library(readxl)
mydata <- read_xlsx("./Rezultati.xlsx")
mydata <- as.data.frame(mydata)
library(pastecs)
round(stat.desc(mydata[4:7]), 2)
##              R_Exam Statistics Economics   Total
## nbr.val       35.00      35.00     35.00   35.00
## nbr.null       0.00       0.00      0.00    0.00
## nbr.na         0.00       0.00      0.00    0.00
## min           10.00       4.00      8.00   31.00
## max           20.00      20.00     70.00  108.00
## range         10.00      16.00     62.00   77.00
## sum          595.00     480.00   1549.00 2624.00
## median        17.00      14.00     45.00   72.00
## mean          17.00      13.71     44.26   74.97
## SE.mean        0.44       0.63      3.34    3.69
## CI.mean.0.95   0.89       1.28      6.80    7.51
## var            6.71      13.92    391.37  477.44
## std.dev        2.59       3.73     19.78   21.85
## coef.var       0.15       0.27      0.45    0.29

Averages of 2022 Generation

library(ggplot2)
ggplot(mydata, aes(x = Total)) +
  geom_histogram(binwidth = 5, color = "black", fill = "pink") +
  ylab("Frequency") +
  xlab("Total points")

print(mydata[order(-mydata$Total), c(1, 4:8)], row.names = FALSE)
##  Student_ID R_Exam Statistics Economics Total Grade
##    19332963     20         18        70   108    10
##    19618436     20         16        70   106    10
##    19329311     20         20        65   105    10
##    19229524     20         16        68   104    10
##    19235632     17         16        70   103    10
##    19568904     20         12        70   102    10
##    19227375     20         12        69   101    10
##    19573322     18         16        65    99    10
##    19377040     15         12        66    93    10
##    19629029     20         20        52    92    10
##    19566100     19         18        53    90    10
##    19568511     18         12        60    90    10
##    19376969     19         10        61    90    10
##    19568773     15         14        53    82     9
##    19310190     15         12        50    77     8
##    19618441     18         12        47    77     8
##    19260302     15         14        45    74     8
##    19566933     18         14        40    72     8
##    19632094     14         18        40    72     8
##    19232715     19          8        42    69     7
##    19568134     10          4        55    69     7
##    19629139     19         10        40    69     7
##    19226240     17         14        37    68     7
##    19592455     17         14        37    68     7
##    19566561     15         12        35    62     7
##    19628968     17         18        25    60     7
##    19628973     13          8        35    56     6
##    19629060     18         18        19    55     6
##    19566399     15         16        23    54     6
##    19224568     15         18        19    52     6
##    19620288     17         12        22    51     6
##    19629076     20          8        14    42     5
##    19238104     13         14        14    41     5
##    19628989     16         14        10    40     5
##    19632115     13         10         8    31     5