# 1. Import the census data library (tidycensus) and GIS libraries (sf)(tmap). (1’)
library(tidycensus)
library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library(tmap)
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
## (status 2 uses the sf package in place of rgdal)
## Breaking News: tmap 3.x is retiring. Please test v4, e.g. with
## remotes::install_github('r-tmap/tmap')
# 2. Using your census API key, capture the population of Hispanic, Non-Hispanic White, Non-Hispanic Black or African American, total population, and median income for all census tracts in Bexar County. (1’)
var=c('B03002_012E','B03002_003E','B03002_004E','B01001_001E', 'B19013_001E')
#'B03002_012E Estimate!!Total:!!Hispanic or Latino: HISPANIC OR LATINO ORIGIN BY RACE'
#'B03002_003E Estimate!!Total:!!Not Hispanic or Latino:!!White alone HISPANIC OR LATINO ORIGIN BY RACE'
#'B03002_004E Estimate!!Total:!!Not Hispanic or Latino:!!Black or African American alone HISPANIC OR LATINO ORIGIN BY RACE'
#B01001_001E Total Population
Bexar_segregation <- get_acs(geography = "tract", variables = var, county = "Bexar",
state = "TX",output="wide", geometry = TRUE)
## Getting data from the 2017-2021 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|======================================================================| 100%
# 3. Rename the columns for estimates and remove the columns for MOE (1’)
names(Bexar_segregation)[3] <- 'Hispanic'
names(Bexar_segregation)[5] <- 'White'
names(Bexar_segregation)[7] <- 'Black or African American'
names(Bexar_segregation)[9] <- 'TotalPop'
names(Bexar_segregation)[11] <- 'MedianIncome'
Bexar_segregation$B03002_012M <- NULL
Bexar_segregation$B03002_003M <- NULL
Bexar_segregation$B03002_004M <- NULL
Bexar_segregation$B01001_001M <- NULL
Bexar_segregation$B19013_001M <- NULL
# 4. Calculate the percentage of Hispanic, Non-Hispanic White, Non-Hispanic Black or African American. (1’)
Bexar_segregation$pct_Hisp <- 100*Bexar_segregation$Hispanic/Bexar_segregation$TotalPop
Bexar_segregation$pct_White <- 100*Bexar_segregation$White/Bexar_segregation$TotalPop
Bexar_segregation$pct_BAA <- 100*Bexar_segregation$'Black or African American'/Bexar_segregation$TotalPop
# 5. Save the data to csv file. (1’)
write.csv(Bexar_segregation, "/Users/gabbyrodriguez/Documents/UTSA MSURP/Urban Planning Methods/Week 6/Bexar_seg.csv")
# 6. Map the percentage of Hispanic, Non-Hispanic White, Non-Hispanic Black or African American. (1’)
tm_shape(Bexar_segregation) +tm_fill(col = "pct_Hisp")+ tm_layout(title = "Hispanic Percent")
tm_shape(Bexar_segregation) +tm_fill(col = "pct_White")+ tm_layout(title = "White Percent")
tm_shape(Bexar_segregation) +tm_fill(col = "pct_BAA")+ tm_layout(title = "Black or African American Percent")
# 7. Import library(ggplot2), plot the scatter plot between median income and percentage of Hispanic. (1’)
library(ggplot2)
ggplot(data=Bexar_segregation, aes(x = MedianIncome, y = pct_Hisp)) + geom_point()
## Warning: Removed 4 rows containing missing values (`geom_point()`).
# 8. Move your code to R Markdown and publish the output to Rpubs. (1’)