The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically. A completely randomized experiment was conducted and the following data were collected:
a. Test the hypothesis that mixing techniques affect the strength of the cement. Use ( α�= 0.05 )
| Mixing Technique | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 3129 | 3000 | 2865 | 2890 |
| 2 | 3200 | 3300 | 2975 | 3150 |
| 3 | 2800 | 2900 | 2985 | 3050 |
| 4 | 2600 | 2700 | 2600 | 2765 |
Results - F0 (12.73) > F0.05, 3.12 (3.49)
Mixing techniques affects the strength of cement. Therefore we reject null hypothesis i.e Ho
A product developer is investigating the tensile strength of a new synthetic fiber that will be used to make cloth for men’s shirts. Strength is usually affected by the percentage of cotton used in the blend of materials for the fiber. The engineer conducts a completely randomized experiment with five levels of cotton content and replicates the experiment five times. The data are shown in the following table.
| Cotton Weight % | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 15 | 7 | 7 | 15 | 11 | 9 |
| 20 | 12 | 17 | 12 | 18 | 18 |
| 25 | 14 | 19 | 19 | 18 | 18 |
| 30 | 19 | 25 | 22 | 19 | 23 |
| 35 | 7 | 10 | 11 | 15 | 11 |
knitr::include_graphics("C:/Users/Public/Solutions Q1 Q2.pdf")
Your PDF Caption
Solutions for both the questions are in single pdf attached
#Data Reading
roddinglevel10 <- c(1530,1530,1440)
roddinglevel15 <- c(1610,1650,1500)
roddinglevel20 <- c(1560,1730,1530)
roddinglevel25 <- c(1500,1490,1510)
roddinglevel <- rbind(roddinglevel10,roddinglevel15,roddinglevel20,roddinglevel25)
print(roddinglevel)
## [,1] [,2] [,3]
## roddinglevel10 1530 1530 1440
## roddinglevel15 1610 1650 1500
## roddinglevel20 1560 1730 1530
## roddinglevel25 1500 1490 1510
Finding the mean of the rodding level
rodding10 <- mean(roddinglevel10)
rodding15 <- mean(roddinglevel15)
rodding20 <- mean(roddinglevel20)
rodding25 <- mean(roddinglevel25)
Step 1 - A) SSE B) MSE
SSE10 <- (1530-roddinglevel10)^2 + (1530-roddinglevel10)^2 + (1440-roddinglevel10)^2
SSE15 <- (1610-roddinglevel15)^2 + (1650-roddinglevel15)^2 + (1500-roddinglevel15)^2
SSE20 <- (1560-roddinglevel20)^2 + (1730-roddinglevel20)^2 + (1530-roddinglevel20)^2
SSE25 <- (1500-roddinglevel25)^2 + (1490-roddinglevel25)^2 + (1510-roddinglevel25)^2
SSE <- SSE10 + SSE15 +SSE20 +SSE25
print(SSE)
## [1] 51800 101600 92200
MSE <- SSE/(8)
print(MSE)
## [1] 6475 12700 11525
Step 2- A) SStreatment B) MStreatment
mean <- c(mean(roddinglevel))
print(mean)
## [1] 1548.333
#A)SStreatment
SStreatment <- 3*((roddinglevel10 - mean)^2 + (roddinglevel15 - mean)^2 + (roddinglevel20 - mean)^2 + (roddinglevel25 - mean)^2)
print(SStreatment)
## [1] 19833.33 141233.33 47633.33
#B)MStreatment
MStreatment <- SStreatment/3
print(MStreatment)
## [1] 6611.111 47077.778 15877.778
Step 3 - SST
SST <- SSE + SStreatment
print(SST)
## [1] 71633.33 242833.33 139833.33
Step 4 - F0
F0 <- MStreatment/MSE
print(F0)
## [1] 1.021021 3.706912 1.377681
Step 5 - P value
?qf
## starting httpd help server ... done
Fcritical<-qf(0.95,3,8)
print(Fcritical)
## [1] 4.066181
?pf
Pvalue <- pf(1.86536, 3, 8, lower.tail = FALSE)
print(Pvalue)
## [1] 0.2137821
#R code
roddinglevel10 <- c(1530,1530,1440)
roddinglevel15 <- c(1610,1650,1500)
roddinglevel20 <- c(1560,1730,1530)
roddinglevel25 <- c(1500,1490,1510)
roddinglevel <- rbind(roddinglevel10,roddinglevel15,roddinglevel20,roddinglevel25)
rodding10 <- mean(roddinglevel10)
rodding15 <- mean(roddinglevel15)
rodding20 <- mean(roddinglevel20)
rodding25 <- mean(roddinglevel25)
SSE10 <- (1530-roddinglevel10)^2 + (1530-roddinglevel10)^2 + (1440-roddinglevel10)^2
SSE15 <- (1610-roddinglevel15)^2 + (1650-roddinglevel15)^2 + (1500-roddinglevel15)^2
SSE20 <- (1560-roddinglevel20)^2 + (1730-roddinglevel20)^2 + (1530-roddinglevel20)^2
SSE25 <- (1500-roddinglevel25)^2 + (1490-roddinglevel25)^2 + (1510-roddinglevel25)^2
SSE <- SSE10 + SSE15 +SSE20 +SSE25
MSE <- SSE/(8)
mean <- c(mean(roddinglevel))
#A)SStreatment
SStreatment <- 3*((roddinglevel10 - mean)^2 + (roddinglevel15 - mean)^2 + (roddinglevel20 - mean)^2 + (roddinglevel25 - mean)^2)
#B)MStreatment
MStreatment <- SStreatment/3
SST <- SSE + SStreatment
F0 <- MStreatment/MSE
?qf
Fcritical<-qf(0.95,3,8)
?pf
Pvalue <- pf(1.86536, 3, 8, lower.tail = FALSE)