Kuis PML Sesi UTS

Angga Fathan Rofiqy

26 September, 2023

0.0.1 Data input

data <- read.csv("Student_Performance.csv")
install_load('DT')
datatable(data, filter = 'top', 
          options = list(pageLength = 5))
y <- data$Performance.Index
n <- nrow(data)
#Matriks X
X <- cbind(X0 = rep(1, n),
           X1 = data$Hours.Studied,
           X2 = data$Previous.Scores,
           X3 = data$Sleep.Hours,
           X4 = data$Sample.Question.Papers.Practiced)

1 1. Matriks Penduga Beta

\[ \mathbf{\hat{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}*\mathbf{X}'\mathbf{y} \]

b <- solve(t(X) %*% X) %*% t(X) %*% y  #mencari matriks beta = (X'X)^-1*X'y
cat('Nilai dari Penduga Beta adalah : \n')
## Nilai dari Penduga Beta adalah :
b
##           [,1]
## X0 -33.7637261
## X1   2.8534292
## X2   1.0185835
## X3   0.4763330
## X4   0.1951983

Dari nilai parameter \(\hat{\beta}\) diatas, didapatkan model :\[\hat{Y_{i}}= -33.7637261 + 2.8534292X_{1}-1.0185835X_{2} + 0.4763330 X_{3} + 0.1951983 X_{4} ε_i\]

2 2. Selang kepercayaan bagi b0, b1, b2, b3, dan b4 dengan \(\alpha= 5\%\)

Formula Selang kepercayaan :

\[\mathbf{\beta_i} \pm t_{\left(n-p;\frac{\alpha}{2} \right)} s \sqrt{ (\mathbf{X}^t\mathbf{X})^-1}_{(i,i)} \]

2.1 Cari Bahan Formula

2.1.1 Simpangan Baku

\[ s = \sqrt{s^2} = \sqrt{\frac{(y-\mathbf{X}^t\mathbf{b})^t (y-\mathbf{X}^t\mathbf{b})}{n-p}} \]

#Ragam 
p <- nrow(b) #banyak beta pada model
s <- sqrt( (t(y-(X %*% b)) %*%( y-(X %*% b)) ) / (n-p) )
cat("Simpangan baku (s) :", s)
## Simpangan baku (s) : 2.060898

2.1.2 Matriks \((\mathbf{X}^t\mathbf{X})^-1\)

tX.X.inv <- solve(t(X) %*% X); tX.X.inv
##               X0            X1            X2            X3            X4
## X0  3.787989e-03 -7.518191e-05 -2.302961e-05 -2.251988e-04 -5.293624e-05
## X1 -7.518191e-05  1.492372e-05  2.793098e-08 -2.847483e-08 -2.366096e-07
## X2 -2.302961e-05  2.793098e-08  3.325813e-07 -2.016101e-08 -1.626058e-08
## X3 -2.251988e-04 -2.847483e-08 -2.016101e-08  3.477641e-05 -8.066048e-08
## X4 -5.293624e-05 -2.366096e-07 -1.626058e-08 -8.066048e-08  1.216887e-05

2.1.3 Nilai \(t_{\left(n-p;\frac{\alpha}{2} \right)}\)

Dengan \(\alpha = 5\%\), maka selang Kepercayaan \(95\%\).

alpha <- 5/100
t <- qt(1 - alpha/2, n-p)
cat('t :', t)
## t : 1.960201

2.2 Selang kepercayaan \(95\%\) bagi \(\beta\)

2.2.1 Selang kepercayaan \(95\%\) bagi \(\beta_0\)

cat(" Selang kepercayaan 95% bagi beta_0\n",
    "Batas Bawah :", b[1] - t *s *sqrt(tX.X.inv[1,1]), "\n",
    "Batas Atas  :", b[1] + t *s *sqrt(tX.X.inv[1,1])
    )
##  Selang kepercayaan 95% bagi beta_0
##  Batas Bawah : -34.01236 
##  Batas Atas  : -33.51509

Didapatkan hasil :

\[\mathbf{\beta_0} \pm t_{\left(n-p;\frac{\alpha}{2} \right)} s \sqrt{ (\mathbf{X}^t\mathbf{X})^-1}_{(0,0)} = [-34.01236 ; -33.51509] \]

2.2.2 Selang kepercayaan \(95\%\) bagi \(\beta_1\)

cat(" Selang kepercayaan 95% bagi beta_1\n",
    "Batas Bawah :", b[2] - t *s *sqrt(tX.X.inv[2,2]), "\n",
    "Batas Atas  :", b[2] + t *s *sqrt(tX.X.inv[2,2])
    )
##  Selang kepercayaan 95% bagi beta_1
##  Batas Bawah : 2.837823 
##  Batas Atas  : 2.869035

Didapatkan hasil :

\[\mathbf{\beta_1} \pm t_{\left(n-p;\frac{\alpha}{2} \right)} s \sqrt{ (\mathbf{X}^t\mathbf{X})^-1}_{(1,1)} = [2.837823 ; 2.869035] \]

2.2.3 Selang kepercayaan \(95\%\) bagi \(\beta_2\)

cat(" Selang kepercayaan 95% bagi beta_2\n",
    "Batas Bawah :", b[3] - t *s *sqrt(tX.X.inv[3,3]), "\n",
    "Batas Atas  :", b[3] + t *s *sqrt(tX.X.inv[3,3])
    )
##  Selang kepercayaan 95% bagi beta_2
##  Batas Bawah : 1.016254 
##  Batas Atas  : 1.020913

Didapatkan hasil :

\[\mathbf{\beta_2} \pm t_{\left(n-p;\frac{\alpha}{2} \right)} s \sqrt{ (\mathbf{X}^t\mathbf{X})^-1}_{(2,2)} = [1.016254 ; 1.020913] \]

2.2.4 Selang kepercayaan \(95\%\) bagi \(\beta_3\)

cat(" Selang kepercayaan 95% bagi beta_3\n",
    "Batas Bawah :", b[4] - t *s *sqrt(tX.X.inv[4,4]), "\n",
    "Batas Atas  :", b[4] + t *s *sqrt(tX.X.inv[4,4])
    )
##  Selang kepercayaan 95% bagi beta_3
##  Batas Bawah : 0.4525098 
##  Batas Atas  : 0.5001561

Didapatkan hasil :

\[\mathbf{\beta_3} \pm t_{\left(n-p;\frac{\alpha}{2} \right)} s \sqrt{ (\mathbf{X}^t\mathbf{X})^-1}_{(3,3)} = [0.4525098 ; 0.5001561] \]

2.2.5 Selang kepercayaan \(95\%\) bagi \(\beta_4\)

cat(" Selang kepercayaan 95% bagi beta_4\n",
    "Batas Bawah :", b[5] - t *s *sqrt(tX.X.inv[5,5]), "\n",
    "Batas Atas  :", b[5] + t *s *sqrt(tX.X.inv[5,5])
    )
##  Selang kepercayaan 95% bagi beta_4
##  Batas Bawah : 0.181106 
##  Batas Atas  : 0.2092906

Didapatkan hasil :

\[\mathbf{\beta_4} \pm t_{\left(n-p;\frac{\alpha}{2} \right)} s \sqrt{ (\mathbf{X}^t\mathbf{X})^-1}_{(4,4)} = [0.181106 ; 0.2092906] \]