# Load packages
library(tidyverse)
library(tidyquant)
# Choose stocks
symbols <- c("AAPL", "DIS", "GE", "NKE", "SBUX")
prices <- tq_get( x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 100 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AAPL 2012-03-30 0.377
## 2 AAPL 2012-06-29 -0.0263
## 3 AAPL 2012-09-28 0.137
## 4 AAPL 2012-12-31 -0.221
## 5 AAPL 2013-03-28 -0.178
## 6 AAPL 2013-06-28 -0.103
## 7 AAPL 2013-09-30 0.191
## 8 AAPL 2013-12-31 0.169
## 9 AAPL 2014-03-31 -0.0383
## 10 AAPL 2014-06-30 0.198
## # ℹ 90 more rows
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
facet_wrap(~asset, ncol = 1) +
# labelig
labs(title = "Distribution of Monthly Returns, 2012-2016",
y = "frequency",
x = "rate of returns",
capition = "")
All of the stocks that I had were pretty volatile and spaced out, they were not safe stocks.
Hide the code, messages, and warnings