Contexto
1. Importar y juntar bases de datos
# file.choose()
bd1 <- read.csv("/Users/dannaleal/Downloads/ClaimsData2018.csv")
bd2 <- read.csv("/Users/dannaleal/Downloads/TransactionsSummary2018.csv")
bd <- merge(bd1, bd2, by="ClaimID",all=TRUE)
2. Crear nueva columna para Total Incurred Cost
# install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
bd <- bd %>%
mutate(Total_Incurred_Cost_Claim = TotalReserves + IndemnityPaid + OtherPaid - TotalRecovery)
3. Filtrar base de datos por sólo mujeres
bd_mujeres1 <- subset(bd, Gender == "Female")
# View(bd_mujeres1)
4. Eliminar columas de X
library(dplyr)
bd_mujeres1 <- bd_mujeres1 %>%
select(-X:-X.22)
5. Descargar base de datos limpia como CSV
write.csv(bd_mujeres1, "bd_mujeres limpia.csv", row.names = FALSE)
LS0tCnRpdGxlOiAiTTQgQWN0aXZpZGFkIEZpbmFsIgphdXRob3I6ICJEYW5uYSBMZWFsIEEwMDgzMTY5OCIKZGF0ZTogIjI4LzkvMjAyMyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAieWV0aSIKICAgIGhpZ2hsaWdodDogInRhbmdvIgotLS0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5Db250ZXh0bzwvc3Bhbj4KIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjEuIEltcG9ydGFyIHkganVudGFyIGJhc2VzIGRlIGRhdG9zPC9zcGFuPgpgYGB7cn0KIyBmaWxlLmNob29zZSgpCmJkMSA8LSByZWFkLmNzdigiL1VzZXJzL2Rhbm5hbGVhbC9Eb3dubG9hZHMvQ2xhaW1zRGF0YTIwMTguY3N2IikKYmQyIDwtIHJlYWQuY3N2KCIvVXNlcnMvZGFubmFsZWFsL0Rvd25sb2Fkcy9UcmFuc2FjdGlvbnNTdW1tYXJ5MjAxOC5jc3YiKQpiZCA8LSBtZXJnZShiZDEsIGJkMiwgYnk9IkNsYWltSUQiLGFsbD1UUlVFKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4yLiBDcmVhciBudWV2YSBjb2x1bW5hIHBhcmEgVG90YWwgSW5jdXJyZWQgQ29zdDwvc3Bhbj4KYGBge3J9CiMgaW5zdGFsbC5wYWNrYWdlcygiZHBseXIiKQpsaWJyYXJ5KGRwbHlyKQoKYmQgPC0gYmQgJT4lIAogIG11dGF0ZShUb3RhbF9JbmN1cnJlZF9Db3N0X0NsYWltID0gVG90YWxSZXNlcnZlcyArIEluZGVtbml0eVBhaWQgKyBPdGhlclBhaWQgLSBUb3RhbFJlY292ZXJ5KQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4zLiBGaWx0cmFyIGJhc2UgZGUgZGF0b3MgcG9yIHPDs2xvIG11amVyZXM8L3NwYW4+CmBgYHtyfQpiZF9tdWplcmVzMSA8LSBzdWJzZXQoYmQsIEdlbmRlciA9PSAiRmVtYWxlIikKIyBWaWV3KGJkX211amVyZXMxKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij40LiBFbGltaW5hciBjb2x1bWFzIGRlIFg8L3NwYW4+CmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpiZF9tdWplcmVzMSA8LSBiZF9tdWplcmVzMSAlPiUKICBzZWxlY3QoLVg6LVguMjIpCmBgYAoKYGBge3J9CiMgVmlldyhiZF9tdWplcmVzMSkKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+NS4gRGVzY2FyZ2FyIGJhc2UgZGUgZGF0b3MgbGltcGlhIGNvbW8gQ1NWPC9zcGFuPgpgYGB7cn0Kd3JpdGUuY3N2KGJkX211amVyZXMxLCAiYmRfbXVqZXJlcyBsaW1waWEuY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpCmBgYAoKCgo=