Markdown Author: Jessie Bell, 2023
Libraries Used: dplyr
poolpee <- c(640, 1070, 780, 70, 160, 130, 60, 50, 2110, 70, 350, 30, 210, 90, 470, 580, 250, 310, 460, 430, 140, 1070, 130)
mean(poolpee) #ng/L
## [1] 420
poolpee_conversion <- poolpee/4000 # urine/L
print(poolpee_conversion)
## [1] 0.1600 0.2675 0.1950 0.0175 0.0400 0.0325 0.0150 0.0125 0.5275 0.0175
## [11] 0.0875 0.0075 0.0525 0.0225 0.1175 0.1450 0.0625 0.0775 0.1150 0.1075
## [21] 0.0350 0.2675 0.0325
mean(poolpee_conversion) # the value is much lower after converting
## [1] 0.105
sum(poolpee_conversion)/length(poolpee_conversion)
## [1] 0.105
mean(poolpee_conversion)
## [1] 0.105
# they are exactly the same!
# our dimensions for poolpee_conversion are in urine/L, so to determine how much urine is in 500,000 liter pool on average we can just multiply the mean by 500,000 liters to cancel out liters.
mean(poolpee_conversion)*500000 # Urine is our new unit
## [1] 52500
# metabolic costs for dives in ml of O2/kg
feedingDives <- c(71.0, 77.3, 82.6, 96.1, 106.6, 112.8, 121.2, 126.4, 127.5, 143.1)
nonfeedingDives <- c(42.2, 51.7, 59.8, 66.5, 81.9, 82.0, 81.3, 81.3, 96.0, 104.1)
length(feedingDives)
## [1] 10
length(nonfeedingDives)
## [1] 10
# both lists have 10 seals
# assuming the lists are organized:
MetabolismDifference <- feedingDives-nonfeedingDives
print(MetabolismDifference)
## [1] 28.8 25.6 22.8 29.6 24.7 30.8 39.9 45.1 31.5 39.0
avg_feeding <- mean(feedingDives)
avg_nonfeeding <- mean(nonfeedingDives)
avg_feeding - avg_nonfeeding
## [1] 31.78
oxygenconsumption_ratio <- feedingDives/nonfeedingDives
oxygenconsumption_ratio
## [1] 1.682464 1.495164 1.381271 1.445113 1.301587 1.375610 1.490775 1.554736
## [9] 1.328125 1.374640
logratio <- log(oxygenconsumption_ratio)
logratio
## [1] 0.5202597 0.4022362 0.3230040 0.3681874 0.2635845 0.3188971 0.3992961
## [8] 0.4413055 0.2837682 0.3181917
mean(logratio)
## [1] 0.363873
countriesData <- read.csv("countries.csv")
summary(countriesData)
## country total_population_in_thousands_2015
## Length:196 Min. : 1.6
## Class :character 1st Qu.: 1875.8
## Mode :character Median : 8069.6
## Mean : 37721.9
## 3rd Qu.: 26413.0
## Max. :1400000.0
## NA's :2
## gross_national_income_per_capita_2013 life_expectancy_at_birth_female
## Min. : 600 Min. :48.80
## 1st Qu.: 3070 1st Qu.:67.05
## Median : 9800 Median :75.90
## Mean : 14792 Mean :73.42
## 3rd Qu.: 20370 3rd Qu.:79.25
## Max. :123860 Max. :86.70
## NA's :27 NA's :13
## life_expectancy_at_birth_male life_expectancy_at_age_60_female
## Min. :47.40 Min. :12.70
## 1st Qu.:62.90 1st Qu.:18.00
## Median :69.80 Median :20.40
## Mean :68.53 Mean :20.81
## 3rd Qu.:73.95 3rd Qu.:23.40
## Max. :81.10 Max. :28.60
## NA's :13 NA's :13
## life_expectancy_at_age_60_male physicians_density_per_1000
## Min. :12.50 Min. :0.029
## 1st Qu.:15.80 1st Qu.:1.681
## Median :17.50 Median :2.765
## Mean :18.07 Mean :2.725
## 3rd Qu.:20.20 3rd Qu.:3.510
## Max. :23.90 Max. :7.519
## NA's :13 NA's :125
## number_neonatal_deaths_in_thousands_2014 measles_immunization_oneyearolds
## Min. : 0.00 Min. :22.00
## 1st Qu.: 0.00 1st Qu.:83.25
## Median : 1.00 Median :93.00
## Mean : 14.11 Mean :87.28
## 3rd Qu.: 9.50 3rd Qu.:97.00
## Max. :722.00 Max. :99.00
## NA's :2 NA's :2
## dpt2_vaccination_oneyearolds fines_for_tobacco_advertising_2014
## Min. :20.00 Length:196
## 1st Qu.:84.25 Class :character
## Median :94.00 Mode :character
## Mean :87.91
## 3rd Qu.:97.00
## Max. :99.00
## NA's :2
## mortality_rate_cancer_2012 cigarette_price_2014 continent
## Min. : 54.00 Min. : 0.360 Length:196
## 1st Qu.: 88.62 1st Qu.: 1.320 Class :character
## Median :108.00 Median : 2.620 Mode :character
## Mean :109.64 Mean : 3.798
## 3rd Qu.:124.53 3rd Qu.: 4.965
## Max. :223.00 Max. :16.140
## NA's :24 NA's :89
## ecological_footprint_2000 ecological_footprint_2012
## Min. : 0.600 Min. :0.700
## 1st Qu.: 1.097 1st Qu.:1.400
## Median : 2.140 Median :2.000
## Mean : 3.147 Mean :2.353
## 3rd Qu.: 4.872 3rd Qu.:3.000
## Max. :15.990 Max. :5.300
## NA's :58 NA's :147
## cell_phone_subscriptions_per_100_people_2012
## Min. : 5.47
## 1st Qu.: 69.83
## Median :103.25
## Mean : 99.90
## 3rd Qu.:126.10
## Max. :198.62
## NA's :10
# country
# total_population_in_thousands_2015
# gross_national_income_per_capita_2013
AfricanCountries <- subset(countriesData, continent == "Africa")
length(AfricanCountries)
## [1] 18
# there are 18 countries located in Africa
summary(countriesData)
## country total_population_in_thousands_2015
## Length:196 Min. : 1.6
## Class :character 1st Qu.: 1875.8
## Mode :character Median : 8069.6
## Mean : 37721.9
## 3rd Qu.: 26413.0
## Max. :1400000.0
## NA's :2
## gross_national_income_per_capita_2013 life_expectancy_at_birth_female
## Min. : 600 Min. :48.80
## 1st Qu.: 3070 1st Qu.:67.05
## Median : 9800 Median :75.90
## Mean : 14792 Mean :73.42
## 3rd Qu.: 20370 3rd Qu.:79.25
## Max. :123860 Max. :86.70
## NA's :27 NA's :13
## life_expectancy_at_birth_male life_expectancy_at_age_60_female
## Min. :47.40 Min. :12.70
## 1st Qu.:62.90 1st Qu.:18.00
## Median :69.80 Median :20.40
## Mean :68.53 Mean :20.81
## 3rd Qu.:73.95 3rd Qu.:23.40
## Max. :81.10 Max. :28.60
## NA's :13 NA's :13
## life_expectancy_at_age_60_male physicians_density_per_1000
## Min. :12.50 Min. :0.029
## 1st Qu.:15.80 1st Qu.:1.681
## Median :17.50 Median :2.765
## Mean :18.07 Mean :2.725
## 3rd Qu.:20.20 3rd Qu.:3.510
## Max. :23.90 Max. :7.519
## NA's :13 NA's :125
## number_neonatal_deaths_in_thousands_2014 measles_immunization_oneyearolds
## Min. : 0.00 Min. :22.00
## 1st Qu.: 0.00 1st Qu.:83.25
## Median : 1.00 Median :93.00
## Mean : 14.11 Mean :87.28
## 3rd Qu.: 9.50 3rd Qu.:97.00
## Max. :722.00 Max. :99.00
## NA's :2 NA's :2
## dpt2_vaccination_oneyearolds fines_for_tobacco_advertising_2014
## Min. :20.00 Length:196
## 1st Qu.:84.25 Class :character
## Median :94.00 Mode :character
## Mean :87.91
## 3rd Qu.:97.00
## Max. :99.00
## NA's :2
## mortality_rate_cancer_2012 cigarette_price_2014 continent
## Min. : 54.00 Min. : 0.360 Length:196
## 1st Qu.: 88.62 1st Qu.: 1.320 Class :character
## Median :108.00 Median : 2.620 Mode :character
## Mean :109.64 Mean : 3.798
## 3rd Qu.:124.53 3rd Qu.: 4.965
## Max. :223.00 Max. :16.140
## NA's :24 NA's :89
## ecological_footprint_2000 ecological_footprint_2012
## Min. : 0.600 Min. :0.700
## 1st Qu.: 1.097 1st Qu.:1.400
## Median : 2.140 Median :2.000
## Mean : 3.147 Mean :2.353
## 3rd Qu.: 4.872 3rd Qu.:3.000
## Max. :15.990 Max. :5.300
## NA's :58 NA's :147
## cell_phone_subscriptions_per_100_people_2012
## Min. : 5.47
## 1st Qu.: 69.83
## Median :103.25
## Mean : 99.90
## 3rd Qu.:126.10
## Max. :198.62
## NA's :10
#continents: categorical
#cell_phone_subscriptions_per_100_people_2012: numerical
#total_population_in_thousands_2015: numerical
#fines_for_tobacco_advertising_2014: categorical
# notice that some of the columns print right next to one another so it can be difficult to tell where one column ends and another begins.
countriesData$mean_difference = (countriesData$ecological_footprint_2012-countriesData$ecological_footprint_2000)
mean(countriesData$mean_difference)
## [1] NA
# I subset AfricanCountries already in problem 3 C.
sum(AfricanCountries$total_population_in_thousands_2015) #total population
## [1] 1184501
Add interactive tabs like the ones above to your markdown by adding {.tabset} to one of your headers like this three hashtag header:
Now all of your headings with four hashtags should be interactive. Learn more about how to do this here.
This lab was completed using the following textbook: The Analysis of Biological Data by Whitlock and Schluter