# Load packages
# Core
library(tidyverse)
library(tidyquant)
Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
## Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-01-01",
to = "2017-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 300 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 SPY 2012-01-31 0.0295
## 2 SPY 2012-02-29 0.0425
## 3 SPY 2012-03-30 0.0317
## 4 SPY 2012-04-30 -0.00670
## 5 SPY 2012-05-31 -0.0619
## 6 SPY 2012-06-29 0.0398
## 7 SPY 2012-07-31 0.0118
## 8 SPY 2012-08-31 0.0247
## 9 SPY 2012-09-28 0.0250
## 10 SPY 2012-10-31 -0.0184
## # ℹ 290 more rows
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(col = asset), alpha = 1, show.legend = FALSE) +
geom_histogram(aes(fill = asset), show.legend = FALSE, aplha = 0.3, binwidth = 0.01) +
facet_wrap(~asset, ncol = 1) +
# labeling
labs(title = "Monthly returns since 2012-2016",
x = "Frequency",
y = "Rate of Returns",
caption = "A typic monthly return is higher for SPV and IJS than for AGG, EEM, and EFA.")