library(fpp3)
── Attaching packages ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── fpp3 0.5 ──
✔ tibble      3.2.1     ✔ tsibble     1.1.3
✔ dplyr       1.1.3     ✔ tsibbledata 0.4.1
✔ tidyr       1.3.0     ✔ feasts      0.3.1
✔ lubridate   1.9.2     ✔ fable       0.3.3
✔ ggplot2     3.4.3     ✔ fabletools  0.3.3
── Conflicts ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── fpp3_conflicts ──
✖ lubridate::date()    masks base::date()
✖ dplyr::filter()      masks stats::filter()
✖ tsibble::intersect() masks base::intersect()
✖ tsibble::interval()  masks lubridate::interval()
✖ dplyr::lag()         masks stats::lag()
✖ tsibble::setdiff()   masks base::setdiff()
✖ tsibble::union()     masks base::union()
library(GGally)
Registered S3 method overwritten by 'GGally':
  method from   
  +.gg   ggplot2

Lag plots

aus_production |>
  filter(year(Quarter) >= 1992) -> new_production

new_production |> gg_lag(Beer, geom = "point")

The autocorrelations are the correlations associated with these scatterplots * r1 = Correlation(yt,y(t-1)) * r2 = Corr(yt, y(t-2)) * r3 = Corr(yt, y(t-3)) * AND SO ON

Doing it in R

new_production |> 
  ACF(Beer, lag_max = 9) 
new_production |> 
  ACF(Beer) |>
  autoplot()

Example 2: US employment (BOTH)

retail <- us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980)

retail |> autoplot(Employed)

Look at autocorrelation

retail |> ACF(Employed, lag_max = 48) |> autoplot()

No seasonality no trend

gafa_stock |>
  filter(Symbol == "GOOG", year(Date) == 2015) |>
  select(Date, Close) -> google_2015

google_2015

The ! sing indicates that the frequency is irregular IRREGULARLY SPACED Timestamps show that weekends, holidays and other dates are missing

google_2015 |> autoplot()
Plot variable not specified, automatically selected `.vars = Close`

google_2015 |> ACF(Close, lag_max = 100) |> autoplot()
Warning: Provided data has an irregular interval, results should be treated with caution. Computing ACF by observation.

THE END

LS0tCnRpdGxlOiAiQXV0b2NvcnJlbGF0aW9uIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoqIEF1dG9jb3JyZWxhdGlvbiBpcyBvbmUgb2YgdGhlIGtleSBmZWF0dXJlcyBvZiBhIHRpbWUgc2VyaWVzLCBsZXRzIHN0YXJ0IGJ5IGxvb2tpbmcgYXQgdGhlIGxhZyBwbG90cy4KCmBgYHtyfQpsaWJyYXJ5KGZwcDMpCmBgYApgYGB7cn0KbGlicmFyeShHR2FsbHkpCmBgYAoKIyMjIExhZyBwbG90cwoKYGBge3J9CmF1c19wcm9kdWN0aW9uIHw+CiAgZmlsdGVyKHllYXIoUXVhcnRlcikgPj0gMTk5MikgLT4gbmV3X3Byb2R1Y3Rpb24KCm5ld19wcm9kdWN0aW9uIHw+IGdnX2xhZyhCZWVyLCBnZW9tID0gInBvaW50IikKYGBgCgoqIEVhY2ggZ3JhcGggc2hvd3MgeXQgcGxvdHRlZCBhZ2luc3QgeSh0LWspIGZvciBkaWZmZXJlbnQgdmFsdWVzIG9mIGsKCmBUaGUgYXV0b2NvcnJlbGF0aW9ucyBhcmUgdGhlIGNvcnJlbGF0aW9ucyBhc3NvY2lhdGVkIHdpdGggdGhlc2Ugc2NhdHRlcnBsb3RzYAoqIHIxID0gQ29ycmVsYXRpb24oeXQseSh0LTEpKQoqIHIyID0gQ29ycih5dCwgeSh0LTIpKQoqIHIzID0gQ29ycih5dCwgeSh0LTMpKQoqIEFORCBTTyBPTgoKIyMjIERvaW5nIGl0IGluIFIKCmBgYHtyfQpuZXdfcHJvZHVjdGlvbiB8PiAKICBBQ0YoQmVlciwgbGFnX21heCA9IDkpIApgYGAKCiogUGxvdHRpbmcgaXQgYENvcnJlbG9ncmFtYCA6IHBsb3Qgb2YgdGhlIGNvcnJlbGF0aW9uIG9mIGRpZmZlcmVudCBsYWdzCgpgYGB7cn0KbmV3X3Byb2R1Y3Rpb24gfD4gCiAgQUNGKEJlZXIpIHw+CiAgYXV0b3Bsb3QoKQpgYGAKCiogYFdoZW4gZGF0YSBoYXMgYSB0cmVuZCBhdXRvY29ycmVsYXRpb24gZm9yIFNNQUxMIExBR1MgdGVuZCB0byBiZSBMQVJHRSBBTkQgUE9TSVRJVkVgCiogYFdoZW4gZGF0YSBpcyBTRUFTT05BTCwgYXV0b2NvcnJlbGF0aW9ucyB3aWxsIGJlIExBUkdFUiBhdCBTRUFTT05BTCBMQUdTIChtdWx0aXBsZXMgb2Ygc2Vhc29uYWwgZnJlcSlgCiogSUYgQk9USCwgeW91IHNlZSBhIGNvbWJpbmF0aW9uIG9mIHRoZSBlZmZlY3RzCgoKIyMjIEV4YW1wbGUgMjogVVMgZW1wbG95bWVudCAoQk9USCkKCgpgYGB7cn0KcmV0YWlsIDwtIHVzX2VtcGxveW1lbnQgfD4KICBmaWx0ZXIoVGl0bGUgPT0gIlJldGFpbCBUcmFkZSIsIHllYXIoTW9udGgpID49IDE5ODApCgpyZXRhaWwgfD4gYXV0b3Bsb3QoRW1wbG95ZWQpCmBgYAoKTG9vayBhdCBhdXRvY29ycmVsYXRpb24KCmBgYHtyfQpyZXRhaWwgfD4gQUNGKEVtcGxveWVkLCBsYWdfbWF4ID0gNDgpIHw+IGF1dG9wbG90KCkKYGBgCgoqIFRoZSBlZmZlY3Qgb2Ygc2Vhc29uYWxpdHkgY2FuIGJlIHNlZW4gaW4gbGFncyAxMiwgMjQsIDM2IGJlY2F1c2Ugc2Vzb25hbGl0eSBpcyB5ZWFyCiogVGhlIGVmZmVjdCBsb29rcyBsaWtlIFdBVkVTCiogQWxsIGF1dG9jb3JyZWxhdGlvbiBsYWdzIGFyZSBxdWl0ZSBwb3NpdGl2ZSBiZWNhdXNlIG9mIHRoZSBUUkVORAoKIyMjIE5vIHNlYXNvbmFsaXR5IG5vIHRyZW5kCgpgYGB7cn0KZ2FmYV9zdG9jayB8PgogIGZpbHRlcihTeW1ib2wgPT0gIkdPT0ciLCB5ZWFyKERhdGUpID09IDIwMTUpIHw+CiAgc2VsZWN0KERhdGUsIENsb3NlKSAtPiBnb29nbGVfMjAxNQoKZ29vZ2xlXzIwMTUKYGBgCgpUaGUgYCFgIHNpbmcgaW5kaWNhdGVzIHRoYXQgdGhlIGZyZXF1ZW5jeSBpcyBpcnJlZ3VsYXIKYElSUkVHVUxBUkxZIFNQQUNFRGAKVGltZXN0YW1wcyBzaG93IHRoYXQgd2Vla2VuZHMsIGhvbGlkYXlzIGFuZCBvdGhlciBkYXRlcyBhcmUgbWlzc2luZwoKYGBge3J9Cmdvb2dsZV8yMDE1IHw+IGF1dG9wbG90KCkKYGBgCgoKKiBMb29raW5nIGF0IHRoZSBBQ0YKCmBgYHtyfQpnb29nbGVfMjAxNSB8PiBBQ0YoQ2xvc2UsIGxhZ19tYXggPSAxMDApIHw+IGF1dG9wbG90KCkKYGBgCgoqIFRoaXMgaXMgdHlwaWNhbGwgb2YgU1RPQ0sgRGF0YSBhbmQgVFJFTkQgREFUQQoKIyMjIFRIRSBFTkQKCg==