Background

Wave 6 of the World Values Survey was conducted in 2010-2014. Among many measures, the survey included two measures of interest to this project:

1. Economic Zero-Sum. Respondents were asked to indicate their attitude about wealth accumulation from People can only get rich at the expense of others (1) to Wealth can grow so there´s enough for everyone (10). I reverse-scored this to get an economic zero-sum measure.
2. Confidence in Institutions. Respondents indicated their confidence in a variety of institutions on a scale of 1 (A great deal) to 4 (None at all). I reverse-scored these to get a confidence score. The institutions are: Church, armed forces, press, television, labor unions, police, courts, national government, political parties, parliament, civil services, universities, major companies, banks.
3. Voting in national elections. Respondents indicated their voting behavior: Always, Usually, Never.
4. Control variables. We have individual-level controls and country-level controls. On the individual level, we control for participants’ ideology (left to right scale), sex, age, education, and income (on a within-country income scale). On the country-level, we control for GDP per capita and gini.

Descriptives

Total N and total missing values for each country

Economic zero-sum variable

country total_N missing
Algeria 1200 83
Argentina 1030 77
Armenia 1100 92
Australia 1477 28
Azerbaijan 1002 1
Belarus 1535 32
Brazil 1486 52
Chile 1000 34
China 2300 355
Colombia 1512 26
Cyprus 1000 12
Ecuador 1202 7
Egypt 1523 0
Estonia 1533 49
Georgia 1202 44
Germany 2046 57
Ghana 1552 0
Haiti 1996 46
Hong Kong 1000 7
India 4078 659
Iraq 1200 37
Japan 2443 535
Jordan 1200 22
Kazakhstan 1500 0
Kuwait 1303 56
Kyrgyzstan 1500 8
Lebanon 1200 38
Libya 2131 165
Malaysia 1300 0
Mexico 2000 17
Morocco 1200 329
Netherlands 1902 183
New Zealand 841 67
Nigeria 1759 0
Pakistan 1200 0
Palestine 1000 36
Peru 1210 67
Philippines 1200 0
Poland 966 55
Qatar 1060 11
Romania 1503 56
Russia 2500 291
Rwanda 1527 0
Singapore 1972 2
Slovenia 1069 58
South Africa 3531 87
South Korea 1200 8
Spain 1189 50
Sweden 1206 74
Taiwan 1238 64
Thailand 1200 13
Trinidad & Tobago 999 25
Tunisia 1205 99
Turkey 1605 39
Ukraine 1500 0
United States 2232 57
Uruguay 1000 114
Uzbekistan 1500 131
Yemen 1000 147
Zimbabwe 1500 0

Confidence in institutions

The numbers in the institution columns represent the total missing values per institution in that country.

country total_N armedforces banks church civilservices court gov laborunions majorcompanies parl police polparties press tv univ
Algeria 1200 71 199 79 165 132 150 261 182 242 63 215 100 74 135
Argentina 1030 38 33 12 40 17 20 49 39 46 13 36 43 18 34
Armenia 1100 8 69 19 80 51 41 306 185 48 39 52 34 10 85
Australia 1477 28 29 27 36 37 29 39 43 38 25 31 34 33 32
Azerbaijan 1002 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Belarus 1535 3 16 7 15 7 8 18 14 17 6 14 5 5 12
Brazil 1486 83 9 14 12 5 15 86 42 35 6 16 19 9 43
Chile 1000 8 20 11 30 15 15 84 20 22 11 14 15 11 26
China 2300 223 325 740 367 274 203 867 466 265 226 295 337 261 328
Colombia 1512 8 16 5 14 23 12 38 17 26 5 18 8 8 20
Cyprus 1000 8 10 9 10 17 18 58 30 13 4 14 13 3 24
Ecuador 1202 3 1 0 3 3 3 6 4 2 0 2 0 1 1
Egypt 1523 1523 13 4 22 4 3 53 17 16 3 22 6 1 12
Estonia 1533 60 27 128 45 54 21 237 126 41 14 60 16 10 126
Georgia 1202 17 54 10 54 111 53 274 133 58 40 58 24 15 99
Germany 2046 63 35 51 44 53 45 173 88 68 21 64 23 21 176
Ghana 1552 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Haiti 1996 52 53 51 53 50 49 55 53 57 47 50 49 54 51
Hong Kong 1000 9 4 6 12 8 5 11 10 11 3 7 10 4 7
India 4078 243 293 30 639 205 377 557 680 483 162 338 332 258 558
Iraq 1200 8 110 11 60 59 47 218 141 86 12 49 53 9 72
Japan 2443 286 285 313 338 254 277 700 490 322 144 333 105 107 498
Jordan 1200 7 65 21 42 16 30 220 89 80 8 185 21 5 43
Kazakhstan 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Kuwait 1303 68 82 61 63 66 50 1303 104 87 60 1303 68 65 84
Kyrgyzstan 1500 6 7 14 6 6 7 7 4 10 5 7 9 2 9
Lebanon 1200 33 56 51 53 57 221 88 68 85 43 80 48 44 62
Libya 2131 119 154 177 226 144 159 389 240 280 114 241 131 98 163
Malaysia 1300 1 1 1 1 1 2 4 1 1 1 2 1 1 1
Mexico 2000 9 7 1 29 20 5 25 9 25 1 3 8 2 12
Morocco 1200 71 122 6 104 70 84 368 153 106 70 120 133 93 215
Netherlands 1902 213 106 147 132 78 89 203 174 133 63 102 73 80 170
New Zealand 841 63 60 86 111 55 81 152 128 76 39 73 55 57 111
Nigeria 1759 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pakistan 1200 13 52 11 54 32 40 53 53 45 23 43 30 31 49
Palestine 1000 45 74 33 65 85 88 150 109 107 56 93 52 28 62
Peru 1210 23 46 7 22 17 22 60 39 14 7 29 14 14 24
Philippines 1200 2 0 1 1 2 2 2 3 1 1 0 3 0 1
Poland 966 71 72 21 73 80 38 257 180 56 50 60 39 27 147
Qatar 1060 8 15 6 1060 11 7 1060 29 16 7 1060 7 6 12
Romania 1503 50 75 17 57 91 50 120 135 62 27 65 36 22 131
Russia 2500 127 171 163 205 188 138 514 369 276 108 184 60 45 313
Rwanda 1527 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Singapore 1972 0 1 0 3 1 0 0 1 0 1 0 0 0 1
Slovenia 1069 34 28 23 32 50 29 83 61 26 22 31 10 9 85
South Africa 3531 154 188 36 193 129 112 249 195 132 99 128 94 60 185
South Korea 1200 3 3 4 4 4 3 6 6 6 4 6 3 4 4
Spain 1189 31 27 19 42 24 18 42 40 55 17 25 21 14 47
Sweden 1206 39 21 34 220 34 21 74 54 32 7 34 7 13 71
Taiwan 1238 76 80 77 69 87 68 148 108 96 50 90 83 49 86
Thailand 1200 44 39 42 63 61 58 166 96 90 51 73 48 42 61
Trinidad & Tobago 999 49 37 26 106 75 48 115 117 69 24 56 23 21 81
Tunisia 1205 63 179 93 165 82 92 197 238 129 57 112 91 85 222
Turkey 1605 35 65 39 64 47 41 129 89 62 21 52 38 24 71
Ukraine 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0
United States 2232 38 55 37 50 44 45 45 54 62 37 44 36 37 56
Uruguay 1000 40 89 30 96 57 33 65 125 64 18 53 28 21 74
Uzbekistan 1500 36 102 88 62 93 30 297 201 151 42 179 30 15 86
Yemen 1000 84 343 28 143 152 76 489 416 167 101 132 257 93 294
Zimbabwe 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Variables of interest

Confidence in institutions

Economic Zero-Sum

Analysis

EZS -> Confidence in institutions

Entire data set

Just the US

Linear model: EZS -> Confidence in the Church

Whole sample

(#tab:unnamed-chunk-7)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.10 [-0.50, 0.69] 0.32 59,360 .751
ScaleEZS -0.03 [-0.04, -0.02] -7.64 59,360 < .001
Scaleideo 0.08 [0.08, 0.09] 22.64 59,360 < .001
Sexmale -0.11 [-0.12, -0.09] -15.15 59,360 < .001
Age 0.00 [0.00, 0.00] 18.10 59,360 < .001
Edu -0.02 [-0.02, -0.02] -10.60 59,360 < .001
Income 0.00 [0.00, 0.00] -0.34 59,360 .733
Gdppc 0.00 [0.00, 0.00] -4.59 47 < .001
Gini 0.01 [-0.01, 0.02] 0.81 47 .423

Just the US

(#tab:unnamed-chunk-8)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.21 [-0.50, 0.07] -1.47 2076 .141
ScaleEZS -0.07 [-0.12, -0.03] -3.40 2076 .001
Scaleideo 0.27 [0.23, 0.32] 12.72 2076 < .001
Sexmale -0.10 [-0.18, -0.02] -2.36 2076 .018
Age 0.01 [0.00, 0.01] 4.87 2076 < .001
Edu -0.01 [-0.04, 0.02] -0.64 2076 .524
Income 0.01 [-0.01, 0.03] 0.82 2076 .410

Linear model: EZS -> Confidence in the Armed Forces

Whole sample

(#tab:unnamed-chunk-9)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.17 [-0.39, 0.72] 0.59 57,714 .557
ScaleEZS -0.04 [-0.05, -0.03] -10.24 57,714 < .001
Scaleideo 0.09 [0.09, 0.10] 23.55 57,714 < .001
Sexmale 0.05 [0.04, 0.07] 7.06 57,714 < .001
Age 0.00 [0.00, 0.00] 16.11 57,714 < .001
Edu 0.00 [-0.01, 0.00] -1.60 57,714 .109
Income 0.01 [0.00, 0.01] 3.25 57,714 .001
Gdppc 0.00 [0.00, 0.00] -0.46 46 .651
Gini -0.01 [-0.02, 0.00] -1.45 46 .155

Just the US

(#tab:unnamed-chunk-10)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.82 [-1.10, -0.54] -5.67 2074 < .001
ScaleEZS -0.05 [-0.10, -0.01] -2.54 2074 .011
Scaleideo 0.23 [0.19, 0.27] 10.72 2074 < .001
Sexmale 0.05 [-0.03, 0.13] 1.12 2074 .265
Age 0.01 [0.01, 0.01] 7.69 2074 < .001
Edu 0.04 [0.01, 0.07] 2.26 2074 .024
Income 0.01 [-0.01, 0.03] 1.09 2074 .276

Linear model: EZS -> Confidence in the press

Whole sample

(#tab:unnamed-chunk-11)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.23 [-0.69, 0.22] -1.00 59,411 .319
ScaleEZS -0.02 [-0.02, -0.01] -3.68 59,411 < .001
Scaleideo 0.04 [0.04, 0.05] 10.58 59,411 < .001
Sexmale 0.01 [-0.01, 0.02] 0.75 59,411 .455
Age 0.00 [0.00, 0.00] 10.48 59,411 < .001
Edu 0.00 [0.00, 0.01] 2.01 59,411 .044
Income 0.02 [0.01, 0.02] 8.70 59,411 < .001
Gdppc 0.00 [0.00, 0.00] -1.51 47 .138
Gini 0.00 [-0.01, 0.01] 0.28 47 .780

Just the US

(#tab:unnamed-chunk-12)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.11 [-0.18, 0.41] 0.75 2077 .453
ScaleEZS -0.01 [-0.05, 0.04] -0.26 2077 .797
Scaleideo -0.19 [-0.23, -0.14] -8.39 2077 < .001
Sexmale -0.06 [-0.14, 0.03] -1.30 2077 .193
Age 0.00 [0.00, 0.00] 0.30 2077 .766
Edu -0.05 [-0.09, -0.02] -3.03 2077 .002
Income 0.06 [0.04, 0.08] 5.15 2077 < .001

Linear model: EZS -> Confidence in television

Whole sample

(#tab:unnamed-chunk-13)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.15 [-0.33, 0.64] 0.63 59,552 .532
ScaleEZS -0.01 [-0.02, 0.00] -2.49 59,552 .013
Scaleideo 0.04 [0.04, 0.05] 10.94 59,552 < .001
Sexmale -0.02 [-0.04, -0.01] -2.89 59,552 .004
Age 0.00 [0.00, 0.00] 7.75 59,552 < .001
Edu -0.02 [-0.02, -0.01] -7.88 59,552 < .001
Income 0.02 [0.01, 0.02] 7.79 59,552 < .001
Gdppc 0.00 [0.00, 0.00] -1.90 47 .064
Gini 0.00 [-0.02, 0.01] -0.67 47 .507

Just the US

(#tab:unnamed-chunk-14)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.92 [0.62, 1.21] 6.08 2074 < .001
ScaleEZS -0.02 [-0.06, 0.03] -0.74 2074 .462
Scaleideo -0.07 [-0.12, -0.03] -3.32 2074 .001
Sexmale -0.10 [-0.19, -0.02] -2.41 2074 .016
Age 0.00 [0.00, 0.00] 0.69 2074 .492
Edu -0.14 [-0.18, -0.11] -8.11 2074 < .001
Income 0.04 [0.01, 0.06] 3.22 2074 .001

Linear model: EZS -> Confidence in labor unions

Whole sample

(#tab:unnamed-chunk-15)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.04 [-0.52, 0.44] -0.16 57,149 .876
ScaleEZS -0.03 [-0.03, -0.02] -6.13 57,149 < .001
Scaleideo 0.01 [0.00, 0.02] 1.79 57,149 .074
Sexmale 0.00 [-0.02, 0.01] -0.27 57,149 .790
Age 0.00 [0.00, 0.00] 1.06 57,149 .291
Edu 0.00 [0.00, 0.01] 0.79 57,149 .432
Income 0.02 [0.01, 0.02] 7.45 57,149 < .001
Gdppc 0.00 [0.00, 0.00] -0.61 47 .546
Gini 0.00 [-0.01, 0.01] -0.30 47 .768

Just the US

(#tab:unnamed-chunk-16)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.58 [0.29, 0.87] 3.96 2070 < .001
ScaleEZS 0.05 [0.01, 0.10] 2.44 2070 .015
Scaleideo -0.27 [-0.32, -0.23] -12.53 2070 < .001
Sexmale -0.14 [-0.22, -0.06] -3.38 2070 .001
Age -0.01 [-0.01, 0.00] -4.27 2070 < .001
Edu -0.05 [-0.08, -0.01] -2.76 2070 .006
Income 0.02 [0.00, 0.05] 2.03 2070 .043

Linear model: EZS -> Confidence in police

Whole sample

(#tab:unnamed-chunk-17)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.29 [-0.78, 0.19] -1.18 59,547 .238
ScaleEZS -0.04 [-0.05, -0.03] -10.40 59,547 < .001
Scaleideo 0.08 [0.07, 0.09] 20.50 59,547 < .001
Sexmale -0.04 [-0.06, -0.03] -5.42 59,547 < .001
Age 0.00 [0.00, 0.00] 8.86 59,547 < .001
Edu -0.01 [-0.01, 0.00] -4.42 59,547 < .001
Income 0.02 [0.02, 0.03] 12.32 59,547 < .001
Gdppc 0.00 [0.00, 0.00] 2.99 47 .004
Gini 0.00 [-0.01, 0.01] -0.17 47 .865

Just the US

(#tab:unnamed-chunk-18)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -1.24 [-1.53, -0.95] -8.39 2076 < .001
ScaleEZS -0.09 [-0.13, -0.05] -4.02 2076 < .001
Scaleideo 0.11 [0.06, 0.15] 4.81 2076 < .001
Sexmale -0.12 [-0.20, -0.04] -2.90 2076 .004
Age 0.01 [0.00, 0.01] 5.41 2076 < .001
Edu 0.09 [0.06, 0.13] 5.37 2076 < .001
Income 0.05 [0.03, 0.07] 4.41 2076 < .001

Linear model: EZS -> Confidence in the courts

Whole sample

(#tab:unnamed-chunk-19)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.16 [-0.68, 0.37] -0.58 59,082 .560
ScaleEZS -0.05 [-0.06, -0.04] -11.68 59,082 < .001
Scaleideo 0.05 [0.04, 0.06] 11.98 59,082 < .001
Sexmale -0.03 [-0.05, -0.02] -4.42 59,082 < .001
Age 0.00 [0.00, 0.00] 0.72 59,082 .473
Edu 0.00 [0.00, 0.00] 0.10 59,082 .918
Income 0.03 [0.03, 0.03] 14.66 59,082 < .001
Gdppc 0.00 [0.00, 0.00] 1.66 47 .104
Gini 0.00 [-0.02, 0.01] -0.51 47 .610

Just the US

(#tab:unnamed-chunk-20)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -1.00 [-1.29, -0.70] -6.60 2071 < .001
ScaleEZS -0.07 [-0.11, -0.02] -2.95 2071 .003
Scaleideo 0.00 [-0.05, 0.04] -0.21 2071 .833
Sexmale -0.03 [-0.11, 0.05] -0.71 2071 .477
Age 0.00 [0.00, 0.01] 2.08 2071 .038
Edu 0.06 [0.02, 0.09] 3.37 2071 .001
Income 0.08 [0.06, 0.11] 6.94 2071 < .001

Linear model: EZS -> Confidence in the national government

Whole sample

(#tab:unnamed-chunk-21)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.16 [-0.71, 0.39] -0.58 59,135 .565
ScaleEZS -0.05 [-0.05, -0.04] -11.45 59,135 < .001
Scaleideo 0.08 [0.08, 0.09] 20.70 59,135 < .001
Sexmale -0.04 [-0.05, -0.02] -4.62 59,135 < .001
Age 0.00 [0.00, 0.00] 9.33 59,135 < .001
Edu 0.00 [-0.01, 0.00] -2.53 59,135 .011
Income 0.02 [0.02, 0.03] 12.25 59,135 < .001
Gdppc 0.00 [0.00, 0.00] -0.84 47 .406
Gini 0.00 [-0.01, 0.01] 0.12 47 .901

Just the US

(#tab:unnamed-chunk-22)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.12 [-0.17, 0.42] 0.82 2073 .414
ScaleEZS -0.06 [-0.10, -0.01] -2.47 2073 .014
Scaleideo -0.16 [-0.21, -0.12] -7.24 2073 < .001
Sexmale -0.14 [-0.23, -0.06] -3.36 2073 .001
Age 0.00 [-0.01, 0.00] -3.24 2073 .001
Edu -0.03 [-0.06, 0.01] -1.48 2073 .140
Income 0.07 [0.05, 0.09] 5.77 2073 < .001

Linear model: EZS -> Confidence in political parties

Whole sample

(#tab:unnamed-chunk-23)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.08 [-0.62, 0.45] -0.30 58,989 .765
ScaleEZS -0.03 [-0.04, -0.02] -6.72 58,989 < .001
Scaleideo 0.07 [0.06, 0.08] 16.80 58,989 < .001
Sexmale 0.00 [-0.02, 0.01] -0.07 58,989 .945
Age 0.00 [0.00, 0.00] 7.48 58,989 < .001
Edu -0.01 [-0.01, -0.01] -4.79 58,989 < .001
Income 0.03 [0.03, 0.04] 16.48 58,989 < .001
Gdppc 0.00 [0.00, 0.00] -0.78 47 .440
Gini 0.00 [-0.02, 0.01] -0.33 47 .745

Just the US

(#tab:unnamed-chunk-24)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.02 [-0.28, 0.32] 0.12 2071 .906
ScaleEZS -0.08 [-0.13, -0.04] -3.66 2071 < .001
Scaleideo -0.01 [-0.06, 0.03] -0.59 2071 .554
Sexmale -0.13 [-0.22, -0.05] -3.02 2071 .003
Age 0.00 [0.00, 0.00] -1.32 2071 .188
Edu -0.02 [-0.06, 0.01] -1.20 2071 .229
Income 0.06 [0.04, 0.08] 4.90 2071 < .001

Linear model: EZS -> Confidence in parliament

Whole sample

(#tab:unnamed-chunk-25)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.16 [-0.75, 0.43] -0.53 58,763 .599
ScaleEZS -0.04 [-0.05, -0.03] -9.22 58,763 < .001
Scaleideo 0.07 [0.06, 0.08] 16.93 58,763 < .001
Sexmale -0.01 [-0.03, 0.00] -1.42 58,763 .155
Age 0.00 [0.00, 0.00] 7.12 58,763 < .001
Edu 0.00 [0.00, 0.00] -0.02 58,763 .984
Income 0.03 [0.03, 0.03] 14.74 58,763 < .001
Gdppc 0.00 [0.00, 0.00] -0.37 47 .714
Gini 0.00 [-0.02, 0.01] -0.24 47 .815

Just the US

(#tab:unnamed-chunk-26)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.51 [0.21, 0.81] 3.34 2056 .001
ScaleEZS -0.08 [-0.12, -0.04] -3.50 2056 < .001
Scaleideo -0.09 [-0.14, -0.05] -4.10 2056 < .001
Sexmale -0.17 [-0.26, -0.09] -4.05 2056 < .001
Age -0.01 [-0.01, 0.00] -5.42 2056 < .001
Edu -0.04 [-0.08, -0.01] -2.49 2056 .013
Income 0.05 [0.03, 0.07] 4.31 2056 < .001

Linear model: EZS -> Confidence in civil services

Whole sample

(#tab:unnamed-chunk-27)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.03 [-0.60, 0.55] -0.09 58,540 .927
ScaleEZS -0.04 [-0.05, -0.03] -9.49 58,540 < .001
Scaleideo 0.06 [0.05, 0.06] 13.99 58,540 < .001
Sexmale -0.02 [-0.03, 0.00] -2.52 58,540 .012
Age 0.00 [0.00, 0.00] 7.91 58,540 < .001
Edu 0.01 [0.00, 0.01] 2.93 58,540 .003
Income 0.02 [0.02, 0.03] 11.13 58,540 < .001
Gdppc 0.00 [0.00, 0.00] -0.13 47 .894
Gini -0.01 [-0.02, 0.01] -0.82 47 .417

Just the US

(#tab:unnamed-chunk-28)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.62 [-0.92, -0.33] -4.09 2072 < .001
ScaleEZS -0.05 [-0.10, -0.01] -2.31 2072 .021
Scaleideo -0.12 [-0.16, -0.08] -5.31 2072 < .001
Sexmale -0.08 [-0.17, 0.00] -1.93 2072 .054
Age 0.00 [0.00, 0.01] 2.15 2072 .032
Edu 0.04 [0.00, 0.07] 2.20 2072 .028
Income 0.05 [0.02, 0.07] 3.85 2072 < .001

Linear model: EZS -> Confidence in universities

Whole sample

(#tab:unnamed-chunk-29)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.61 [-1.00, -0.21] -2.97 58,203 .003
ScaleEZS -0.04 [-0.05, -0.04] -10.42 58,203 < .001
Scaleideo 0.03 [0.02, 0.04] 6.92 58,203 < .001
Sexmale 0.01 [-0.01, 0.02] 0.95 58,203 .341
Age 0.00 [0.00, 0.00] 4.99 58,203 < .001
Edu 0.03 [0.02, 0.03] 12.97 58,203 < .001
Income 0.02 [0.01, 0.02] 7.32 58,203 < .001
Gdppc 0.00 [0.00, 0.00] 0.78 47 .441
Gini 0.01 [0.00, 0.02] 1.53 47 .132

Just the US

(#tab:unnamed-chunk-30)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.41 [-0.71, -0.12] -2.77 2065 .006
ScaleEZS -0.01 [-0.05, 0.03] -0.46 2065 .648
Scaleideo -0.20 [-0.25, -0.16] -9.25 2065 < .001
Sexmale -0.11 [-0.19, -0.03] -2.60 2065 .009
Age 0.00 [-0.01, 0.00] -3.06 2065 .002
Edu 0.03 [0.00, 0.07] 1.86 2065 .063
Income 0.08 [0.06, 0.10] 6.94 2065 < .001

Linear model: EZS -> Confidence in major companies

Whole sample

(#tab:unnamed-chunk-31)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.39 [-0.75, -0.02] -2.07 58,025 .038
ScaleEZS -0.04 [-0.05, -0.03] -9.76 58,025 < .001
Scaleideo 0.07 [0.07, 0.08] 17.59 58,025 < .001
Sexmale 0.00 [-0.01, 0.02] 0.16 58,025 .870
Age 0.00 [0.00, 0.00] -0.24 58,025 .813
Edu 0.01 [0.00, 0.01] 3.49 58,025 < .001
Income 0.03 [0.03, 0.04] 15.20 58,025 < .001
Gdppc 0.00 [0.00, 0.00] -1.19 47 .238
Gini 0.01 [0.00, 0.02] 1.41 47 .164

Just the US

(#tab:unnamed-chunk-32)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept -0.06 [-0.35, 0.22] -0.44 2066 .663
ScaleEZS -0.12 [-0.16, -0.07] -5.32 2066 < .001
Scaleideo 0.19 [0.15, 0.24] 8.98 2066 < .001
Sexmale -0.04 [-0.12, 0.04] -0.88 2066 .379
Age 0.00 [0.00, 0.00] 0.70 2066 .482
Edu -0.06 [-0.09, -0.02] -3.31 2066 .001
Income 0.09 [0.07, 0.12] 8.09 2066 < .001

Linear model: EZS -> Confidence in banks

Whole sample

(#tab:unnamed-chunk-33)
**
Term \(\hat{\beta}\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.10 [-0.39, 0.58] 0.39 58,980 .696
ScaleEZS -0.05 [-0.06, -0.04] -11.81 58,980 < .001
Scaleideo 0.06 [0.05, 0.07] 15.74 58,980 < .001
Sexmale -0.04 [-0.05, -0.02] -5.04 58,980 < .001
Age 0.00 [0.00, 0.00] -5.11 58,980 < .001
Edu 0.00 [-0.01, 0.00] -0.98 58,980 .329
Income 0.03 [0.03, 0.03] 14.76 58,980 < .001
Gdppc 0.00 [0.00, 0.00] -2.58 47 .013
Gini 0.00 [-0.01, 0.01] -0.11 47 .912

Just the US

(#tab:unnamed-chunk-34)
**
Predictor \(b\) 95% CI \(t\) \(\mathit{df}\) \(p\)
Intercept 0.26 [-0.03, 0.56] 1.75 2065 .080
ScaleEZS -0.09 [-0.13, -0.04] -3.93 2065 < .001
Scaleideo 0.16 [0.12, 0.21] 7.39 2065 < .001
Sexmale -0.20 [-0.29, -0.12] -4.80 2065 < .001
Age 0.00 [0.00, 0.00] -0.46 2065 .644
Edu -0.05 [-0.08, -0.01] -2.80 2065 .005
Income 0.05 [0.03, 0.07] 4.25 2065 < .001