## year1986                          93.961***                  146.641***        
##                                    (15.974)                   (23.443)         
##                                                                                
## year1987                          98.752***                  147.093***        
##                                    (17.413)                   (25.586)         
##                                                                                
## year1988                          114.960***                 174.613***        
##                                    (19.064)                   (27.989)         
##                                                                                
## year1989                          122.089***                 196.339***        
##                                    (20.607)                   (30.217)         
##                                                                                
## year1990                          166.985***                 255.265***        
##                                    (25.278)                   (37.078)         
##                                                                                
## year1991                          174.522***                 275.960***        
##                                    (26.558)                   (38.917)         
##                                                                                
## year1992                          194.199***                 300.088***        
##                                    (28.017)                   (41.060)         
##                                                                                
## year1993                          200.630***                 304.029***        
##                                    (29.106)                   (42.685)         
##                                                                                
## year1994                          192.383***                 296.578***        
##                                    (30.420)                   (44.628)         
##                                                                                
## year1995                          183.995***                 294.024***        
##                                    (31.709)                   (46.513)         
##                                                                                
## year1996                          164.913***                 266.142***        
##                                    (32.887)                   (48.290)         
##                                                                                
## year1997                          166.496***                 261.181***        
##                                    (34.032)                   (50.004)         
##                                                                                
## year1998                          154.455***                 242.634***        
##                                    (35.386)                   (52.025)         
##                                                                                
## year1999                          136.573***                 222.577***        
##                                    (36.639)                   (53.883)         
##                                                                                
## murder                             7.517***                  17.291***         
##                                    (0.657)                    (0.881)          
##                                                                                
## robbery                            1.303***                                    
##                                    (0.036)                                     
##                                                                                
## prisoners                          0.263***                    0.010           
##                                    (0.033)                    (0.048)          
##                                                                                
## afam                              -24.922***                   4.338           
##                                    (8.190)                    (12.009)         
##                                                                                
## cauc                               -5.894**                    -4.691          
##                                    (2.790)                    (4.111)          
##                                                                                
## male                              21.546***                  23.944***         
##                                    (5.582)                    (8.227)          
##                                                                                
## population                         7.029**                   13.413***         
##                                    (2.817)                    (4.143)          
##                                                                                
## income                              0.002                    -0.010***         
##                                    (0.002)                    (0.003)          
##                                                                                
## density                            -11.702                     -5.827          
##                                    (27.164)                   (40.033)         
##                                                                                
## lawyes                            -19.013***                   0.759           
##                                    (6.095)                    (8.946)          
##                                                                                
## Constant                           257.806                     90.326          
##                                   (167.392)                  (246.607)         
##                                                                                
## -------------------------------------------------------------------------------
## Observations                        1,173                      1,173           
## R2                                  0.980                      0.956           
## Adjusted R2                         0.978                      0.952           
## Residual Std. Error           49.538 (df = 1090)         73.010 (df = 1091)    
## F Statistic               637.504*** (df = 82; 1090) 289.844*** (df = 81; 1091)
## ===============================================================================
## Note:                                               *p<0.1; **p<0.05; ***p<0.01

In this case we can see that the variable robbery is statistically significant at p<0.01 with a positive influence on the target variable of 1.303

Condition1:

the omitted variables needs to be correlated with an independent variable from the regression function

cor(Guns[,c(2:4)])
##           violent    murder   robbery
## violent 1.0000000 0.8265086 0.9070773
## murder  0.8265086 1.0000000 0.7976060
## robbery 0.9070773 0.7976060 1.0000000
cortest4 <- cor.test(Guns$robbery, Guns$murder)
cortest4
## 
##  Pearson's product-moment correlation
## 
## data:  Guns$robbery and Guns$murder
## t = 45.25, df = 1171, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7757854 0.8175212
## sample estimates:
##      cor 
## 0.797606

As we can see from this correlation table above, robbery is highly correlated with murder, therefore the omitted variable passes condition 1. We can also see that the correlation is statistically significant with a p-value < 2.2e-16.

Condition2:

the omitted variable is a determinant of the target variable y

cortest1 <- cor.test(Guns$robbery, Guns$violent)
cortest1
## 
##  Pearson's product-moment correlation
## 
## data:  Guns$robbery and Guns$violent
## t = 73.736, df = 1171, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8963788 0.9167198
## sample estimates:
##       cor 
## 0.9070773

In this case, we can see that the correlation of the variables robbery and violent is (+) at 0.907, in addition there is a very low p-value at 2.2e-16 showing that this is statistically significant.

Bias Information/Interpretation:

Based on the tests above, we know that the correlation between the omitted variable and key variable murder is positive at 0.797, and we know that the impact of the omitted variable on the target value y is positive at 1.303, so we can tell that the omitted variable is positively biased.

Intuition: the impact of a robbery on violent crime rates is often positive, as less often a peaceful crime, and people can be willing to fight back against a robbery. We also know that murder and robbery can be positively correlated, as murders from robbery are an intrinsic byproduct of the crime itself.

2nd Example:

data("CigarettesB")
fm3 <- lm(packs ~ price + income, data = CigarettesB)
fm4 <- lm(packs ~ price, data = CigarettesB)
summary(fm3)
## 
## Call:
## lm(formula = packs ~ price + income, data = CigarettesB)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.41867 -0.10683  0.00757  0.11738  0.32868 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.2997     0.9089   4.730 2.43e-05 ***
## price        -1.3383     0.3246  -4.123 0.000168 ***
## income        0.1724     0.1968   0.876 0.385818    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1634 on 43 degrees of freedom
## Multiple R-squared:  0.3037, Adjusted R-squared:  0.2713 
## F-statistic: 9.378 on 2 and 43 DF,  p-value: 0.0004168

The second data set that I am using is titled CigarettesB, where there is a data frame consisting of 46 observations on 3 variables. This data is cross-sectional for US states in the year 1992.

Variables:

  1. packs: log of cigarette consumption (in packs) per person of smoking age (>16 years)

  2. price: lg of real price of cigarette in each state

  3. income: log of real disposable income (per capita) in each state

Model2:

\[ packs_i = \beta_0 + \beta_1price + \beta_2income + \epsilon_i \]

OBV Model2:

\[ packs_i = \beta_0 + \beta_1price + \epsilon_i \]

Comparison:

stargazer(fm3, fm4, 
          type = "text"
          )
## 
## ================================================================
##                                 Dependent variable:             
##                     --------------------------------------------
##                                        packs                    
##                              (1)                   (2)          
## ----------------------------------------------------------------
## price                     -1.338***             -1.198***       
##                            (0.325)               (0.282)        
##                                                                 
## income                      0.172                               
##                            (0.197)                              
##                                                                 
## Constant                  4.300***               5.094***       
##                            (0.909)               (0.063)        
##                                                                 
## ----------------------------------------------------------------
## Observations                 46                     46          
## R2                          0.304                 0.291         
## Adjusted R2                 0.271                 0.275         
## Residual Std. Error    0.163 (df = 43)       0.163 (df = 44)    
## F Statistic         9.378*** (df = 2; 43) 18.084*** (df = 1; 44)
## ================================================================
## Note:                                *p<0.1; **p<0.05; ***p<0.01

Based on the table above, we can see that the omitted variable is statistically significant, and it does have a negative impact on price

Condition1:

the omitted variables needs to be correlated with an independent variable from the regression function

cor(CigarettesB)
##             packs      price     income
## packs   1.0000000 -0.5397069 -0.1686728
## price  -0.5397069  1.0000000  0.4923318
## income -0.1686728  0.4923318  1.0000000
cortest3 <- cor.test(CigarettesB$price, CigarettesB$income)
cortest3
## 
##  Pearson's product-moment correlation
## 
## data:  CigarettesB$price and CigarettesB$income
## t = 3.752, df = 44, p-value = 0.0005099
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2357241 0.6847616
## sample estimates:
##       cor 
## 0.4923318

Based on the correlation table above we can see that the variable price has a positive correlation of 0.492 with the variable income. We can pass condition 1. Additionally, we can see that the correlation is statistically significant with a p-value of 0.0005099

Condition2:

the omitted variable is a determinant of the target variable y

cortest2 <- cor.test(CigarettesB$price, CigarettesB$packs)
cortest2
## 
##  Pearson's product-moment correlation
## 
## data:  CigarettesB$price and CigarettesB$packs
## t = -4.2525, df = 44, p-value = 0.0001085
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.7175778 -0.2957450
## sample estimates:
##        cor 
## -0.5397069

Based on the correlation test above, we can see that price and packs are negatively correlated at -0.54 at a p-value of 0.0001085, therefore the correlation of the omitted variable on y is statistically significant.

Bias Information/Interpretation:

We can see from the tests run above for model 2 that the impact of the omitted variable on y is negative at -1.338. We can also see that the correlation of the omitted variable on a key independent variable “income” is positive at 0.492. Therefore, we know that the omitted variable has a negative bias.

Intuition: It makes sense that the omitted variable would cause a negative bias, as the price of a pack of cigarettes could deter whether someone buys a pack or not, and those who have a higher income are less likely to be deterred from purchasing cigarettes, therefore more packs would be consumed.