IMPORT PACKAGES

library(glmnet)
## Warning: package 'glmnet' was built under R version 4.3.1
## Loading required package: Matrix
## Loaded glmnet 4.1-8
library(lars)
## Loaded lars 1.3
library(car)
## Loading required package: carData
library(corrplot)
## corrplot 0.92 loaded
library(Matrix)
library(plotmo)
## Warning: package 'plotmo' was built under R version 4.3.1
## Loading required package: Formula
## Loading required package: plotrix
## Loading required package: TeachingDemos
## Warning: package 'TeachingDemos' was built under R version 4.3.1
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(caret)
## Warning: package 'caret' was built under R version 4.3.1
## Loading required package: ggplot2
## Loading required package: lattice
library(repr)
## Warning: package 'repr' was built under R version 4.3.1
library(cowplot)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(knitr)
library(mlr3verse)
## Warning: package 'mlr3verse' was built under R version 4.3.1
## Loading required package: mlr3
## Warning: package 'mlr3' was built under R version 4.3.1
library(mlr3fselect)
## Warning: package 'mlr3fselect' was built under R version 4.3.1
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.3.1
library(qgraph)
## Warning: package 'qgraph' was built under R version 4.3.1
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tibble    3.2.1
## ✔ purrr     1.0.1     ✔ tidyr     1.3.0
## ✔ readr     2.1.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ tidyr::expand()    masks Matrix::expand()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ xts::first()       masks dplyr::first()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ xts::last()        masks dplyr::last()
## ✖ purrr::lift()      masks caret::lift()
## ✖ tidyr::pack()      masks Matrix::pack()
## ✖ dplyr::recode()    masks car::recode()
## ✖ purrr::some()      masks car::some()
## ✖ lubridate::stamp() masks cowplot::stamp()
## ✖ tidyr::unpack()    masks Matrix::unpack()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(broom)
library(glmnetUtils)
## Warning: package 'glmnetUtils' was built under R version 4.3.1
## 
## Attaching package: 'glmnetUtils'
## 
## The following objects are masked from 'package:glmnet':
## 
##     cv.glmnet, glmnet
library(leaps)
library(varbvs)
## Warning: package 'varbvs' was built under R version 4.3.1
library(ggplot2)
library(tidyverse)
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## 
## The following object is masked from 'package:purrr':
## 
##     compact
## 
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
library(readr)
library(skimr)
## Warning: package 'skimr' was built under R version 4.3.1
## 
## Attaching package: 'skimr'
## 
## The following object is masked from 'package:mlr3':
## 
##     partition
library(leaps)
library(FactoMineR)
library(rio)
## Warning: package 'rio' was built under R version 4.3.1
library(imputeTS)
## Warning: package 'imputeTS' was built under R version 4.3.1
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## 
## Attaching package: 'imputeTS'
## 
## The following object is masked from 'package:zoo':
## 
##     na.locf
## 
## The following object is masked from 'package:glmnet':
## 
##     na.replace
lapply(c("glmnet","lmridge"),library,character.only=T)[[1]]
## 
## Attaching package: 'lmridge'
## The following object is masked from 'package:car':
## 
##     vif
##  [1] "imputeTS"             "rio"                  "FactoMineR"          
##  [4] "skimr"                "plyr"                 "varbvs"              
##  [7] "leaps"                "glmnetUtils"          "broom"               
## [10] "lubridate"            "forcats"              "stringr"             
## [13] "purrr"                "readr"                "tidyr"               
## [16] "tibble"               "tidyverse"            "PerformanceAnalytics"
## [19] "xts"                  "zoo"                  "qgraph"              
## [22] "DataExplorer"         "mlr3fselect"          "mlr3verse"           
## [25] "mlr3"                 "knitr"                "factoextra"          
## [28] "cowplot"              "repr"                 "caret"               
## [31] "lattice"              "ggplot2"              "dplyr"               
## [34] "plotmo"               "TeachingDemos"        "plotrix"             
## [37] "Formula"              "corrplot"             "car"                 
## [40] "carData"              "lars"                 "glmnet"              
## [43] "Matrix"               "stats"                "graphics"            
## [46] "grDevices"            "utils"                "datasets"            
## [49] "methods"              "base"

DESKRIPSI DATA

Data yang digunakan yaitu dataset Cars93 dari library(MASS). Dataset Cars93 terdiri atas 93 amatan dan 27 peubah dengan rincian tipe peubah. Hanya peubah numerik yang akan digunakan dalam analisis.

?Cars93
## starting httpd help server ... done

INISIASI DATA

datawal<-data(Cars93,package="MASS")
View(Cars93)
str(Cars93)
## 'data.frame':    93 obs. of  27 variables:
##  $ Manufacturer      : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
##  $ Model             : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ...
##  $ Type              : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
##  $ Min.Price         : num  12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
##  $ Price             : num  15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
##  $ Max.Price         : num  18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
##  $ MPG.city          : int  25 18 20 19 22 22 19 16 19 16 ...
##  $ MPG.highway       : int  31 25 26 26 30 31 28 25 27 25 ...
##  $ AirBags           : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ...
##  $ DriveTrain        : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
##  $ Cylinders         : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...
##  $ EngineSize        : num  1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
##  $ Horsepower        : int  140 200 172 172 208 110 170 180 170 200 ...
##  $ RPM               : int  6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
##  $ Rev.per.mile      : int  2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
##  $ Man.trans.avail   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
##  $ Fuel.tank.capacity: num  13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
##  $ Passengers        : int  5 5 5 6 4 6 6 6 5 6 ...
##  $ Length            : int  177 195 180 193 186 189 200 216 198 206 ...
##  $ Wheelbase         : int  102 115 102 106 109 105 111 116 108 114 ...
##  $ Width             : int  68 71 67 70 69 69 74 78 73 73 ...
##  $ Turn.circle       : int  37 38 37 37 39 41 42 45 41 43 ...
##  $ Rear.seat.room    : num  26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
##  $ Luggage.room      : int  11 15 14 17 13 16 17 21 14 18 ...
##  $ Weight            : int  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
##  $ Origin            : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
##  $ Make              : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...

Penggunaan regresi Ridge dan Lasso mengharuskan data yang digunakan minimal bertipe rasio/numerik. Namun, berdasarkan output di atas, terdapat beberapa peubah yang masih bertipe “chr” (karakter). Oleh karena itu, akan dilakukan pre-processing data untuk memilih peubah yang digunakan. Peubah yang digunakan berjumlah 15.

data_psd = import ("https://raw.githubusercontent.com/dnchari/Rdatasets/master/csv/MASS/Cars93.csv")
data_psd
##    V1  Manufacturer          Model    Type Min.Price Price Max.Price MPG.city
## 1   1         Acura        Integra   Small      12.9  15.9      18.8       25
## 2   2         Acura         Legend Midsize      29.2  33.9      38.7       18
## 3   3          Audi             90 Compact      25.9  29.1      32.3       20
## 4   4          Audi            100 Midsize      30.8  37.7      44.6       19
## 5   5           BMW           535i Midsize      23.7  30.0      36.2       22
## 6   6         Buick        Century Midsize      14.2  15.7      17.3       22
## 7   7         Buick        LeSabre   Large      19.9  20.8      21.7       19
## 8   8         Buick     Roadmaster   Large      22.6  23.7      24.9       16
## 9   9         Buick        Riviera Midsize      26.3  26.3      26.3       19
## 10 10      Cadillac        DeVille   Large      33.0  34.7      36.3       16
## 11 11      Cadillac        Seville Midsize      37.5  40.1      42.7       16
## 12 12     Chevrolet       Cavalier Compact       8.5  13.4      18.3       25
## 13 13     Chevrolet        Corsica Compact      11.4  11.4      11.4       25
## 14 14     Chevrolet         Camaro  Sporty      13.4  15.1      16.8       19
## 15 15     Chevrolet         Lumina Midsize      13.4  15.9      18.4       21
## 16 16     Chevrolet     Lumina_APV     Van      14.7  16.3      18.0       18
## 17 17     Chevrolet          Astro     Van      14.7  16.6      18.6       15
## 18 18     Chevrolet        Caprice   Large      18.0  18.8      19.6       17
## 19 19     Chevrolet       Corvette  Sporty      34.6  38.0      41.5       17
## 20 20      Chrylser       Concorde   Large      18.4  18.4      18.4       20
## 21 21      Chrysler        LeBaron Compact      14.5  15.8      17.1       23
## 22 22      Chrysler       Imperial   Large      29.5  29.5      29.5       20
## 23 23         Dodge           Colt   Small       7.9   9.2      10.6       29
## 24 24         Dodge         Shadow   Small       8.4  11.3      14.2       23
## 25 25         Dodge         Spirit Compact      11.9  13.3      14.7       22
## 26 26         Dodge        Caravan     Van      13.6  19.0      24.4       17
## 27 27         Dodge        Dynasty Midsize      14.8  15.6      16.4       21
## 28 28         Dodge        Stealth  Sporty      18.5  25.8      33.1       18
## 29 29         Eagle         Summit   Small       7.9  12.2      16.5       29
## 30 30         Eagle         Vision   Large      17.5  19.3      21.2       20
## 31 31          Ford        Festiva   Small       6.9   7.4       7.9       31
## 32 32          Ford         Escort   Small       8.4  10.1      11.9       23
## 33 33          Ford          Tempo Compact      10.4  11.3      12.2       22
## 34 34          Ford        Mustang  Sporty      10.8  15.9      21.0       22
## 35 35          Ford          Probe  Sporty      12.8  14.0      15.2       24
## 36 36          Ford       Aerostar     Van      14.5  19.9      25.3       15
## 37 37          Ford         Taurus Midsize      15.6  20.2      24.8       21
## 38 38          Ford Crown_Victoria   Large      20.1  20.9      21.7       18
## 39 39           Geo          Metro   Small       6.7   8.4      10.0       46
## 40 40           Geo          Storm  Sporty      11.5  12.5      13.5       30
## 41 41         Honda        Prelude  Sporty      17.0  19.8      22.7       24
## 42 42         Honda          Civic   Small       8.4  12.1      15.8       42
## 43 43         Honda         Accord Compact      13.8  17.5      21.2       24
## 44 44       Hyundai          Excel   Small       6.8   8.0       9.2       29
## 45 45       Hyundai        Elantra   Small       9.0  10.0      11.0       22
## 46 46       Hyundai         Scoupe  Sporty       9.1  10.0      11.0       26
## 47 47       Hyundai         Sonata Midsize      12.4  13.9      15.3       20
## 48 48      Infiniti            Q45 Midsize      45.4  47.9      50.4       17
## 49 49         Lexus          ES300 Midsize      27.5  28.0      28.4       18
## 50 50         Lexus          SC300 Midsize      34.7  35.2      35.6       18
## 51 51       Lincoln    Continental Midsize      33.3  34.3      35.3       17
## 52 52       Lincoln       Town_Car   Large      34.4  36.1      37.8       18
## 53 53         Mazda            323   Small       7.4   8.3       9.1       29
## 54 54         Mazda        Protege   Small      10.9  11.6      12.3       28
## 55 55         Mazda            626 Compact      14.3  16.5      18.7       26
## 56 56         Mazda            MPV     Van      16.6  19.1      21.7       18
## 57 57         Mazda           RX-7  Sporty      32.5  32.5      32.5       17
## 58 58 Mercedes-Benz           190E Compact      29.0  31.9      34.9       20
## 59 59 Mercedes-Benz           300E Midsize      43.8  61.9      80.0       19
## 60 60       Mercury          Capri  Sporty      13.3  14.1      15.0       23
## 61 61       Mercury         Cougar Midsize      14.9  14.9      14.9       19
## 62 62    Mitsubishi         Mirage   Small       7.7  10.3      12.9       29
## 63 63    Mitsubishi       Diamante Midsize      22.4  26.1      29.9       18
## 64 64        Nissan         Sentra   Small       8.7  11.8      14.9       29
## 65 65        Nissan         Altima Compact      13.0  15.7      18.3       24
## 66 66        Nissan          Quest     Van      16.7  19.1      21.5       17
## 67 67        Nissan         Maxima Midsize      21.0  21.5      22.0       21
## 68 68    Oldsmobile        Achieva Compact      13.0  13.5      14.0       24
## 69 69    Oldsmobile  Cutlass_Ciera Midsize      14.2  16.3      18.4       23
## 70 70    Oldsmobile     Silhouette     Van      19.5  19.5      19.5       18
## 71 71    Oldsmobile   Eighty-Eight   Large      19.5  20.7      21.9       19
## 72 72      Plymouth          Laser  Sporty      11.4  14.4      17.4       23
## 73 73       Pontiac         LeMans   Small       8.2   9.0       9.9       31
## 74 74       Pontiac        Sunbird Compact       9.4  11.1      12.8       23
## 75 75       Pontiac       Firebird  Sporty      14.0  17.7      21.4       19
## 76 76       Pontiac     Grand_Prix Midsize      15.4  18.5      21.6       19
## 77 77       Pontiac     Bonneville   Large      19.4  24.4      29.4       19
## 78 78          Saab            900 Compact      20.3  28.7      37.1       20
## 79 79        Saturn             SL   Small       9.2  11.1      12.9       28
## 80 80        Subaru          Justy   Small       7.3   8.4       9.5       33
## 81 81        Subaru         Loyale   Small      10.5  10.9      11.3       25
## 82 82        Subaru         Legacy Compact      16.3  19.5      22.7       23
## 83 83        Suzuki          Swift   Small       7.3   8.6      10.0       39
## 84 84        Toyota         Tercel   Small       7.8   9.8      11.8       32
## 85 85        Toyota         Celica  Sporty      14.2  18.4      22.6       25
## 86 86        Toyota          Camry Midsize      15.2  18.2      21.2       22
## 87 87        Toyota         Previa     Van      18.9  22.7      26.6       18
## 88 88    Volkswagen            Fox   Small       8.7   9.1       9.5       25
## 89 89    Volkswagen        Eurovan     Van      16.6  19.7      22.7       17
## 90 90    Volkswagen         Passat Compact      17.6  20.0      22.4       21
## 91 91    Volkswagen        Corrado  Sporty      22.9  23.3      23.7       18
## 92 92         Volvo            240 Compact      21.8  22.7      23.5       21
## 93 93         Volvo            850 Midsize      24.8  26.7      28.5       20
##    MPG.highway            AirBags DriveTrain Cylinders EngineSize Horsepower
## 1           31               None      Front         4        1.8        140
## 2           25 Driver & Passenger      Front         6        3.2        200
## 3           26        Driver only      Front         6        2.8        172
## 4           26 Driver & Passenger      Front         6        2.8        172
## 5           30        Driver only       Rear         4        3.5        208
## 6           31        Driver only      Front         4        2.2        110
## 7           28        Driver only      Front         6        3.8        170
## 8           25        Driver only       Rear         6        5.7        180
## 9           27        Driver only      Front         6        3.8        170
## 10          25        Driver only      Front         8        4.9        200
## 11          25 Driver & Passenger      Front         8        4.6        295
## 12          36               None      Front         4        2.2        110
## 13          34        Driver only      Front         4        2.2        110
## 14          28 Driver & Passenger       Rear         6        3.4        160
## 15          29               None      Front         4        2.2        110
## 16          23               None      Front         6        3.8        170
## 17          20               None        4WD         6        4.3        165
## 18          26        Driver only       Rear         8        5.0        170
## 19          25        Driver only       Rear         8        5.7        300
## 20          28 Driver & Passenger      Front         6        3.3        153
## 21          28 Driver & Passenger      Front         4        3.0        141
## 22          26        Driver only      Front         6        3.3        147
## 23          33               None      Front         4        1.5         92
## 24          29        Driver only      Front         4        2.2         93
## 25          27        Driver only      Front         4        2.5        100
## 26          21        Driver only        4WD         6        3.0        142
## 27          27        Driver only      Front         4        2.5        100
## 28          24        Driver only        4WD         6        3.0        300
## 29          33               None      Front         4        1.5         92
## 30          28 Driver & Passenger      Front         6        3.5        214
## 31          33               None      Front         4        1.3         63
## 32          30               None      Front         4        1.8        127
## 33          27               None      Front         4        2.3         96
## 34          29        Driver only       Rear         4        2.3        105
## 35          30        Driver only      Front         4        2.0        115
## 36          20        Driver only        4WD         6        3.0        145
## 37          30        Driver only      Front         6        3.0        140
## 38          26        Driver only       Rear         8        4.6        190
## 39          50               None      Front         3        1.0         55
## 40          36        Driver only      Front         4        1.6         90
## 41          31 Driver & Passenger      Front         4        2.3        160
## 42          46        Driver only      Front         4        1.5        102
## 43          31 Driver & Passenger      Front         4        2.2        140
## 44          33               None      Front         4        1.5         81
## 45          29               None      Front         4        1.8        124
## 46          34               None      Front         4        1.5         92
## 47          27               None      Front         4        2.0        128
## 48          22        Driver only       Rear         8        4.5        278
## 49          24        Driver only      Front         6        3.0        185
## 50          23 Driver & Passenger       Rear         6        3.0        225
## 51          26 Driver & Passenger      Front         6        3.8        160
## 52          26 Driver & Passenger       Rear         8        4.6        210
## 53          37               None      Front         4        1.6         82
## 54          36               None      Front         4        1.8        103
## 55          34        Driver only      Front         4        2.5        164
## 56          24               None        4WD         6        3.0        155
## 57          25        Driver only       Rear    rotary        1.3        255
## 58          29        Driver only       Rear         4        2.3        130
## 59          25 Driver & Passenger       Rear         6        3.2        217
## 60          26        Driver only      Front         4        1.6        100
## 61          26               None       Rear         6        3.8        140
## 62          33               None      Front         4        1.5         92
## 63          24        Driver only      Front         6        3.0        202
## 64          33        Driver only      Front         4        1.6        110
## 65          30        Driver only      Front         4        2.4        150
## 66          23               None      Front         6        3.0        151
## 67          26        Driver only      Front         6        3.0        160
## 68          31               None      Front         4        2.3        155
## 69          31        Driver only      Front         4        2.2        110
## 70          23               None      Front         6        3.8        170
## 71          28        Driver only      Front         6        3.8        170
## 72          30               None        4WD         4        1.8         92
## 73          41               None      Front         4        1.6         74
## 74          31               None      Front         4        2.0        110
## 75          28 Driver & Passenger       Rear         6        3.4        160
## 76          27               None      Front         6        3.4        200
## 77          28 Driver & Passenger      Front         6        3.8        170
## 78          26        Driver only      Front         4        2.1        140
## 79          38        Driver only      Front         4        1.9         85
## 80          37               None        4WD         3        1.2         73
## 81          30               None        4WD         4        1.8         90
## 82          30        Driver only        4WD         4        2.2        130
## 83          43               None      Front         3        1.3         70
## 84          37        Driver only      Front         4        1.5         82
## 85          32        Driver only      Front         4        2.2        135
## 86          29        Driver only      Front         4        2.2        130
## 87          22        Driver only        4WD         4        2.4        138
## 88          33               None      Front         4        1.8         81
## 89          21               None      Front         5        2.5        109
## 90          30               None      Front         4        2.0        134
## 91          25               None      Front         6        2.8        178
## 92          28        Driver only       Rear         4        2.3        114
## 93          28 Driver & Passenger      Front         5        2.4        168
##     RPM Rev.per.mile Man.trans.avail Fuel.tank.capacity Passengers Length
## 1  6300         2890             Yes               13.2          5    177
## 2  5500         2335             Yes               18.0          5    195
## 3  5500         2280             Yes               16.9          5    180
## 4  5500         2535             Yes               21.1          6    193
## 5  5700         2545             Yes               21.1          4    186
## 6  5200         2565              No               16.4          6    189
## 7  4800         1570              No               18.0          6    200
## 8  4000         1320              No               23.0          6    216
## 9  4800         1690              No               18.8          5    198
## 10 4100         1510              No               18.0          6    206
## 11 6000         1985              No               20.0          5    204
## 12 5200         2380             Yes               15.2          5    182
## 13 5200         2665             Yes               15.6          5    184
## 14 4600         1805             Yes               15.5          4    193
## 15 5200         2595              No               16.5          6    198
## 16 4800         1690              No               20.0          7    178
## 17 4000         1790              No               27.0          8    194
## 18 4200         1350              No               23.0          6    214
## 19 5000         1450             Yes               20.0          2    179
## 20 5300         1990              No               18.0          6    203
## 21 5000         2090              No               16.0          6    183
## 22 4800         1785              No               16.0          6    203
## 23 6000         3285             Yes               13.2          5    174
## 24 4800         2595             Yes               14.0          5    172
## 25 4800         2535             Yes               16.0          6    181
## 26 5000         1970              No               20.0          7    175
## 27 4800         2465              No               16.0          6    192
## 28 6000         2120             Yes               19.8          4    180
## 29 6000         2505             Yes               13.2          5    174
## 30 5800         1980              No               18.0          6    202
## 31 5000         3150             Yes               10.0          4    141
## 32 6500         2410             Yes               13.2          5    171
## 33 4200         2805             Yes               15.9          5    177
## 34 4600         2285             Yes               15.4          4    180
## 35 5500         2340             Yes               15.5          4    179
## 36 4800         2080             Yes               21.0          7    176
## 37 4800         1885              No               16.0          5    192
## 38 4200         1415              No               20.0          6    212
## 39 5700         3755             Yes               10.6          4    151
## 40 5400         3250             Yes               12.4          4    164
## 41 5800         2855             Yes               15.9          4    175
## 42 5900         2650             Yes               11.9          4    173
## 43 5600         2610             Yes               17.0          4    185
## 44 5500         2710             Yes               11.9          5    168
## 45 6000         2745             Yes               13.7          5    172
## 46 5550         2540             Yes               11.9          4    166
## 47 6000         2335             Yes               17.2          5    184
## 48 6000         1955              No               22.5          5    200
## 49 5200         2325             Yes               18.5          5    188
## 50 6000         2510             Yes               20.6          4    191
## 51 4400         1835              No               18.4          6    205
## 52 4600         1840              No               20.0          6    219
## 53 5000         2370             Yes               13.2          4    164
## 54 5500         2220             Yes               14.5          5    172
## 55 5600         2505             Yes               15.5          5    184
## 56 5000         2240              No               19.6          7    190
## 57 6500         2325             Yes               20.0          2    169
## 58 5100         2425             Yes               14.5          5    175
## 59 5500         2220              No               18.5          5    187
## 60 5750         2475             Yes               11.1          4    166
## 61 3800         1730              No               18.0          5    199
## 62 6000         2505             Yes               13.2          5    172
## 63 6000         2210              No               19.0          5    190
## 64 6000         2435             Yes               13.2          5    170
## 65 5600         2130             Yes               15.9          5    181
## 66 4800         2065              No               20.0          7    190
## 67 5200         2045              No               18.5          5    188
## 68 6000         2380              No               15.2          5    188
## 69 5200         2565              No               16.5          5    190
## 70 4800         1690              No               20.0          7    194
## 71 4800         1570              No               18.0          6    201
## 72 5000         2360             Yes               15.9          4    173
## 73 5600         3130             Yes               13.2          4    177
## 74 5200         2665             Yes               15.2          5    181
## 75 4600         1805             Yes               15.5          4    196
## 76 5000         1890             Yes               16.5          5    195
## 77 4800         1565              No               18.0          6    177
## 78 6000         2910             Yes               18.0          5    184
## 79 5000         2145             Yes               12.8          5    176
## 80 5600         2875             Yes                9.2          4    146
## 81 5200         3375             Yes               15.9          5    175
## 82 5600         2330             Yes               15.9          5    179
## 83 6000         3360             Yes               10.6          4    161
## 84 5200         3505             Yes               11.9          5    162
## 85 5400         2405             Yes               15.9          4    174
## 86 5400         2340             Yes               18.5          5    188
## 87 5000         2515             Yes               19.8          7    187
## 88 5500         2550             Yes               12.4          4    163
## 89 4500         2915             Yes               21.1          7    187
## 90 5800         2685             Yes               18.5          5    180
## 91 5800         2385             Yes               18.5          4    159
## 92 5400         2215             Yes               15.8          5    190
## 93 6200         2310             Yes               19.3          5    184
##    Wheelbase Width Turn.circle Rear.seat.room Luggage.room Weight  Origin
## 1        102    68          37           26.5           11   2705 non-USA
## 2        115    71          38           30.0           15   3560 non-USA
## 3        102    67          37           28.0           14   3375 non-USA
## 4        106    70          37           31.0           17   3405 non-USA
## 5        109    69          39           27.0           13   3640 non-USA
## 6        105    69          41           28.0           16   2880     USA
## 7        111    74          42           30.5           17   3470     USA
## 8        116    78          45           30.5           21   4105     USA
## 9        108    73          41           26.5           14   3495     USA
## 10       114    73          43           35.0           18   3620     USA
## 11       111    74          44           31.0           14   3935     USA
## 12       101    66          38           25.0           13   2490     USA
## 13       103    68          39           26.0           14   2785     USA
## 14       101    74          43           25.0           13   3240     USA
## 15       108    71          40           28.5           16   3195     USA
## 16       110    74          44           30.5           NA   3715     USA
## 17       111    78          42           33.5           NA   4025     USA
## 18       116    77          42           29.5           20   3910     USA
## 19        96    74          43             NA           NA   3380     USA
## 20       113    74          40           31.0           15   3515     USA
## 21       104    68          41           30.5           14   3085     USA
## 22       110    69          44           36.0           17   3570     USA
## 23        98    66          32           26.5           11   2270     USA
## 24        97    67          38           26.5           13   2670     USA
## 25       104    68          39           30.5           14   2970     USA
## 26       112    72          42           26.5           NA   3705     USA
## 27       105    69          42           30.5           16   3080     USA
## 28        97    72          40           20.0           11   3805     USA
## 29        98    66          36           26.5           11   2295     USA
## 30       113    74          40           30.0           15   3490     USA
## 31        90    63          33           26.0           12   1845     USA
## 32        98    67          36           28.0           12   2530     USA
## 33       100    68          39           27.5           13   2690     USA
## 34       101    68          40           24.0           12   2850     USA
## 35       103    70          38           23.0           18   2710     USA
## 36       119    72          45           30.0           NA   3735     USA
## 37       106    71          40           27.5           18   3325     USA
## 38       114    78          43           30.0           21   3950     USA
## 39        93    63          34           27.5           10   1695 non-USA
## 40        97    67          37           24.5           11   2475 non-USA
## 41       100    70          39           23.5            8   2865 non-USA
## 42       103    67          36           28.0           12   2350 non-USA
## 43       107    67          41           28.0           14   3040 non-USA
## 44        94    63          35           26.0           11   2345 non-USA
## 45        98    66          36           28.0           12   2620 non-USA
## 46        94    64          34           23.5            9   2285 non-USA
## 47       104    69          41           31.0           14   2885 non-USA
## 48       113    72          42           29.0           15   4000 non-USA
## 49       103    70          40           27.5           14   3510 non-USA
## 50       106    71          39           25.0            9   3515 non-USA
## 51       109    73          42           30.0           19   3695     USA
## 52       117    77          45           31.5           22   4055     USA
## 53        97    66          34           27.0           16   2325 non-USA
## 54        98    66          36           26.5           13   2440 non-USA
## 55       103    69          40           29.5           14   2970 non-USA
## 56       110    72          39           27.5           NA   3735 non-USA
## 57        96    69          37             NA           NA   2895 non-USA
## 58       105    67          34           26.0           12   2920 non-USA
## 59       110    69          37           27.0           15   3525 non-USA
## 60        95    65          36           19.0            6   2450     USA
## 61       113    73          38           28.0           15   3610     USA
## 62        98    67          36           26.0           11   2295 non-USA
## 63       107    70          43           27.5           14   3730 non-USA
## 64        96    66          33           26.0           12   2545 non-USA
## 65       103    67          40           28.5           14   3050 non-USA
## 66       112    74          41           27.0           NA   4100 non-USA
## 67       104    69          41           28.5           14   3200 non-USA
## 68       103    67          39           28.0           14   2910     USA
## 69       105    70          42           28.0           16   2890     USA
## 70       110    74          44           30.5           NA   3715     USA
## 71       111    74          42           31.5           17   3470     USA
## 72        97    67          39           24.5            8   2640     USA
## 73        99    66          35           25.5           17   2350     USA
## 74       101    66          39           25.0           13   2575     USA
## 75       101    75          43           25.0           13   3240     USA
## 76       108    72          41           28.5           16   3450     USA
## 77       111    74          43           30.5           18   3495     USA
## 78        99    67          37           26.5           14   2775 non-USA
## 79       102    68          40           26.5           12   2495     USA
## 80        90    60          32           23.5           10   2045 non-USA
## 81        97    65          35           27.5           15   2490 non-USA
## 82       102    67          37           27.0           14   3085 non-USA
## 83        93    63          34           27.5           10   1965 non-USA
## 84        94    65          36           24.0           11   2055 non-USA
## 85        99    69          39           23.0           13   2950 non-USA
## 86       103    70          38           28.5           15   3030 non-USA
## 87       113    71          41           35.0           NA   3785 non-USA
## 88        93    63          34           26.0           10   2240 non-USA
## 89       115    72          38           34.0           NA   3960 non-USA
## 90       103    67          35           31.5           14   2985 non-USA
## 91        97    66          36           26.0           15   2810 non-USA
## 92       104    67          37           29.5           14   2985 non-USA
## 93       105    69          38           30.0           15   3245 non-USA
##                        Make
## 1             Acura Integra
## 2              Acura Legend
## 3                   Audi 90
## 4                  Audi 100
## 5                  BMW 535i
## 6             Buick Century
## 7             Buick LeSabre
## 8          Buick Roadmaster
## 9             Buick Riviera
## 10         Cadillac DeVille
## 11         Cadillac Seville
## 12       Chevrolet Cavalier
## 13        Chevrolet Corsica
## 14         Chevrolet Camaro
## 15         Chevrolet Lumina
## 16     Chevrolet Lumina_APV
## 17          Chevrolet Astro
## 18        Chevrolet Caprice
## 19       Chevrolet Corvette
## 20        Chrylser Concorde
## 21         Chrysler LeBaron
## 22        Chrysler Imperial
## 23               Dodge Colt
## 24             Dodge Shadow
## 25             Dodge Spirit
## 26            Dodge Caravan
## 27            Dodge Dynasty
## 28            Dodge Stealth
## 29             Eagle Summit
## 30             Eagle Vision
## 31             Ford Festiva
## 32              Ford Escort
## 33               Ford Tempo
## 34             Ford Mustang
## 35               Ford Probe
## 36            Ford Aerostar
## 37              Ford Taurus
## 38      Ford Crown_Victoria
## 39                Geo Metro
## 40                Geo Storm
## 41            Honda Prelude
## 42              Honda Civic
## 43             Honda Accord
## 44            Hyundai Excel
## 45          Hyundai Elantra
## 46           Hyundai Scoupe
## 47           Hyundai Sonata
## 48             Infiniti Q45
## 49              Lexus ES300
## 50              Lexus SC300
## 51      Lincoln Continental
## 52         Lincoln Town_Car
## 53                Mazda 323
## 54            Mazda Protege
## 55                Mazda 626
## 56                Mazda MPV
## 57               Mazda RX-7
## 58       Mercedes-Benz 190E
## 59       Mercedes-Benz 300E
## 60            Mercury Capri
## 61           Mercury Cougar
## 62        Mitsubishi Mirage
## 63      Mitsubishi Diamante
## 64            Nissan Sentra
## 65            Nissan Altima
## 66             Nissan Quest
## 67            Nissan Maxima
## 68       Oldsmobile Achieva
## 69 Oldsmobile Cutlass_Ciera
## 70    Oldsmobile Silhouette
## 71  Oldsmobile Eighty-Eight
## 72           Plymouth Laser
## 73           Pontiac LeMans
## 74          Pontiac Sunbird
## 75         Pontiac Firebird
## 76       Pontiac Grand_Prix
## 77       Pontiac Bonneville
## 78                 Saab 900
## 79                Saturn SL
## 80             Subaru Justy
## 81            Subaru Loyale
## 82            Subaru Legacy
## 83             Suzuki Swift
## 84            Toyota Tercel
## 85            Toyota Celica
## 86             Toyota Camry
## 87            Toyota Previa
## 88           Volkswagen Fox
## 89       Volkswagen Eurovan
## 90        Volkswagen Passat
## 91       Volkswagen Corrado
## 92                Volvo 240
## 93                Volvo 850

Pre-processing data

y <- data_psd$Price
x1 <- data_psd$MPG.city
x2 <- data_psd$MPG.highway
x3 <- data_psd$EngineSize
x4 <- data_psd$Horsepower
x5 <- data_psd$RPM
x6 <- data_psd$Rev.per.mile
x7 <- data_psd$Fuel.tank.capacity
x8 <- data_psd$Passengers
x9 <- data_psd$Length
x10 <- data_psd$Wheelbase
x11 <- data_psd$Width
x12 <- data_psd$Turn.circle
x13 <- data_psd$Rear.seat.room
x14 <- data_psd$Luggage.room
x15 <- data_psd$Weight
data <- cbind(y,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15)
data <- as.data.frame(data)
data
##       y x1 x2  x3  x4   x5   x6   x7 x8  x9 x10 x11 x12  x13 x14  x15
## 1  15.9 25 31 1.8 140 6300 2890 13.2  5 177 102  68  37 26.5  11 2705
## 2  33.9 18 25 3.2 200 5500 2335 18.0  5 195 115  71  38 30.0  15 3560
## 3  29.1 20 26 2.8 172 5500 2280 16.9  5 180 102  67  37 28.0  14 3375
## 4  37.7 19 26 2.8 172 5500 2535 21.1  6 193 106  70  37 31.0  17 3405
## 5  30.0 22 30 3.5 208 5700 2545 21.1  4 186 109  69  39 27.0  13 3640
## 6  15.7 22 31 2.2 110 5200 2565 16.4  6 189 105  69  41 28.0  16 2880
## 7  20.8 19 28 3.8 170 4800 1570 18.0  6 200 111  74  42 30.5  17 3470
## 8  23.7 16 25 5.7 180 4000 1320 23.0  6 216 116  78  45 30.5  21 4105
## 9  26.3 19 27 3.8 170 4800 1690 18.8  5 198 108  73  41 26.5  14 3495
## 10 34.7 16 25 4.9 200 4100 1510 18.0  6 206 114  73  43 35.0  18 3620
## 11 40.1 16 25 4.6 295 6000 1985 20.0  5 204 111  74  44 31.0  14 3935
## 12 13.4 25 36 2.2 110 5200 2380 15.2  5 182 101  66  38 25.0  13 2490
## 13 11.4 25 34 2.2 110 5200 2665 15.6  5 184 103  68  39 26.0  14 2785
## 14 15.1 19 28 3.4 160 4600 1805 15.5  4 193 101  74  43 25.0  13 3240
## 15 15.9 21 29 2.2 110 5200 2595 16.5  6 198 108  71  40 28.5  16 3195
## 16 16.3 18 23 3.8 170 4800 1690 20.0  7 178 110  74  44 30.5  NA 3715
## 17 16.6 15 20 4.3 165 4000 1790 27.0  8 194 111  78  42 33.5  NA 4025
## 18 18.8 17 26 5.0 170 4200 1350 23.0  6 214 116  77  42 29.5  20 3910
## 19 38.0 17 25 5.7 300 5000 1450 20.0  2 179  96  74  43   NA  NA 3380
## 20 18.4 20 28 3.3 153 5300 1990 18.0  6 203 113  74  40 31.0  15 3515
## 21 15.8 23 28 3.0 141 5000 2090 16.0  6 183 104  68  41 30.5  14 3085
## 22 29.5 20 26 3.3 147 4800 1785 16.0  6 203 110  69  44 36.0  17 3570
## 23  9.2 29 33 1.5  92 6000 3285 13.2  5 174  98  66  32 26.5  11 2270
## 24 11.3 23 29 2.2  93 4800 2595 14.0  5 172  97  67  38 26.5  13 2670
## 25 13.3 22 27 2.5 100 4800 2535 16.0  6 181 104  68  39 30.5  14 2970
## 26 19.0 17 21 3.0 142 5000 1970 20.0  7 175 112  72  42 26.5  NA 3705
## 27 15.6 21 27 2.5 100 4800 2465 16.0  6 192 105  69  42 30.5  16 3080
## 28 25.8 18 24 3.0 300 6000 2120 19.8  4 180  97  72  40 20.0  11 3805
## 29 12.2 29 33 1.5  92 6000 2505 13.2  5 174  98  66  36 26.5  11 2295
## 30 19.3 20 28 3.5 214 5800 1980 18.0  6 202 113  74  40 30.0  15 3490
## 31  7.4 31 33 1.3  63 5000 3150 10.0  4 141  90  63  33 26.0  12 1845
## 32 10.1 23 30 1.8 127 6500 2410 13.2  5 171  98  67  36 28.0  12 2530
## 33 11.3 22 27 2.3  96 4200 2805 15.9  5 177 100  68  39 27.5  13 2690
## 34 15.9 22 29 2.3 105 4600 2285 15.4  4 180 101  68  40 24.0  12 2850
## 35 14.0 24 30 2.0 115 5500 2340 15.5  4 179 103  70  38 23.0  18 2710
## 36 19.9 15 20 3.0 145 4800 2080 21.0  7 176 119  72  45 30.0  NA 3735
## 37 20.2 21 30 3.0 140 4800 1885 16.0  5 192 106  71  40 27.5  18 3325
## 38 20.9 18 26 4.6 190 4200 1415 20.0  6 212 114  78  43 30.0  21 3950
## 39  8.4 46 50 1.0  55 5700 3755 10.6  4 151  93  63  34 27.5  10 1695
## 40 12.5 30 36 1.6  90 5400 3250 12.4  4 164  97  67  37 24.5  11 2475
## 41 19.8 24 31 2.3 160 5800 2855 15.9  4 175 100  70  39 23.5   8 2865
## 42 12.1 42 46 1.5 102 5900 2650 11.9  4 173 103  67  36 28.0  12 2350
## 43 17.5 24 31 2.2 140 5600 2610 17.0  4 185 107  67  41 28.0  14 3040
## 44  8.0 29 33 1.5  81 5500 2710 11.9  5 168  94  63  35 26.0  11 2345
## 45 10.0 22 29 1.8 124 6000 2745 13.7  5 172  98  66  36 28.0  12 2620
## 46 10.0 26 34 1.5  92 5550 2540 11.9  4 166  94  64  34 23.5   9 2285
## 47 13.9 20 27 2.0 128 6000 2335 17.2  5 184 104  69  41 31.0  14 2885
## 48 47.9 17 22 4.5 278 6000 1955 22.5  5 200 113  72  42 29.0  15 4000
## 49 28.0 18 24 3.0 185 5200 2325 18.5  5 188 103  70  40 27.5  14 3510
## 50 35.2 18 23 3.0 225 6000 2510 20.6  4 191 106  71  39 25.0   9 3515
## 51 34.3 17 26 3.8 160 4400 1835 18.4  6 205 109  73  42 30.0  19 3695
## 52 36.1 18 26 4.6 210 4600 1840 20.0  6 219 117  77  45 31.5  22 4055
## 53  8.3 29 37 1.6  82 5000 2370 13.2  4 164  97  66  34 27.0  16 2325
## 54 11.6 28 36 1.8 103 5500 2220 14.5  5 172  98  66  36 26.5  13 2440
## 55 16.5 26 34 2.5 164 5600 2505 15.5  5 184 103  69  40 29.5  14 2970
## 56 19.1 18 24 3.0 155 5000 2240 19.6  7 190 110  72  39 27.5  NA 3735
## 57 32.5 17 25 1.3 255 6500 2325 20.0  2 169  96  69  37   NA  NA 2895
## 58 31.9 20 29 2.3 130 5100 2425 14.5  5 175 105  67  34 26.0  12 2920
## 59 61.9 19 25 3.2 217 5500 2220 18.5  5 187 110  69  37 27.0  15 3525
## 60 14.1 23 26 1.6 100 5750 2475 11.1  4 166  95  65  36 19.0   6 2450
## 61 14.9 19 26 3.8 140 3800 1730 18.0  5 199 113  73  38 28.0  15 3610
## 62 10.3 29 33 1.5  92 6000 2505 13.2  5 172  98  67  36 26.0  11 2295
## 63 26.1 18 24 3.0 202 6000 2210 19.0  5 190 107  70  43 27.5  14 3730
## 64 11.8 29 33 1.6 110 6000 2435 13.2  5 170  96  66  33 26.0  12 2545
## 65 15.7 24 30 2.4 150 5600 2130 15.9  5 181 103  67  40 28.5  14 3050
## 66 19.1 17 23 3.0 151 4800 2065 20.0  7 190 112  74  41 27.0  NA 4100
## 67 21.5 21 26 3.0 160 5200 2045 18.5  5 188 104  69  41 28.5  14 3200
## 68 13.5 24 31 2.3 155 6000 2380 15.2  5 188 103  67  39 28.0  14 2910
## 69 16.3 23 31 2.2 110 5200 2565 16.5  5 190 105  70  42 28.0  16 2890
## 70 19.5 18 23 3.8 170 4800 1690 20.0  7 194 110  74  44 30.5  NA 3715
## 71 20.7 19 28 3.8 170 4800 1570 18.0  6 201 111  74  42 31.5  17 3470
## 72 14.4 23 30 1.8  92 5000 2360 15.9  4 173  97  67  39 24.5   8 2640
## 73  9.0 31 41 1.6  74 5600 3130 13.2  4 177  99  66  35 25.5  17 2350
## 74 11.1 23 31 2.0 110 5200 2665 15.2  5 181 101  66  39 25.0  13 2575
## 75 17.7 19 28 3.4 160 4600 1805 15.5  4 196 101  75  43 25.0  13 3240
## 76 18.5 19 27 3.4 200 5000 1890 16.5  5 195 108  72  41 28.5  16 3450
## 77 24.4 19 28 3.8 170 4800 1565 18.0  6 177 111  74  43 30.5  18 3495
## 78 28.7 20 26 2.1 140 6000 2910 18.0  5 184  99  67  37 26.5  14 2775
## 79 11.1 28 38 1.9  85 5000 2145 12.8  5 176 102  68  40 26.5  12 2495
## 80  8.4 33 37 1.2  73 5600 2875  9.2  4 146  90  60  32 23.5  10 2045
## 81 10.9 25 30 1.8  90 5200 3375 15.9  5 175  97  65  35 27.5  15 2490
## 82 19.5 23 30 2.2 130 5600 2330 15.9  5 179 102  67  37 27.0  14 3085
## 83  8.6 39 43 1.3  70 6000 3360 10.6  4 161  93  63  34 27.5  10 1965
## 84  9.8 32 37 1.5  82 5200 3505 11.9  5 162  94  65  36 24.0  11 2055
## 85 18.4 25 32 2.2 135 5400 2405 15.9  4 174  99  69  39 23.0  13 2950
## 86 18.2 22 29 2.2 130 5400 2340 18.5  5 188 103  70  38 28.5  15 3030
## 87 22.7 18 22 2.4 138 5000 2515 19.8  7 187 113  71  41 35.0  NA 3785
## 88  9.1 25 33 1.8  81 5500 2550 12.4  4 163  93  63  34 26.0  10 2240
## 89 19.7 17 21 2.5 109 4500 2915 21.1  7 187 115  72  38 34.0  NA 3960
## 90 20.0 21 30 2.0 134 5800 2685 18.5  5 180 103  67  35 31.5  14 2985
## 91 23.3 18 25 2.8 178 5800 2385 18.5  4 159  97  66  36 26.0  15 2810
## 92 22.7 21 28 2.3 114 5400 2215 15.8  5 190 104  67  37 29.5  14 2985
## 93 26.7 20 28 2.4 168 6200 2310 19.3  5 184 105  69  38 30.0  15 3245
# Cek apakah ada missing value:
data[which(is.na(data$x14)),]
##       y x1 x2  x3  x4   x5   x6   x7 x8  x9 x10 x11 x12  x13 x14  x15
## 16 16.3 18 23 3.8 170 4800 1690 20.0  7 178 110  74  44 30.5  NA 3715
## 17 16.6 15 20 4.3 165 4000 1790 27.0  8 194 111  78  42 33.5  NA 4025
## 19 38.0 17 25 5.7 300 5000 1450 20.0  2 179  96  74  43   NA  NA 3380
## 26 19.0 17 21 3.0 142 5000 1970 20.0  7 175 112  72  42 26.5  NA 3705
## 36 19.9 15 20 3.0 145 4800 2080 21.0  7 176 119  72  45 30.0  NA 3735
## 56 19.1 18 24 3.0 155 5000 2240 19.6  7 190 110  72  39 27.5  NA 3735
## 57 32.5 17 25 1.3 255 6500 2325 20.0  2 169  96  69  37   NA  NA 2895
## 66 19.1 17 23 3.0 151 4800 2065 20.0  7 190 112  74  41 27.0  NA 4100
## 70 19.5 18 23 3.8 170 4800 1690 20.0  7 194 110  74  44 30.5  NA 3715
## 87 22.7 18 22 2.4 138 5000 2515 19.8  7 187 113  71  41 35.0  NA 3785
## 89 19.7 17 21 2.5 109 4500 2915 21.1  7 187 115  72  38 34.0  NA 3960

CLEANING DATA

# Menghapus baris dengan nilai NA
data <- na.omit(data)

Melihat data 6 teratas

head(data)
##      y x1 x2  x3  x4   x5   x6   x7 x8  x9 x10 x11 x12  x13 x14  x15
## 1 15.9 25 31 1.8 140 6300 2890 13.2  5 177 102  68  37 26.5  11 2705
## 2 33.9 18 25 3.2 200 5500 2335 18.0  5 195 115  71  38 30.0  15 3560
## 3 29.1 20 26 2.8 172 5500 2280 16.9  5 180 102  67  37 28.0  14 3375
## 4 37.7 19 26 2.8 172 5500 2535 21.1  6 193 106  70  37 31.0  17 3405
## 5 30.0 22 30 3.5 208 5700 2545 21.1  4 186 109  69  39 27.0  13 3640
## 6 15.7 22 31 2.2 110 5200 2565 16.4  6 189 105  69  41 28.0  16 2880

Eksplorasi data

# Sebaran peubah Y (Indeks Alibaca)
hist(data$y, col = "blue")

REGRESI LINIER

reglin <- lm(y ~ ., data = data)
coefficients(reglin)
##  (Intercept)           x1           x2           x3           x4           x5 
## 37.828539238  0.070542200 -0.310033849  0.170016187  0.134009410 -0.002409839 
##           x6           x7           x8           x9          x10          x11 
##  0.003238040  0.142415262 -0.774612972 -0.001480220  0.718253745 -1.342349962 
##          x12          x13          x14          x15 
## -0.501002215  0.018016142  0.118545861  0.004134950

Pada metode regresi linier berganda model yang didapatkan yaitu \[y=37.828539238 + .070542200x1-0.310033849x2+0.170016187x3+0.134009410x4-0.002409839x5+0.003238040x6+0.142415262x7-0.774612972x8-0.001480220x9+0.718253745x10-1.342349962x11-0.501002215x12+0.018016142x13+0.118545861x14+0.004134950x15\] # Multikolinieritas

car::vif(reglin)
##        x1        x2        x3        x4        x5        x6        x7        x8 
## 16.609347 13.392348 18.266085 14.974580  5.118684  4.348188  7.086879  3.258554 
##        x9       x10       x11       x12       x13       x14       x15 
## 10.833645 10.382059  8.900447  3.856814  3.449777  3.486519 30.232872

Dapat dilihat beberapa peubah memiliki nilai VIF > 10 yaitu peubah x1,x2,x3,x4,x15 sehingga terdapat multikolinieritas.

Pengujian Asumsi

Uji Asumsi Normalitas

##Kolmogorov-Smirnov Test
ks.test(reglin$residuals, "pnorm", mean=mean(reglin$residuals), sd=sd(reglin$residuals))
## 
##  Exact one-sample Kolmogorov-Smirnov test
## 
## data:  reglin$residuals
## D = 0.087173, p-value = 0.5327
## alternative hypothesis: two-sided

Berdasarkan Kolmogorov-Smirnov test, residual data menyebar normal dengan p-value > 5%. ## Uji Asumsi Homoskedastisitas (Gauss Markov)

lmtest::bptest(reglin)
## 
##  studentized Breusch-Pagan test
## 
## data:  reglin
## BP = 23.494, df = 15, p-value = 0.0742

Karena p-value > 0.05 maka ragam sisaan homogen atau tidak terdapat masalah heteroskedastisitas

Uji Kebebasan Sisaan (Gauss Markov)

library(randtests)
runs.test(reglin$residuals)
## 
##  Runs Test
## 
## data:  reglin$residuals
## statistic = -0.44448, runs = 40, n1 = 41, n2 = 41, n = 82, p-value =
## 0.6567
## alternative hypothesis: nonrandomness

Karena p-value > 0.05 maka sisaan saling bebas. ## Nilai harapan sisaan sama dengan nol (Gauss Markov)

t.test(reglin$residuals,
       mu = 0,
       conf.level = 0.95)
## 
##  One Sample t-test
## 
## data:  reglin$residuals
## t = -1.6908e-16, df = 81, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -1.115204  1.115204
## sample estimates:
##     mean of x 
## -9.476985e-17

Karena p-value > 0.05 maka nilai harapan sisaan sama dengan nol

Pemilihan Peubah Penjelas/ Variable Selection

Metode Backward

bmodelselect <- step(reglin, direction="backward", scope=formula(lm(y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15, data)), trace=1)
## Start:  AIC=297.4
## y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + 
##     x12 + x13 + x14 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x9    1     0.004 2086.6 295.40
## - x13   1     0.062 2086.7 295.40
## - x3    1     0.129 2086.7 295.40
## - x1    1     0.759 2087.3 295.43
## - x7    1     2.101 2088.7 295.48
## - x14   1     2.934 2089.5 295.51
## - x8    1     7.494 2094.1 295.69
## - x2    1    14.598 2101.2 295.97
## - x15   1    14.672 2101.3 295.97
## - x5    1    31.314 2117.9 296.62
## - x6    1    48.300 2134.9 297.27
## <none>              2086.6 297.40
## - x12   1    52.799 2139.4 297.45
## - x10   1   168.325 2254.9 301.76
## - x11   1   223.753 2310.3 303.75
## - x4    1   253.208 2339.8 304.79
## 
## Step:  AIC=295.4
## y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + 
##     x13 + x14 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x13   1     0.062 2086.7 293.40
## - x3    1     0.127 2086.7 293.40
## - x1    1     0.807 2087.4 293.43
## - x7    1     2.099 2088.7 293.48
## - x14   1     2.946 2089.6 293.51
## - x8    1     7.793 2094.4 293.70
## - x2    1    15.043 2101.6 293.99
## - x15   1    15.636 2102.2 294.01
## - x5    1    32.373 2119.0 294.66
## - x6    1    48.648 2135.2 295.29
## <none>              2086.6 295.40
## - x12   1    55.945 2142.5 295.57
## - x10   1   185.176 2271.8 300.37
## - x11   1   245.642 2332.2 302.52
## - x4    1   271.702 2358.3 303.44
## 
## Step:  AIC=293.4
## y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + 
##     x14 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x3    1     0.173 2086.8 291.41
## - x1    1     0.853 2087.5 291.44
## - x7    1     2.093 2088.8 291.48
## - x14   1     3.384 2090.0 291.53
## - x8    1     9.082 2095.7 291.76
## - x2    1    15.076 2101.7 291.99
## - x15   1    15.605 2102.3 292.01
## - x5    1    32.838 2119.5 292.68
## - x6    1    48.713 2135.4 293.29
## <none>              2086.7 293.40
## - x12   1    57.152 2143.8 293.62
## - x10   1   205.775 2292.4 299.11
## - x4    1   272.641 2359.3 301.47
## - x11   1   289.439 2376.1 302.05
## 
## Step:  AIC=291.41
## y ~ x1 + x2 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + x14 + 
##     x15
## 
##        Df Sum of Sq    RSS    AIC
## - x1    1      1.00 2087.8 289.45
## - x7    1      2.44 2089.3 289.50
## - x14   1      3.52 2090.3 289.55
## - x8    1      8.91 2095.7 289.76
## - x2    1     15.37 2102.2 290.01
## - x15   1     15.45 2102.3 290.01
## <none>              2086.8 291.41
## - x6    1     52.43 2139.3 291.44
## - x12   1     57.20 2144.0 291.63
## - x5    1     63.05 2149.9 291.85
## - x10   1    218.67 2305.5 297.58
## - x11   1    294.32 2381.2 300.23
## - x4    1    434.73 2521.6 304.93
## 
## Step:  AIC=289.45
## y ~ x2 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + x14 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x7    1      1.94 2089.8 287.52
## - x14   1      3.14 2091.0 287.57
## - x8    1      8.49 2096.3 287.78
## - x15   1     15.89 2103.7 288.07
## - x2    1     33.39 2121.2 288.75
## <none>              2087.8 289.45
## - x12   1     59.03 2146.9 289.73
## - x6    1     60.87 2148.7 289.80
## - x5    1     62.85 2150.7 289.88
## - x10   1    217.82 2305.7 295.58
## - x11   1    296.55 2384.4 298.34
## - x4    1    437.06 2524.9 303.03
## 
## Step:  AIC=287.52
## y ~ x2 + x4 + x5 + x6 + x8 + x10 + x11 + x12 + x14 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x14   1      5.03 2094.8 285.72
## - x8    1      9.72 2099.5 285.90
## - x15   1     22.26 2112.0 286.39
## - x2    1     40.43 2130.2 287.10
## <none>              2089.8 287.52
## - x12   1     60.09 2149.9 287.85
## - x5    1     61.11 2150.9 287.89
## - x6    1     71.79 2161.6 288.29
## - x10   1    222.05 2311.8 293.80
## - x11   1    294.68 2384.4 296.34
## - x4    1    439.02 2528.8 301.16
## 
## Step:  AIC=285.72
## y ~ x2 + x4 + x5 + x6 + x8 + x10 + x11 + x12 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x8    1      6.42 2101.2 283.97
## - x15   1     27.38 2122.2 284.79
## - x2    1     36.33 2131.1 285.13
## <none>              2094.8 285.72
## - x12   1     63.07 2157.9 286.15
## - x5    1     69.18 2164.0 286.38
## - x6    1     71.70 2166.5 286.48
## - x10   1    235.41 2330.2 292.45
## - x11   1    290.48 2385.3 294.37
## - x4    1    434.04 2528.8 299.16
## 
## Step:  AIC=283.97
## y ~ x2 + x4 + x5 + x6 + x10 + x11 + x12 + x15
## 
##        Df Sum of Sq    RSS    AIC
## - x15   1     27.59 2128.8 283.04
## - x2    1     31.07 2132.3 283.18
## <none>              2101.2 283.97
## - x12   1     66.02 2167.2 284.51
## - x5    1     72.81 2174.0 284.76
## - x6    1     73.15 2174.4 284.78
## - x10   1    248.75 2350.0 291.15
## - x11   1    289.74 2391.0 292.56
## - x4    1    501.26 2602.5 299.51
## 
## Step:  AIC=283.04
## y ~ x2 + x4 + x5 + x6 + x10 + x11 + x12
## 
##        Df Sum of Sq    RSS    AIC
## <none>              2128.8 283.04
## - x12   1     54.57 2183.4 283.12
## - x6    1     64.46 2193.3 283.49
## - x2    1     94.82 2223.6 284.61
## - x5    1    111.73 2240.5 285.24
## - x11   1    271.26 2400.1 290.88
## - x10   1    602.00 2730.8 301.46
## - x4    1   1323.14 3451.9 320.68
summary(bmodelselect)
## 
## Call:
## lm(formula = y ~ x2 + x4 + x5 + x6 + x10 + x11 + x12, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.527  -3.270  -0.156   2.567  23.319 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 34.775472  28.530918   1.219  0.22676    
## x2          -0.323784   0.178341  -1.816  0.07349 .  
## x4           0.162091   0.023901   6.782 2.50e-09 ***
## x5          -0.003113   0.001580  -1.971  0.05250 .  
## x6           0.003247   0.002169   1.497  0.13867    
## x10          0.835708   0.182688   4.575 1.88e-05 ***
## x11         -1.270318   0.413689  -3.071  0.00299 ** 
## x12         -0.476633   0.346073  -1.377  0.17258    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.364 on 74 degrees of freedom
## Multiple R-squared:  0.735,  Adjusted R-squared:   0.71 
## F-statistic: 29.33 on 7 and 74 DF,  p-value: < 2.2e-16

Berdasarkan metode backward, model terbaik adalah model dengan peubah x2,x4,x10,x11,x5,x12,x9 dengan R−squared:0.735

Metode Forward

fmodelselect <- step(lm(y ~ 1, data), direction="forward", scope=formula(reglin), trace=1)
## Start:  AIC=377.95
## y ~ 1
## 
##        Df Sum of Sq    RSS    AIC
## + x4    1    4979.3 3054.9 300.66
## + x15   1    4369.7 3664.5 315.58
## + x7    1    4019.1 4015.1 323.07
## + x3    1    3309.4 4724.8 336.42
## + x10   1    3172.3 4862.0 338.76
## + x2    1    3147.7 4886.6 339.18
## + x1    1    3104.0 4930.2 339.91
## + x9    1    2448.8 5585.4 350.14
## + x11   1    1969.2 6065.0 356.89
## + x6    1    1534.4 6499.8 362.57
## + x12   1    1450.2 6584.0 363.63
## + x14   1    1079.6 6954.7 368.12
## + x13   1     940.1 7094.1 369.75
## + x8    1     601.5 7432.7 373.57
## <none>              8034.2 377.95
## + x5    1       9.8 8024.4 379.85
## 
## Step:  AIC=300.66
## y ~ x4
## 
##        Df Sum of Sq    RSS    AIC
## + x10   1   162.358 2892.5 298.18
## + x7    1   143.457 2911.4 298.71
## + x13   1   129.978 2924.9 299.09
## + x15   1   113.716 2941.2 299.55
## + x2    1   109.520 2945.4 299.66
## <none>              3054.9 300.66
## + x1    1    71.764 2983.1 300.71
## + x14   1    64.739 2990.2 300.90
## + x8    1    59.904 2995.0 301.03
## + x11   1    33.758 3021.1 301.75
## + x9    1    28.638 3026.3 301.89
## + x12   1    26.582 3028.3 301.94
## + x5    1    23.582 3031.3 302.02
## + x3    1    22.983 3031.9 302.04
## + x6    1    10.369 3044.5 302.38
## 
## Step:  AIC=298.18
## y ~ x4 + x10
## 
##        Df Sum of Sq    RSS    AIC
## + x11   1    476.86 2415.7 285.41
## + x12   1    239.12 2653.4 293.11
## + x6    1    156.72 2735.8 295.61
## + x9    1    103.05 2789.5 297.20
## <none>              2892.5 298.18
## + x2    1     63.39 2829.2 298.36
## + x3    1     43.49 2849.1 298.94
## + x7    1     30.94 2861.6 299.30
## + x13   1     15.79 2876.8 299.73
## + x1    1     15.00 2877.5 299.75
## + x5    1      7.79 2884.8 299.96
## + x14   1      2.01 2890.5 300.12
## + x8    1      1.30 2891.2 300.14
## + x15   1      0.41 2892.1 300.17
## 
## Step:  AIC=285.41
## y ~ x4 + x10 + x11
## 
##        Df Sum of Sq    RSS    AIC
## + x15   1   104.686 2311.0 283.77
## + x2    1   102.143 2313.5 283.87
## + x5    1    93.859 2321.8 284.16
## + x7    1    80.679 2335.0 284.62
## + x1    1    71.573 2344.1 284.94
## <none>              2415.7 285.41
## + x3    1    33.363 2382.3 286.27
## + x12   1    27.074 2388.6 286.48
## + x14   1    15.010 2400.7 286.90
## + x6    1    11.813 2403.9 287.01
## + x13   1     3.979 2411.7 287.27
## + x9    1     0.621 2415.1 287.39
## + x8    1     0.525 2415.2 287.39
## 
## Step:  AIC=283.77
## y ~ x4 + x10 + x11 + x15
## 
##        Df Sum of Sq    RSS    AIC
## + x12   1    66.609 2244.4 283.38
## <none>              2311.0 283.77
## + x6    1    50.939 2260.1 283.95
## + x5    1    33.304 2277.7 284.58
## + x2    1    25.663 2285.3 284.86
## + x7    1    23.781 2287.2 284.93
## + x1    1     9.979 2301.0 285.42
## + x9    1     9.570 2301.4 285.43
## + x3    1     6.266 2304.7 285.55
## + x13   1     5.778 2305.2 285.57
## + x8    1     5.647 2305.3 285.57
## + x14   1     3.271 2307.7 285.66
## 
## Step:  AIC=283.38
## y ~ x4 + x10 + x11 + x15 + x12
## 
##        Df Sum of Sq    RSS    AIC
## <none>              2244.4 283.38
## + x5    1    47.463 2196.9 283.62
## + x6    1    39.642 2204.8 283.92
## + x2    1    23.808 2220.6 284.50
## + x7    1    16.458 2227.9 284.77
## + x1    1    11.395 2233.0 284.96
## + x3    1    10.288 2234.1 285.00
## + x8    1     3.817 2240.6 285.24
## + x14   1     2.516 2241.9 285.28
## + x9    1     1.793 2242.6 285.31
## + x13   1     1.348 2243.0 285.33
summary(fmodelselect)
## 
## Call:
## lm(formula = y ~ x4 + x10 + x11 + x15 + x12, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.2912  -2.9626  -0.4857   2.5035  25.0623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.21903   20.13032   1.601 0.113632    
## x4           0.10837    0.02551   4.248 6.04e-05 ***
## x10          0.56663    0.22235   2.548 0.012839 *  
## x11         -1.34628    0.39044  -3.448 0.000924 ***
## x15          0.00884    0.00400   2.210 0.030123 *  
## x12         -0.52682    0.35079  -1.502 0.137281    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.434 on 76 degrees of freedom
## Multiple R-squared:  0.7206, Adjusted R-squared:  0.7023 
## F-statistic: 39.21 on 5 and 76 DF,  p-value: < 2.2e-16

Berdasarkan metode forward, model terbaik adalah model dengan peubah x4,x10,x11,x15,x12 dengan R−squared:0.7206.

Metode Stepwise

smodelselect <- step(lm(y ~ 1, data), direction="both", scope=formula(reglin), trace=1)
## Start:  AIC=377.95
## y ~ 1
## 
##        Df Sum of Sq    RSS    AIC
## + x4    1    4979.3 3054.9 300.66
## + x15   1    4369.7 3664.5 315.58
## + x7    1    4019.1 4015.1 323.07
## + x3    1    3309.4 4724.8 336.42
## + x10   1    3172.3 4862.0 338.76
## + x2    1    3147.7 4886.6 339.18
## + x1    1    3104.0 4930.2 339.91
## + x9    1    2448.8 5585.4 350.14
## + x11   1    1969.2 6065.0 356.89
## + x6    1    1534.4 6499.8 362.57
## + x12   1    1450.2 6584.0 363.63
## + x14   1    1079.6 6954.7 368.12
## + x13   1     940.1 7094.1 369.75
## + x8    1     601.5 7432.7 373.57
## <none>              8034.2 377.95
## + x5    1       9.8 8024.4 379.85
## 
## Step:  AIC=300.66
## y ~ x4
## 
##        Df Sum of Sq    RSS    AIC
## + x10   1     162.4 2892.5 298.18
## + x7    1     143.5 2911.4 298.71
## + x13   1     130.0 2924.9 299.09
## + x15   1     113.7 2941.2 299.55
## + x2    1     109.5 2945.4 299.66
## <none>              3054.9 300.66
## + x1    1      71.8 2983.1 300.71
## + x14   1      64.7 2990.2 300.90
## + x8    1      59.9 2995.0 301.03
## + x11   1      33.8 3021.1 301.75
## + x9    1      28.6 3026.3 301.89
## + x12   1      26.6 3028.3 301.94
## + x5    1      23.6 3031.3 302.02
## + x3    1      23.0 3031.9 302.04
## + x6    1      10.4 3044.5 302.38
## - x4    1    4979.3 8034.2 377.95
## 
## Step:  AIC=298.18
## y ~ x4 + x10
## 
##        Df Sum of Sq    RSS    AIC
## + x11   1    476.86 2415.7 285.41
## + x12   1    239.12 2653.4 293.10
## + x6    1    156.72 2735.8 295.61
## + x9    1    103.05 2789.5 297.21
## <none>              2892.5 298.18
## + x2    1     63.39 2829.2 298.36
## + x3    1     43.49 2849.1 298.94
## + x7    1     30.94 2861.6 299.30
## + x13   1     15.79 2876.7 299.73
## + x1    1     15.00 2877.5 299.75
## + x5    1      7.79 2884.7 299.96
## + x14   1      2.01 2890.5 300.12
## + x8    1      1.30 2891.2 300.14
## + x15   1      0.41 2892.1 300.17
## - x10   1    162.36 3054.9 300.66
## - x4    1   1969.44 4862.0 338.76
## 
## Step:  AIC=285.41
## y ~ x4 + x10 + x11
## 
##        Df Sum of Sq    RSS    AIC
## + x15   1    104.69 2311.0 283.77
## + x2    1    102.14 2313.5 283.86
## + x5    1     93.86 2321.8 284.16
## + x7    1     80.68 2335.0 284.62
## + x1    1     71.57 2344.1 284.94
## <none>              2415.7 285.41
## + x3    1     33.36 2382.3 286.27
## + x12   1     27.07 2388.6 286.48
## + x14   1     15.01 2400.7 286.90
## + x6    1     11.81 2403.9 287.01
## + x13   1      3.98 2411.7 287.27
## + x9    1      0.62 2415.1 287.39
## + x8    1      0.53 2415.2 287.39
## - x11   1    476.86 2892.5 298.18
## - x10   1    605.46 3021.1 301.75
## - x4    1   2402.21 4817.9 340.02
## 
## Step:  AIC=283.77
## y ~ x4 + x10 + x11 + x15
## 
##        Df Sum of Sq    RSS    AIC
## + x12   1     66.61 2244.4 283.38
## <none>              2311.0 283.77
## + x6    1     50.94 2260.1 283.95
## + x5    1     33.30 2277.7 284.58
## + x2    1     25.66 2285.3 284.86
## + x7    1     23.78 2287.2 284.93
## - x15   1    104.69 2415.7 285.41
## + x1    1      9.98 2301.0 285.42
## + x9    1      9.57 2301.4 285.43
## + x3    1      6.27 2304.7 285.55
## + x13   1      5.78 2305.2 285.57
## + x8    1      5.65 2305.3 285.57
## + x14   1      3.27 2307.7 285.66
## - x10   1    199.01 2510.0 288.55
## - x11   1    581.14 2892.1 300.17
## - x4    1    614.83 2925.8 301.12
## 
## Step:  AIC=283.38
## y ~ x4 + x10 + x11 + x15 + x12
## 
##        Df Sum of Sq    RSS    AIC
## <none>              2244.4 283.38
## + x5    1     47.46 2196.9 283.62
## - x12   1     66.61 2311.0 283.77
## + x6    1     39.64 2204.8 283.92
## + x2    1     23.81 2220.6 284.50
## + x7    1     16.46 2227.9 284.77
## + x1    1     11.39 2233.0 284.96
## + x3    1     10.29 2234.1 285.00
## + x8    1      3.82 2240.6 285.24
## + x14   1      2.52 2241.9 285.28
## + x9    1      1.79 2242.6 285.31
## + x13   1      1.35 2243.0 285.33
## - x15   1    144.22 2388.6 286.48
## - x10   1    191.79 2436.2 288.10
## - x11   1    351.11 2595.5 293.30
## - x4    1    533.03 2777.4 298.85
summary(smodelselect)
## 
## Call:
## lm(formula = y ~ x4 + x10 + x11 + x15 + x12, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.2912  -2.9626  -0.4857   2.5035  25.0623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.21903   20.13032   1.601 0.113632    
## x4           0.10837    0.02551   4.248 6.04e-05 ***
## x10          0.56663    0.22235   2.548 0.012839 *  
## x11         -1.34628    0.39044  -3.448 0.000924 ***
## x15          0.00884    0.00400   2.210 0.030123 *  
## x12         -0.52682    0.35079  -1.502 0.137281    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.434 on 76 degrees of freedom
## Multiple R-squared:  0.7206, Adjusted R-squared:  0.7023 
## F-statistic: 39.21 on 5 and 76 DF,  p-value: < 2.2e-16

Berdasarkan metode stepwise, model terbaik adalah model dengan peubah x4,x10,x11,x15,x12 dengan R−squared : 0.7206. Hal ini sama dengan metode forward

Dari ketiga metode yang digunakan, metode backward menghasilkan nilai R-Square yang paling tinggi yaitu 0.735 dan nilai AIC paling kecil yaitu 238.04. Peubah signifikannya x2,x4,x10,x11,x5,x12,x9.

REGRESI RIDGE(glmnet)

Regresi Ridge adalah metode yang dapat digunakan untuk mencocokkan modelregresi ketika data mengandung multikolinieritas. Regresi Ridge meminimumkan Jumlah Kuadrat Residual (JKR) prediktor dalam model. Regresi Ridge cenderung menyusutkan estimasi koefisien menuju nol.

Modelling

Pada regresi kali ini peubah y yang digunakan adalah Price, sedangkan peubah yang lain sebagai peubah x

matrix_X <- data.matrix(data[, -1])
matrix_Y <- matrix(data$y)  # Assuming 'y' is a single-column vector
alpha_ridge = 0
model_Ridge <- glmnet::cv.glmnet(matrix_X,matrix_Y,alpha=alpha_ridge)
summary(model_Ridge)
##            Length Class  Mode     
## lambda     100    -none- numeric  
## cvm        100    -none- numeric  
## cvsd       100    -none- numeric  
## cvup       100    -none- numeric  
## cvlo       100    -none- numeric  
## nzero      100    -none- numeric  
## call         4    -none- call     
## name         1    -none- character
## glmnet.fit  12    elnet  list     
## lambda.min   1    -none- numeric  
## lambda.1se   1    -none- numeric  
## index        2    -none- numeric
# Hasil Regresi Ridge
print(model_Ridge)
## 
## Call:  glmnet::cv.glmnet(x = matrix_X, y = matrix_Y, alpha = alpha_ridge) 
## 
## Measure: Mean-Squared Error 
## 
##     Lambda Index Measure    SE Nonzero
## min   1.03    97   35.84 12.53      15
## 1se  22.19    64   47.83 17.02      15
# Memilih nilai lambda terbaik
best_lambda <- model_Ridge$lambda.min
cat("Lambda terbaik:", best_lambda, "\n")
## Lambda terbaik: 1.030127

Model regresi Ridge menggunakan nilai alpha sebesar 0 dan nilai lambda sebesar 0,779253.

# Melakukan prediksi dengan model Ridge terbaik
predictions <- predict(model_Ridge, s = best_lambda, newx = matrix_X)

# koefisien Ridge
coefficients(model_Ridge, s = best_lambda)
## 16 x 1 sparse Matrix of class "dgCMatrix"
##                        s1
## (Intercept)  9.6786999537
## x1          -0.0630535243
## x2          -0.2444103804
## x3           1.2931682127
## x4           0.0803119908
## x5           0.0002368801
## x6           0.0025017714
## x7           0.3432842985
## x8          -0.9018156668
## x9          -0.0108635483
## x10          0.3846892783
## x11         -0.6332718739
## x12         -0.4284063520
## x13          0.1944085285
## x14          0.0272863452
## x15          0.0040684886

Output di atas merupakan nilai koefisien dari setiap peubah bebas terhadap peubah respons (Price). Dapat terlihat bahwa Peubah x3 merupakan peubah dengan koefisien positif tertinggi yang berpengaruh terhadap model. Sehingga dapat disimpulkan bahwa peubah ini merupakan peubah yang paling berpengaruh terhadap peubah respons jika dibandingkan peubah bebas lainnya.

Pada metode regresi Ridge mempertahankan semua peubah penjelas sehingga peubah regresinya yaitu \[y=13.7586907935-0.0503097182x1-0.2467790901x2+1.2786912068x3+0.0863003988x4-0.0000548118x5+0.0026887206x6+0.3173850188x7-0.8989151160x8-0.0119786744x9+0.4255961667x10-0.7322525890x11-0.4534611215x12+0.1773534382x13+0.0324167068x14+0.0042622860x15\]

# R-squared untuk model Ridge
r_squared_ridge <- 1 - sum((matrix_Y - predictions)^2) / sum((matrix_Y - mean(matrix_Y))^2)
r_squared_ridge
## [1] 0.7180968

Pada regresi Ridge, tidak terdapat peubah yang dihilangkan atau semua peubah dimasukkan dalam model. R-Square yang diperoleh dengan regresi ridge adalah R−squared : 0.7240635

REGRESI LASSO

alpha_Lasso = 1
model_Lasso <- glmnet::cv.glmnet(matrix_X,matrix_Y,alpha=alpha_Lasso)
model_Lasso
## 
## Call:  glmnet::cv.glmnet(x = matrix_X, y = matrix_Y, alpha = alpha_Lasso) 
## 
## Measure: Mean-Squared Error 
## 
##     Lambda Index Measure    SE Nonzero
## min 0.1079    47   37.61 10.38      11
## 1se 2.5517    13   46.78 15.27       3

Hasil regresi lasso

print(model_Lasso)
## 
## Call:  glmnet::cv.glmnet(x = matrix_X, y = matrix_Y, alpha = alpha_Lasso) 
## 
## Measure: Mean-Squared Error 
## 
##     Lambda Index Measure    SE Nonzero
## min 0.1079    47   37.61 10.38      11
## 1se 2.5517    13   46.78 15.27       3
# Memilih nilai lambda terbaik
best_lambda1 <- model_Lasso$lambda.min
cat("Lambda terbaik:", best_lambda1, "\n")
## Lambda terbaik: 0.1079177
# Melakukan prediksi dengan model Ridge terbaik
predictions_lasso <- predict(model_Lasso, s = best_lambda1, newx = matrix_X)

# Koefisien Ridge
coefficients(model_Lasso, s = best_lambda1)
## 16 x 1 sparse Matrix of class "dgCMatrix"
##                       s1
## (Intercept) 25.534175439
## x1           .          
## x2          -0.207182814
## x3           .          
## x4           0.127242013
## x5          -0.001565343
## x6           0.002288748
## x7           0.209215008
## x8          -0.126593161
## x9           .          
## x10          0.603912405
## x11         -1.082229618
## x12         -0.414800762
## x13          .          
## x14          0.014194373
## x15          0.003439394

Output di atas merupakan nilai koefisien dari setiap peubah bebas terhadap peubah respons (Price). Dapat terlihat bahwa Peubah x10 merupakan peubah dengan koefisien positif tertinggi yang berpengaruh terhadap model. Sehingga dapat disimpulkan bahwa peubah ini merupakan peubah yang paling berpengaruh terhadap peubah respons jika dibandingkan peubah bebas lainnya.

Pada metode regresi Lasso hanya membuang peubah penjelas x1,x3,x9, dan x13 sehingga peubah regresinya yaitu \[y=33.486554456-0.229854221x2+0.127242013x4-0.001565343x5+0.002288748x6+0.209215008x7-0.126593161x8+0.603912405x10-1.082229618x11-0.414800762x12+0.014194373x14+0.003439394x15\]

# Menghitung R-squared untuk model Lasso
r_squared_lasso <- 1 - sum((matrix_Y - predictions_lasso)^2) / sum((matrix_Y - mean(matrix_Y))^2)
r_squared_lasso
## [1] 0.7350772

Melalui regresi Lasso terlihat bahwa hanya peubah x1 saja yang dihapus. R-Square yang diperoleh dengan regresi lasso adalah R−squared:0.7350772

INTERPRETASI

Jika dibandingkan dari ketiga model, berdasarkan nilai R-Square, model terbaik adalah menggunakan regresi Lasso dengan R−squared: 0.7350772

Model regresi Lasso yang diperoleh adalah \[y=33.486554456-0.229854221x2+0.127242013x4-0.001565343x5+0.002288748x6+0.209215008x7-0.126593161x8+0.603912405x10-1.082229618x11-0.414800762x12+0.014194373x14+0.003439394x15\]

Model menjelaskan untuk setiap penambahan satu satuan x2,x4,x5,x6,x7,x8,x10,x11,x12,x14,x15 dengan peubah lain dianggap tetap akan meningkatkan peubah respon sebanyak koefisien dari masing-masing peubah.