library(plotrix)

# PUNTO 1, RESULTADO DE LAS SIGUIENTES INSTRUCCIONES:
# PUNTO 1A)
x = c(1,3,5,7,9)
x
## [1] 1 3 5 7 9
# PUNTO 1B)
y = c(2,4,6,7,11,12)
y
## [1]  2  4  6  7 11 12
# PUNTO 1C)
x+1
## [1]  2  4  6  8 10
# PUNTO 1D)
y*2
## [1]  4  8 12 14 22 24
# PUNTO 1E)
length(x)
## [1] 5
length(y)
## [1] 6
# PUNTO 1F)
x + y
## Warning in x + y: longer object length is not a multiple of shorter object
## length
## [1]  3  7 11 14 20 13
# PUNTO 1G)
sum(x>5)
## [1] 2
sum(x[x>5])
## [1] 16
# PUNTO 1H)
sum(x>5 | x< 3)
## [1] 3
# PUNTO 1I)
y[2]
## [1] 4
# PUNTO 1J)
y[-2]
## [1]  2  6  7 11 12
# PUNTO 1K)
y[x]
## [1]  2  6 11 NA NA
# PUNTO 1M)
y[y>=8]
## [1] 11 12
# PUNTO 2, MILLAS RECORRIDAS POR EL CARRO DEL CONDUCTOR EUROPEO CADA VEZ QUE LLENA EL TANQUE DE GASOLINA:
# PUNTO 2A) VARIABLE "MILLAS"
millas = c(65241,65665,65998,66014, 66547, 66857, 67025, 67447, 66958, 67002)
millas
##  [1] 65241 65665 65998 66014 66547 66857 67025 67447 66958 67002
# PUNTO 2B) VARIABLE "KMS" Y VALOR DE "MILLAS" 
kms = 1.609*(millas)
kms
##  [1] 104972.8 105655.0 106190.8 106216.5 107074.1 107572.9 107843.2 108522.2
##  [9] 107735.4 107806.2
# PUNTO 2C) FUNCION DIFF:
diff(millas)
## [1]  424  333   16  533  310  168  422 -489   44
diff(kms)
## [1]  682.216  535.797   25.744  857.597  498.790  270.312  678.998 -786.801
## [9]   70.796
# PUNTO 2D) FUNCIONES ADECUADAS QUE RESUMEN LOS DATOS:
mean (millas)
## [1] 66475.4
# PUNTO 3, CONTRATO DE PAGO MINIMO TELEFONICO:
telefono=c(47,32,40,36,31,49,30,49,35,48,32)
telefono
##  [1] 47 32 40 36 31 49 30 49 35 48 32
# PUNTO 3A) FACTURA MAS CARA DEL ULTIMO AÑO:
a2.5=sum(telefono)
a2.5
## [1] 429
# PUNTO 3B) PAGO PROMEDIO DE CADA MES:
b2.5=a2.5/12
b2.5
## [1] 35.75
# PUNTO 3C) CANTIDADES MINIMAS Y MAXIMAS PAGADAS:
range(telefono, na.rm=T)
## [1] 30 49
# PUNTO 3D) MES EN QUE SE REALIZO CADA PAGO:
d2.5=ts(telefono, frequency=12, start=c(2020,1), end=c(2020,12))
d2.5
##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 2020  47  32  40  36  31  49  30  49  35  48  32  47
# PUNTO 3E) MESES QUE PAGO MAS DE 40 EUROS:
e2.5=sum(telefono>40)
e2.5
## [1] 4
# PUNTO 3F) PORCENTAJE DEL GASTO TOTAL:
(sum(telefono>40)/length(telefono))*100
## [1] 36.36364
# PUNTO 4, CON LOS SIGUIENTES DATOS:
x=c(61, 88, 73, 49, 41, 72, 99, 07, 12, 13, 87, 91, 05, 17, 97)
x
##  [1] 61 88 73 49 41 72 99  7 12 13 87 91  5 17 97
# PUNTO 4A) DIAGRAMA PORCENTUAL:
pie(x, main = 'REPRESENTACION GRAFICA DE DATOS ALEATORIOS')

# PUNTO 4B) RESUMENES NUMERICOS:
summary(x)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    5.00   15.00   61.00   54.13   87.50   99.00
# PUNTO 4C) DIFERENCIA ENTRE SUMMARY (X) Y FIVENUM (X):
summary(x)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    5.00   15.00   61.00   54.13   87.50   99.00
fivenum(x)
## [1]  5.0 15.0 61.0 87.5 99.0
# PUNTO 5, 100 DATOS ALEATORIOS:
# PUNTO 5A) VALORES CON RNORM (100):
datos=rnorm(100)
datos
##   [1] -1.788267e+00 -1.440957e+00 -1.055295e+00 -1.243241e+00 -7.229097e-01
##   [6]  7.044180e-02 -9.518319e-01  2.363417e-01  1.849747e-01  1.890476e+00
##  [11] -5.252796e-01  5.361532e-01 -1.147435e+00  1.441789e-01 -4.807018e-01
##  [16] -1.417936e+00  7.827628e-01 -9.187232e-01 -3.141989e-02  3.912989e-01
##  [21] -1.019215e+00  1.581353e+00 -5.225821e-01  6.474442e-01 -1.286910e+00
##  [26] -1.038990e-01 -6.303228e-02  5.229182e-01  1.148266e+00 -1.445632e+00
##  [31]  1.653792e-01  9.748363e-01 -6.841252e-01 -1.355400e+00 -2.360963e-01
##  [36]  3.829308e-01  3.999699e-02  8.635039e-01 -7.545955e-01  8.360835e-01
##  [41]  3.245848e+00 -2.552946e+00 -1.437560e+00 -2.390200e+00  1.628244e-01
##  [46]  3.972152e-01  4.772153e-01  1.240476e-02  1.653099e-01  4.541218e-02
##  [51]  2.550990e+00  4.286915e-01 -7.317718e-02 -3.921163e-05 -2.283504e-01
##  [56]  1.344200e+00 -1.258649e+00  9.821894e-01  1.089515e+00  1.918868e+00
##  [61] -5.866294e-02 -4.111336e-02  9.827419e-01 -1.046236e+00  1.927750e+00
##  [66] -9.888116e-01 -7.456931e-01  1.761954e+00 -8.253739e-01  8.217496e-01
##  [71] -1.493164e-02  1.028383e+00 -6.792063e-01  1.044234e+00  7.357956e-01
##  [76]  1.836552e+00  5.756929e-01 -9.024525e-01 -9.034727e-01 -1.829726e+00
##  [81] -6.378582e-01 -1.225442e+00  8.244903e-01 -2.113304e-01  1.732050e+00
##  [86] -1.574714e+00 -1.231505e-01  8.015896e-02  1.494992e-02 -5.769705e-01
##  [91]  1.642794e-01  2.693557e-01  3.909897e-02 -2.477118e-01 -3.293633e-01
##  [96]  3.644648e-01 -1.457609e+00  1.442004e+00  3.529000e-01  7.711953e-02
# PUNTO 5B) HISTOGRAMA:
hist(datos, main = 'REPRESENTACION GRAFICA DE DATOS ALEATORIOS', col = "pink")

# PUNTO 5C) RESUMEN NUMERICO:
summary(datos)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.55295 -0.77229  0.01368 -0.01260  0.59363  3.24585
# PUNTO 6, 30 VALORES DE DISTRIBUCION BINOMIAL:
binomial=rbinom(5, 30, 0.9)
binomial
## [1] 25 30 23 24 28
binomial=rbinom(30, 5, 0.9)
binomial
##  [1] 5 4 4 4 5 4 5 4 5 4 4 4 4 4 5 4 3 5 4 4 5 5 5 5 4 4 5 5 4 5
# PUNTO 6A) DIAGRAMA DE BARRAS O PASTEL:
pie(binomial,col = rainbow(length(binomial)), main="REPRESENTACION DISTRIBUCION BINOMIAL")

pie3D(binomial, explode=0.1, main="REPRESENTACION DISTRIBUCION BINOMIAL")

# PUNTO 6B) RESUMEN NUMERICO Y COMPARACION CON EL PUNTO ANTERIOR:
summary(binomial)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     3.0     4.0     4.0     4.4     5.0     5.0
# PUNTO 7, NUMERO DE FALLOS:
fallas=c(0,1,0,NA,0,0,0,0,0,1,1,1,0,0,3,0,0,0,0,0,2,0,1)
fallas
##  [1]  0  1  0 NA  0  0  0  0  0  1  1  1  0  0  3  0  0  0  0  0  2  0  1
# PUNTO 7A) REPRESENTACION GRAFICA:
boxplot(fallas, main = 'REPRESENTACION GRAFICA DE NUMERO DE FALLOS', col = "yellow")

barplot(fallas, main = 'REPRESENTACION GRAFICA DE NUMERO DE FALLOS', col = "purple")

# PUNTO 7B) TABULACION DE DATOS Y NUMERO MEDIO DE ERRORES:
mean(fallas,na.rm=TRUE)
## [1] 0.4545455
fallas[!is.na(fallas)] 
##  [1] 0 1 0 0 0 0 0 0 1 1 1 0 0 3 0 0 0 0 0 2 0 1
# PUNTO 8, ENCUESTA DEL CURSO:
# PUNTO 8A) DATOS C(), SCAN(), READ.TABLE(), DATA.ENTRY():
estudiante=c(1,2,3,4,5,6,7,8,9,10)
estudiante
##  [1]  1  2  3  4  5  6  7  8  9 10
P1=c(3,3,3,4,3,4,3,4,4,3)
P1
##  [1] 3 3 3 4 3 4 3 4 4 3
P2= c(5,5,2,2,5,2,2,5,5,2)
P2
##  [1] 5 5 2 2 5 2 2 5 5 2
P3=c(1,3,1,3,3,3,1,3,1,1)
P3
##  [1] 1 3 1 3 3 3 1 3 1 1
# PUNTO 8B) RESULTADOS DE CADA PREGUNTA:
table(P1)
## P1
## 3 4 
## 6 4
table(P2)
## P2
## 2 5 
## 5 5
table(P3)
## P3
## 1 3 
## 5 5
# PUNTO 8C) TABLA DE CONTINGUENCIA CRUZADA:
table(P1,P2)
##    P2
## P1  2 5
##   3 3 3
##   4 2 2
table(P1,P3)
##    P3
## P1  1 3
##   3 4 2
##   4 1 3
table(P2,P3)
##    P3
## P2  1 3
##   2 3 2
##   5 2 3
table(P1,P2,P3)
## , , P3 = 1
## 
##    P2
## P1  2 5
##   3 3 1
##   4 0 1
## 
## , , P3 = 3
## 
##    P2
## P1  2 5
##   3 0 2
##   4 2 1
# PUNTO 8D) DIAGRAMA DE BARRAS:
estudiante <- sample(1:10, size= 50, replace=TRUE) 
resultados <- sample(c("P1", "P2", "P3"), size=50, replace= TRUE)
tabla <- table(estudiante, resultados)
tabla
##           resultados
## estudiante P1 P2 P3
##         1   2  0  2
##         2   2  2  1
##         3   1  1  1
##         4   0  3  1
##         5   1  0  4
##         6   0  2  3
##         7   3  3  3
##         8   1  4  4
##         9   0  1  4
##         10  0  1  0
# PUNTO 8E) DIAGRAMA DE BARRAS SIMULTANEAS:
matrix(c(P1,P2,P3),nrow=3,byrow=1)
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]    3    3    3    4    3    4    3    4    4     3
## [2,]    5    5    2    2    5    2    2    5    5     2
## [3,]    1    3    1    3    3    3    1    3    1     1
barplot(tabla, main = "REPRESENTACION GRAFICA DE RESULTADOS DE LAS PREGUNTAS", sub = "encuestas", xlab = "ESTUDIANTES", ylab = "RESULTADOS", horiz = TRUE, col = c("thistle1", "pink1",  "violet", "aquamarine1", "turquoise1", "steelblue1", "lightsteelblue1", "slateblue1", "salmon1", "lightgoldenrod1"), border = NA)

# PUNTO 9, VECTORES DE 50 VALORES:
vectorA=rnorm(50)
vectorA
##  [1] -0.75056161 -0.33285794 -1.23345765  0.79457731 -0.89051613 -0.99884047
##  [7]  0.32083242 -0.21178720 -0.42869207 -1.90536421  0.84861388  0.28430675
## [13] -1.52584403  0.24090573  0.56737789  0.11938610  1.78733799  0.90527581
## [19]  1.04045860 -0.79499924  0.87309097  0.26469885 -0.04561253  1.27524215
## [25]  1.01998269  0.28322524  0.18920028 -1.46458619  3.00560028 -1.35715341
## [31] -0.18920472 -0.61817747 -1.41482144 -0.32416193  0.75638669 -2.26104277
## [37]  0.64043218 -0.61799402 -0.15460085  0.65472618  0.64169910  0.78378459
## [43] -1.27431197 -0.61521987 -0.28274939  1.71751203  1.09903762 -2.13980792
## [49]  1.05207133  0.90295168
vectorB=rnorm(50)
vectorB
##  [1]  0.12977388  0.23306532 -0.72569751  0.02040637  0.38672839  1.01590037
##  [7]  2.35053498  0.37070843 -1.28896686 -0.57026099  2.25542691 -0.09644457
## [13] -0.92296086 -0.22917857  1.26044764  0.14769578 -1.77375766 -1.35325021
## [19] -0.24183310  0.30585324 -1.75440691 -1.25771754  0.35305540  0.87100751
## [25]  1.55815054 -0.32925833  0.37480032  0.00311389 -0.49533257 -0.43488775
## [31] -0.47629096  0.42888635 -0.89196954  1.37664651 -0.33715125 -1.95919929
## [37] -0.66756867 -0.23070015  1.83101487  1.01077571  0.13440340 -0.05229164
## [43]  0.44408753  0.43093869 -0.25809064  0.10721083 -0.55647232 -0.48972954
## [49] -1.32772218  1.10210085
# PUNTO 9A) PRUEBA DE NORMALIDAD:
shapiro.test(vectorA)
## 
##  Shapiro-Wilk normality test
## 
## data:  vectorA
## W = 0.98072, p-value = 0.5825
shapiro.test(vectorB)
## 
##  Shapiro-Wilk normality test
## 
## data:  vectorB
## W = 0.97813, p-value = 0.4761
# PUNTO 9B) DIFERENCIAS ENTRE LOS VECTORES:
t.test(vectorA)
## 
##  One Sample t-test
## 
## data:  vectorA
## t = 0.030805, df = 49, p-value = 0.9756
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.3036399  0.3130939
## sample estimates:
##   mean of x 
## 0.004726986
t.test(vectorB)
## 
##  One Sample t-test
## 
## data:  vectorB
## t = -0.031619, df = 49, p-value = 0.9749
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.2819889  0.2732527
## sample estimates:
##    mean of x 
## -0.004368118
# PUNTO 10, DOS VECTORES DE 50 VALORES:
ran=rbinom(50,6,0.6)
ran
##  [1] 4 3 4 4 4 5 5 1 3 4 4 1 3 5 3 3 5 4 5 5 6 6 6 3 3 1 5 6 4 4 4 3 4 5 3 3 2 4
## [39] 3 2 5 4 4 2 2 3 3 6 5 4
ran2=rnorm(50)
ran2
##  [1] -0.1621290144  1.3406134268  0.2796914695 -0.7808568690 -0.2775350959
##  [6]  0.2482405000 -0.1190571812  0.6335923983 -0.5087041642  1.3843863785
## [11]  0.9012023654  1.1071596604 -0.8526611567  1.4366296209 -1.4934937715
## [16]  0.2177862619  0.6302322014 -0.2665680854 -0.5473265895  0.3968792303
## [21]  0.3462265631 -0.1155529947 -0.2754346045 -0.5776074862 -1.0812798394
## [26] -1.0536087378  1.3032690169  0.1331236304  0.6676992050  0.5594234890
## [31] -2.4056341861  1.2279403028 -0.6503644555  0.9955349963  0.5796158558
## [36] -0.2152599063 -1.0980772636 -0.0884283882 -1.0195027603 -0.0001077023
## [41]  2.0164383174 -0.1576414743  0.0633727016  0.4045203910 -1.3033366729
## [46] -1.7882101369 -1.0210407555  1.5068568327 -1.3987552820  0.1748660545
# PUNTO 10A) PRUEBA DE NORMALIDAD:
shapiro.test(ran)
## 
##  Shapiro-Wilk normality test
## 
## data:  ran
## W = 0.93423, p-value = 0.008016
# PUNTO 10B) DIFERENCIAS ENTRE LOS VECTORES:
t.test(ran)
## 
##  One Sample t-test
## 
## data:  ran
## t = 20.522, df = 49, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  3.427899 4.172101
## sample estimates:
## mean of x 
##       3.8