score1 <-c(3,7,5,4,5,6,7,8,6,5)
score2 <-c(34, 54,17,26,34,25,14,24,25,23)
score3 <-c(154,167,132,145, 154, 145, 113, 156, 154,123)
summary(score1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.00 5.00 5.50 5.60 6.75 8.00
library(pastecs)
stat.desc(score1)
## nbr.val nbr.null nbr.na min max range
## 10.0000000 0.0000000 0.0000000 3.0000000 8.0000000 5.0000000
## sum median mean SE.mean CI.mean.0.95 var
## 56.0000000 5.5000000 5.6000000 0.4760952 1.0770022 2.2666667
## std.dev coef.var
## 1.5055453 0.2688474
library(psych)
describe(score1)
library(modeest)
## Registered S3 method overwritten by 'rmutil':
## method from
## plot.residuals psych
mode1 = mfv(score1)
print(mode1)
## [1] 5
In Summary, for Score 1, we have the mean = 5.6, median = 5.5, mode = 5, SD = 1.5055, and Var = 2.26
summary(score2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 14.00 23.25 25.00 27.60 32.00 54.00
library(pastecs)
stat.desc(score2)
## nbr.val nbr.null nbr.na min max range
## 10.0000000 0.0000000 0.0000000 14.0000000 54.0000000 40.0000000
## sum median mean SE.mean CI.mean.0.95 var
## 276.0000000 25.0000000 27.6000000 3.5377331 8.0029083 125.1555556
## std.dev coef.var
## 11.1872944 0.4053368
library(psych)
describe(score2)
library(modeest)
mode2 = mfv(score2)
print(mode2)
## [1] 25 34
In Summary, for Score 2, we have the mean = 27.6, median = 25, mode = 25,34, SD = 11.187, and Var = 125.156
summary(score3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 113.0 135.2 149.5 144.3 154.0 167.0
library(pastecs)
stat.desc(score3)
## nbr.val nbr.null nbr.na min max range
## 10.0000000 0.0000000 0.0000000 113.0000000 167.0000000 54.0000000
## sum median mean SE.mean CI.mean.0.95 var
## 1443.0000000 149.5000000 144.3000000 5.2916076 11.9704481 280.0111111
## std.dev coef.var
## 16.7335325 0.1159635
library(psych)
describe(score3)
library(modeest)
mode3 = mfv(score3)
print(mode3)
## [1] 154
In Summary, for Score 3, we have the mean = 144.3, median = 149.5, mode = 154, SD = 16.73, and Var = 280.01
testanxiety <-c(85,76,93,67,82,62,56,43,91,75,87)
summary(testanxiety)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 43.00 64.50 76.00 74.27 86.00 93.00
library(pastecs)
stat.desc(testanxiety)
## nbr.val nbr.null nbr.na min max range
## 11.0000000 0.0000000 0.0000000 43.0000000 93.0000000 50.0000000
## sum median mean SE.mean CI.mean.0.95 var
## 817.0000000 76.0000000 74.2727273 4.7541196 10.5928385 248.6181818
## std.dev coef.var
## 15.7676308 0.2122937
library(psych)
describe(testanxiety)
library(modeest)
mode4 = mfv(testanxiety)
print(mode4)
## [1] 43 56 62 67 75 76 82 85 87 91 93
In Summary, for Test Anxiety, we have the mean = 74.27, median = 76, mode = N/A, SD = 15.77, and Var = 248.62
CompScores<-c(12 ,15, 11, 16, 21, 25, 21, 8 , 6, 2, 22, 26, 27, 36, 34, 33, 38, 42, 44, 47, 54, 55, 51, 56, 53, 57, 49, 45, 45, 47, 43, 31, 12, 14, 15, 16, 22, 29, 29, 54, 56, 57, 59, 54, 56, 43, 44, 41, 42, 7)
print(CompScores)
## [1] 12 15 11 16 21 25 21 8 6 2 22 26 27 36 34 33 38 42 44 47 54 55 51 56 53
## [26] 57 49 45 45 47 43 31 12 14 15 16 22 29 29 54 56 57 59 54 56 43 44 41 42 7
library(pastecs)
stat.desc(CompScores)
## nbr.val nbr.null nbr.na min max range
## 50.0000000 0.0000000 0.0000000 2.0000000 59.0000000 57.0000000
## sum median mean SE.mean CI.mean.0.95 var
## 1722.0000000 37.0000000 34.4400000 2.4024070 4.8278175 288.5779592
## std.dev coef.var
## 16.9875825 0.4932515
library(psych)
describe(CompScores)
hist(CompScores, breaks=12, col="orange")
x <- CompScores
h<-hist(x, breaks=10, col="red", xlab="Comp Scores for Exams",
main="Histogram of Comp Scores with Curve")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)