class: Environmental Data Analysis title: "Assignment 2 Lab 2" author: "Riley Chan (rhc2157)" output: html_document ---
library(tidyverse) library(readr) library(janitor) library(purrr) library(repurrrsive) library(ggplot2) library(htmltools) library(dplyr) library(sf) library(wesanderson) library(sf) library(leaflet) library(gstat) library(stars) library(tmap)
***
```
wespalettes <- wespalettes
palettelength <- mapdbl(wes_palettes, ~length(.))
filterpalette <- wespalettes[palette_length > 4]
wesSelectPals <- c(filter_palette) head(wesSelectPals) typeof(wesSelectPals) ```
```
imt<- read_csv("Data1/Trade/InternationalMerchandiseTrade.csv", skip = 1)
imt<- clean_names(imt) imt<- imt%>% select(x2, year, series, value) %>% filter(series=='Balance imports/exports (millions of US dollars)')%>% rename(Country = x2)
imtaverage <- imt[205:1680,] %>% groupby(Country)%>% summarize(averagebalance = mean(value)) %>% arrange(desc(averagebalance))%>% top_n(5)
topfive <- imt[205:1680,] %>% filter(Country %in% imtaverage$Country, year %in% year)%>% group_by(Country)
for (i in wesSelectPals){ mapplot<- ggplot(topfive, aes(x = year, y = value, color= Country)) + geomline() + scalecolormanual(values = i)+ labs( title = paste("Average of Balance of Imports/Exports in",wesSelectPals, "Palette"), x = "Year", y = "Balance Imports/Exports", name = "Country" ) print(mapplot) } ```
```
cb2018 <- stread("Data2/cb2018uscounty20m/cb2018uscounty20m.shp") acs_2018 <- read.csv("Data2/ACS2018Counties.csv")
acs2018<- acs2018%>% rename(GEOID= FIPS)
cb2018$geometry <-sttransform(cb2018$geometry, "+proj=aea +lat1=20 +lat2=60 +lat0=40 +lon0=-96 +x0=0 +y0=0 +ellps=GRS80 +datum=NAD83 +units=mi +nodefs")
cbacs2018merge <- merge(cb2018, acs2018, by = "GEOID", all = TRUE ) head(cbacs2018merge)
areaCalc <- starea(cbacs2018merge$geometry)
cbacs2018_merge$areaCalc<- areaCalc
print(areaCalc)
cbacs2018merge<- cleannames(cbacs2018_merge)
cbacs2018merge$popDensity <- as.integer(cbacs2018merge$total_population)/ areaCalc
print(cbacs2018_merge$popDensity) ```
```
cbacs2018merge <- sttransform(stassf(cbacs2018_merge), 4326)
quantilesmerge <- colorQuantile(palette = "YlOrRd", domain = cbacs2018merge$popDensity, n = 5)
leafletmap <- leaflet(cbacs2018merge)%>%
addTiles()%>% addPolygons(stroke = FALSE, color =
~quantiles_merge(popDensity), fillOpacity = .7, label = ~paste(NAME,
"
", format(popDensity, digits =2)), labelOptions=
labelOptions(direction = "auto")%>% setView(lat=43.61, lng= -116.5,
zoom = 3))
print(leaflet_map) ```
```
airquality <- read.csv("Data2/advizplotvaldata.csv")
air_quality$statefp <- "06"
airquality<- cleannames(air_quality)
maxpm25data<- airquality%>% groupby(county, statefp) %>% summarize(maxpm25 = max(dailymeanpm25_concentration))
centroidmerge <- innerjoin(cbacs2018merge, maxpm25data, by = c('name' = 'county')) print(centroid_merge)
centroidmergeca<- centroidmerge%>% filter(statefips=='06') print(centroidmergeca)
centroidmergeca$centroid <- stcentroid(centroidmerge_ca)
```
```
centroidmergecasp <- asSpatial(centroidmergeca, cast = TRUE)
sfgrid<- stmakegrid(centroidmerge_ca, n= 150)
centroidsfcaidw <- idw(centroidmergeca$maxpm25 ~1, centroidmergecasp, sf_grid, idp=2)
aqraster <- strasterize(centroidsfcaidw, field = "var1.pred")
tmapraster <- tmshape(aqraster) + tmraster("var1.pred", style = "quantile", n = 9, palette = colorRampPalette(c("lightgoldenrod", "firebrick3"))(n = 9))+ tmlayout(bg.color = "white", legend.outside = TRUE)+ tmshape(centroidmergeca) + tmborders(col = "black", lwd = 1, lty = "solid")+ tmshape(centroidmergeca$centroid)+ tmsymbols(col = "grey8", size = .15)
print(tmap_raster) ```
```
aqrastersf <- stas_sf(aqraster)
aqrasterintersect <- stintersection( aqrastersf, centroidmergeca)
maxpm25intersect <- aggregate(aqrasterintesect["var1.pred"], by = list(aqraster_intersect$geoid), FUN = max)
over200 <- maxpm25intersect[maxpm25_intersect$var1.pred >200,]
over_200
```