rm(list = ls())
if(!require("pacman")) install.packages("pacman")
## 要求されたパッケージ pacman をロード中です
pacman::p_load("tidyverse",
"skimr", # 記述統計のパッケージ
"gt") # 表(table)をデータフレームから作るパッケージ
# 表示を科学表示から変更
options(scipen = 999)
dat_temp <- read_csv("QFR2023TermPaper.csv")
## New names:
## Rows: 350 Columns: 5
## ── Column specification
## ────────────────────────────────────────────────────────
## Delimiter: "," chr (1): Fish_Market dbl (4): ...1, Year, Month, Total
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(dat_temp)
Data summary
| Name |
dat_temp |
| Number of rows |
350 |
| Number of columns |
5 |
| _______________________ |
|
| Column type frequency: |
|
| character |
1 |
| numeric |
4 |
| ________________________ |
|
| Group variables |
None |
Variable type: character
| Fish_Market |
0 |
1 |
8 |
8 |
0 |
2 |
0 |
Variable type: numeric
| …1 |
0 |
1 |
175.50 |
101.18 |
1 |
88.25 |
175.5 |
262.75 |
350 |
▇▇▇▇▇ |
| Year |
0 |
1 |
2005.13 |
6.92 |
1994 |
1999.00 |
2005.0 |
2011.00 |
2019 |
▇▇▇▆▃ |
| Month |
0 |
1 |
8.33 |
2.91 |
1 |
7.00 |
9.0 |
11.00 |
12 |
▂▁▅▆▇ |
| Total |
0 |
1 |
2317.37 |
3038.65 |
0 |
1.00 |
640.0 |
4176.50 |
13095 |
▇▂▂▁▁ |
summary_1 <- dat_temp |> group_by(Year, Month) |> summarize(total_landing = sum(Total))
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
fig_1 <- ggplot(summary_1, aes(x = Month, y = total_landing, fill = Year)) + geom_bar(stat = "identity", position = "dodge")
fig_1

summary_1 <- dat_temp |> group_by(Year, Month) |>
summarize(total_landing = sum(Total)) |>
mutate(Month = as.factor(Month), Year = as.factor(Year)) |> ungroup()
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
fig_2 <- ggplot(summary_1, aes(x = Month, y = total_landing, fill = Year)) +
geom_bar(stat = "identity", position = "dodge")
fig_2

table(dat_temp$Fish_Market)
##
## Market_A Market_B
## 183 167
dat_temp <- dat_temp|> filter(Fish_Market %in% c("Market_A"))
summary_1 <- dat_temp |> group_by(Year, Month) |>
summarize(total_landing = sum(Total)) |>
mutate(Month = as.factor(Month), Year = as.factor(Year)) |> ungroup()
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
fig_3 <- ggplot(summary_1, aes(x = Month, y = total_landing, fill = Year)) +
geom_bar(stat = "identity", position = "dodge")
fig_3

dat_temp2 <- read_csv("QFR2023TermPaper.csv")
## New names:
## Rows: 350 Columns: 5
## ── Column specification
## ────────────────────────────────────────────────────────
## Delimiter: "," chr (1): Fish_Market dbl (4): ...1, Year, Month, Total
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
dat_temp2 <- dat_temp2|> filter(Fish_Market %in% c("Market_B"))
summary_2 <- dat_temp2 |> group_by(Year, Month) |>
summarize(total_landing = sum(Total)) |>
mutate(Month = as.factor(Month), Year = as.factor(Year)) |> ungroup()
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
fig_4 <- ggplot(summary_2, aes(x = Month, y = total_landing, fill = Year)) +
geom_bar(stat = "identity", position = "dodge")
fig_4

dat_temp3 <- read_csv("kadai.csv")
## New names:
## Rows: 140 Columns: 6
## ── Column specification
## ────────────────────────────────────────────────────────
## Delimiter: "," chr (1): Date num (1): Landing_Amount lgl (4): ...3, ...4, ...5,
## ...6
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
skimr::skim(dat_temp3)
Data summary
| Name |
dat_temp3 |
| Number of rows |
140 |
| Number of columns |
6 |
| _______________________ |
|
| Column type frequency: |
|
| character |
1 |
| logical |
4 |
| numeric |
1 |
| ________________________ |
|
| Group variables |
None |
Variable type: character
Variable type: logical
| …3 |
140 |
0 |
NaN |
: |
| …4 |
140 |
0 |
NaN |
: |
| …5 |
140 |
0 |
NaN |
: |
| …6 |
140 |
0 |
NaN |
: |
Variable type: numeric
| Landing_Amount |
1 |
0.99 |
6772625 |
6693217 |
4094 |
862112.5 |
4643085 |
12171277 |
22943560 |
▇▂▂▂▁ |
dat_temp3 <- dat_temp3 |> mutate(Date = lubridate::ymd(Date))
dat_temp3 <- dat_temp3 |>
mutate(YEAR = lubridate::year(Date),
MONTH = lubridate::month(Date),
DAY = lubridate::day(Date))
skimr::skim(dat_temp3)
Data summary
| Name |
dat_temp3 |
| Number of rows |
140 |
| Number of columns |
9 |
| _______________________ |
|
| Column type frequency: |
|
| Date |
1 |
| logical |
4 |
| numeric |
4 |
| ________________________ |
|
| Group variables |
None |
Variable type: Date
| Date |
1 |
0.99 |
1994-09-01 |
2023-09-01 |
2009-11-01 |
139 |
Variable type: logical
| …3 |
140 |
0 |
NaN |
: |
| …4 |
140 |
0 |
NaN |
: |
| …5 |
140 |
0 |
NaN |
: |
| …6 |
140 |
0 |
NaN |
: |
Variable type: numeric
| Landing_Amount |
1 |
0.99 |
6772624.97 |
6693217.36 |
4094 |
862112.5 |
4643085 |
12171277 |
22943560 |
▇▂▂▂▁ |
| YEAR |
1 |
0.99 |
2008.81 |
8.42 |
1994 |
2001.5 |
2009 |
2016 |
2023 |
▇▇▇▇▇ |
| MONTH |
1 |
0.99 |
9.81 |
1.41 |
6 |
9.0 |
10 |
11 |
12 |
▁▅▅▅▇ |
| DAY |
1 |
0.99 |
1.00 |
0.00 |
1 |
1.0 |
1 |
1 |
1 |
▁▁▇▁▁ |
summary_3 <- dat_temp3 |> group_by(YEAR, MONTH) |> summarize(total_landing = sum(Landing_Amount))
## `summarise()` has grouped output by 'YEAR'. You can override using the
## `.groups` argument.
fig_5 <- ggplot(summary_3, aes(x = MONTH, y = total_landing, fill = YEAR)) + geom_bar(stat = "identity", position = "dodge")
fig_5
## Warning: Removed 1 rows containing missing values (`geom_bar()`).

summary_3 <- dat_temp3 |> group_by(YEAR, MONTH) |>
summarize(total_landing = sum(Landing_Amount)) |>
mutate(MONTH = as.factor(MONTH), YEAR = as.factor(YEAR)) |> ungroup()
## `summarise()` has grouped output by 'YEAR'. You can override using the
## `.groups` argument.
fig_6 <- ggplot(summary_3, aes(x = MONTH, y = total_landing, fill = YEAR)) +
geom_bar(stat = "identity", position = "dodge")
fig_6
## Warning: Removed 1 rows containing missing values (`geom_bar()`).
