Import data

chap4demo <- read_excel("chap4demo.xlsx")

chap4demo$Trt <- factor(chap4demo$fertilizer)

head(chap4demo)
## # A tibble: 6 × 4
##   trt   fertilizer yield Trt  
##   <chr>      <dbl> <dbl> <fct>
## 1 T1             0  4.89 0    
## 2 T1             0  4.79 0    
## 3 T1             0  4.65 0    
## 4 T1             0  4.47 0    
## 5 T2            50  5.08 50   
## 6 T2            50  5.19 50

Run ANOVA

aov1 <- with(chap4demo, aov(yield ~ Trt)) 

anova(aov1)
## Analysis of Variance Table
## 
## Response: yield
##           Df Sum Sq  Mean Sq F value   Pr(>F)    
## Trt        5 1.3555 0.271107  19.567 1.04e-06 ***
## Residuals 18 0.2494 0.013856                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparison using agricolae package

LSD test

LSD.test(y = aov1,
         trt = "Trt",
         group = TRUE,
         console = TRUE)
## 
## Study: aov1 ~ "Trt"
## 
## LSD t Test for yield 
## 
## Mean Square Error:  0.01385556 
## 
## Trt,  means and individual ( 95 %) CI
## 
##     yield        std r      LCL      UCL  Min  Max
## 0    4.70 0.18220867 4 4.576351 4.823649 4.47 4.89
## 100  5.23 0.03559026 4 5.106351 5.353649 5.18 5.26
## 150  5.38 0.06164414 4 5.256351 5.503649 5.31 5.46
## 200  5.36 0.13190906 4 5.236351 5.483649 5.25 5.55
## 250  5.28 0.08755950 4 5.156351 5.403649 5.21 5.40
## 50   5.02 0.14071247 4 4.896351 5.143649 4.89 5.19
## 
## Alpha: 0.05 ; DF Error: 18
## Critical Value of t: 2.100922 
## 
## least Significant Difference: 0.1748666 
## 
## Treatments with the same letter are not significantly different.
## 
##     yield groups
## 150  5.38      a
## 200  5.36      a
## 250  5.28      a
## 100  5.23      a
## 50   5.02      b
## 0    4.70      c

Scheffe test

scheffe.test(y = aov1,
         trt = "Trt",
         group = TRUE,
         console = TRUE)
## 
## Study: aov1 ~ "Trt"
## 
## Scheffe Test for yield 
## 
## Mean Square Error  : 0.01385556 
## 
## Trt,  means
## 
##     yield        std r  Min  Max
## 0    4.70 0.18220867 4 4.47 4.89
## 100  5.23 0.03559026 4 5.18 5.26
## 150  5.38 0.06164414 4 5.31 5.46
## 200  5.36 0.13190906 4 5.25 5.55
## 250  5.28 0.08755950 4 5.21 5.40
## 50   5.02 0.14071247 4 4.89 5.19
## 
## Alpha: 0.05 ; DF Error: 18 
## Critical Value of F: 2.772853 
## 
## Minimum Significant Difference: 0.309917 
## 
## Means with the same letter are not significantly different.
## 
##     yield groups
## 150  5.38      a
## 200  5.36      a
## 250  5.28     ab
## 100  5.23     ab
## 50   5.02      b
## 0    4.70      c

Tukey test

HSD.test(y = aov1,
         trt = "Trt",
         group = TRUE,
         console = TRUE)
## 
## Study: aov1 ~ "Trt"
## 
## HSD Test for yield 
## 
## Mean Square Error:  0.01385556 
## 
## Trt,  means
## 
##     yield        std r  Min  Max
## 0    4.70 0.18220867 4 4.47 4.89
## 100  5.23 0.03559026 4 5.18 5.26
## 150  5.38 0.06164414 4 5.31 5.46
## 200  5.36 0.13190906 4 5.25 5.55
## 250  5.28 0.08755950 4 5.21 5.40
## 50   5.02 0.14071247 4 4.89 5.19
## 
## Alpha: 0.05 ; DF Error: 18 
## Critical Value of Studentized Range: 4.49442 
## 
## Minimun Significant Difference: 0.2645182 
## 
## Treatments with the same letter are not significantly different.
## 
##     yield groups
## 150  5.38      a
## 200  5.36      a
## 250  5.28     ab
## 100  5.23     ab
## 50   5.02      b
## 0    4.70      c

SNK test

SNK.test(y = aov1,
         trt = "Trt",
         group = TRUE,
         console = TRUE)
## 
## Study: aov1 ~ "Trt"
## 
## Student Newman Keuls Test
## for yield 
## 
## Mean Square Error:  0.01385556 
## 
## Trt,  means
## 
##     yield        std r  Min  Max
## 0    4.70 0.18220867 4 4.47 4.89
## 100  5.23 0.03559026 4 5.18 5.26
## 150  5.38 0.06164414 4 5.31 5.46
## 200  5.36 0.13190906 4 5.25 5.55
## 250  5.28 0.08755950 4 5.21 5.40
## 50   5.02 0.14071247 4 4.89 5.19
## 
## Alpha: 0.05 ; DF Error: 18 
## 
## Critical Range
##         2         3         4         5         6 
## 0.1748666 0.2124249 0.2352414 0.2516804 0.2645182 
## 
## Means with the same letter are not significantly different.
## 
##     yield groups
## 150  5.38      a
## 200  5.36      a
## 250  5.28      a
## 100  5.23      a
## 50   5.02      b
## 0    4.70      c

DMRT

duncan.test(y = aov1,
         trt = "Trt",
         group = TRUE,
         console = TRUE)
## 
## Study: aov1 ~ "Trt"
## 
## Duncan's new multiple range test
## for yield 
## 
## Mean Square Error:  0.01385556 
## 
## Trt,  means
## 
##     yield        std r  Min  Max
## 0    4.70 0.18220867 4 4.47 4.89
## 100  5.23 0.03559026 4 5.18 5.26
## 150  5.38 0.06164414 4 5.31 5.46
## 200  5.36 0.13190906 4 5.25 5.55
## 250  5.28 0.08755950 4 5.21 5.40
## 50   5.02 0.14071247 4 4.89 5.19
## 
## Alpha: 0.05 ; DF Error: 18 
## 
## Critical Range
##         2         3         4         5         6 
## 0.1748666 0.1834731 0.1889036 0.1926667 0.1954172 
## 
## Means with the same letter are not significantly different.
## 
##     yield groups
## 150  5.38      a
## 200  5.36      a
## 250  5.28      a
## 100  5.23      a
## 50   5.02      b
## 0    4.70      c

Pairwise comparison using ExpDes package

LSD test

with(chap4demo, crd(treat = Trt,
                    resp = yield,
                    quali = TRUE,
                    mcomp = "lsd"))
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
##            DF     SS       MS     Fc      Pr>Fc
## Treatament  5 1.3555 0.271107 19.567 1.0399e-06
## Residuals  18 0.2494 0.013856                  
## Total      23 1.6049                           
## ------------------------------------------------------------------------
## CV = 2.28 %
## 
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value:  0.6315903 
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
## 
## ------------------------------------------------------------------------
## Homogeneity of variances test
## p-value:  0.1868725 
## According to the test of bartlett at 5% of significance, residuals can be considered homocedastic.
## ------------------------------------------------------------------------
## 
## T test (LSD)
## ------------------------------------------------------------------------
## Groups  Treatments  Means
## a     150     5.38 
## a     200     5.36 
## a     250     5.28 
## a     100     5.23 
##  b    50      5.02 
##   c   0   4.7 
## ------------------------------------------------------------------------

Tukey test

with(chap4demo, crd(treat = Trt,
                    resp = yield,
                    quali = TRUE,
                    mcomp = "tukey"))
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
##            DF     SS       MS     Fc      Pr>Fc
## Treatament  5 1.3555 0.271107 19.567 1.0399e-06
## Residuals  18 0.2494 0.013856                  
## Total      23 1.6049                           
## ------------------------------------------------------------------------
## CV = 2.28 %
## 
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value:  0.6315903 
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
## 
## ------------------------------------------------------------------------
## Homogeneity of variances test
## p-value:  0.1868725 
## According to the test of bartlett at 5% of significance, residuals can be considered homocedastic.
## ------------------------------------------------------------------------
## 
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a     150     5.38 
## a     200     5.36 
## ab    250     5.28 
## ab    100     5.23 
##  b    50      5.02 
##   c   0   4.7 
## ------------------------------------------------------------------------

SNK test

with(chap4demo, crd(treat = Trt,
                    resp = yield,
                    quali = TRUE,
                    mcomp = "snk"))
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
##            DF     SS       MS     Fc      Pr>Fc
## Treatament  5 1.3555 0.271107 19.567 1.0399e-06
## Residuals  18 0.2494 0.013856                  
## Total      23 1.6049                           
## ------------------------------------------------------------------------
## CV = 2.28 %
## 
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value:  0.6315903 
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
## 
## ------------------------------------------------------------------------
## Homogeneity of variances test
## p-value:  0.1868725 
## According to the test of bartlett at 5% of significance, residuals can be considered homocedastic.
## ------------------------------------------------------------------------
## 
## Student-Newman-Keuls's test (SNK)
## ------------------------------------------------------------------------
## Groups  Treatments  Means
## a     150         5.38 
## a     200         5.36 
## a     250         5.28 
## a     100         5.23 
##  b    50          5.02 
##   c   0       4.7 
## ------------------------------------------------------------------------

DMRT

with(chap4demo, crd(treat = Trt,
                    resp = yield,
                    quali = TRUE,
                    mcomp = "duncan"))
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
##            DF     SS       MS     Fc      Pr>Fc
## Treatament  5 1.3555 0.271107 19.567 1.0399e-06
## Residuals  18 0.2494 0.013856                  
## Total      23 1.6049                           
## ------------------------------------------------------------------------
## CV = 2.28 %
## 
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value:  0.6315903 
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
## 
## ------------------------------------------------------------------------
## Homogeneity of variances test
## p-value:  0.1868725 
## According to the test of bartlett at 5% of significance, residuals can be considered homocedastic.
## ------------------------------------------------------------------------
## 
## Duncan's test 
## ------------------------------------------------------------------------
## Groups  Treatments  Means
## a     150         5.38 
## a     200         5.36 
## a     250         5.28 
## a     100         5.23 
##  b    50          5.02 
##   c   0       4.7 
## ------------------------------------------------------------------------

Group and trend comparisons

Suppose we are interested in testing the following comparisons:

QUESTIONS????

  1. What are the coefficients of each comparison?

  2. Are the comparisons linear contrasts?

  3. Is the above set of comparison orthogonal?

Test of significance of the first comparison

c1 <- rbind("Control (T1) vs Treated (T2 thru T6)" = c(5, -1, -1, -1, -1, -1))
summary(glht(aov1,linfct=mcp(Trt = c1)))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = yield ~ Trt)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error t value Pr(>|t|)
## Control (T1) vs Treated (T2 thru T6) == 0  -2.7700     0.3224  -8.593 8.73e-08
##                                              
## Control (T1) vs Treated (T2 thru T6) == 0 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Test of significance of the 2nd comparison

c2 <- rbind("(T2,T3) vs (T4, T5, T6)" = c(0, 3, 3, -2, -2, -2))
summary(glht(aov1,linfct=mcp(Trt = c2)))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = yield ~ Trt)
## 
## Linear Hypotheses:
##                              Estimate Std. Error t value Pr(>|t|)    
## (T2,T3) vs (T4, T5, T6) == 0  -1.2900     0.3224  -4.002 0.000837 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Test of significance of a linear trend

line <- rbind("Linear trend" = c(-5, -3, -1, 1, 3, 5))
summary(glht(aov1,linfct=mcp(Trt = line)))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = yield ~ Trt)
## 
## Linear Hypotheses:
##                   Estimate Std. Error t value Pr(>|t|)    
## Linear trend == 0   4.0700     0.4924   8.265 1.53e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Test of significance of a quadratic trend

quad <- rbind("Quadratic trend" = c(5, -1, -4, -4, -1, 5))
summary(glht(aov1,linfct=mcp(Trt = quad)))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = yield ~ Trt)
## 
## Linear Hypotheses:
##                      Estimate Std. Error t value Pr(>|t|)    
## Quadratic trend == 0  -2.9200     0.5394  -5.413 3.83e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Test of significance of a cubic trend

cube <- rbind("Cubic trend" = c(-5, 7, 4, -4, -7, 5))
summary(glht(aov1,linfct=mcp(Trt = cube)))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = yield ~ Trt)
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## Cubic trend == 0  -0.0800     0.7896  -0.101     0.92
## (Adjusted p values reported -- single-step method)