df<-read.csv("Clotinidina.csv")
df
##    Conc   SolvArea     MatArea
## 1   0.1   1962.409   2319.3244
## 2   0.5   1089.431    900.0077
## 3   2.0   2006.795   3711.4262
## 4   5.0   4994.264   7642.4762
## 5  20.0  21642.742  26881.7529
## 6  50.0  55763.590  71111.6268
## 7 100.0 111901.946 132072.1672

Curvas del clotinidina: Efecto de la Matriz

ysolv<-df$SolvArea
ymat<-df$MatArea
x<-df$Conc


modelo<-lm(ymat~x)
s<-summary(modelo)
LOD<-s$coefficients[1,2]/s$coefficients[1]*3.3*8
b0mat=s$coefficients[1]
b1mat=s$coefficients[2]



xs <- seq(0, 100, by=0.1)
ycalc1=b0mat+b1mat*xs

yexpMat=modelo$fitted.values

modelo<-lm(ysolv~x)
s<-summary(modelo)

b0solv=s$coefficients[1]
b1solv=s$coefficients[2]



xs <- seq(0, 100, by=0.1)
ycalc2=b0solv+b1solv*xs

yexpMat=modelo$fitted.values

print(s)
## 
## Call:
## lm(formula = ysolv ~ x)
## 
## Residuals:
##      1      2      3      4      5      6      7 
## 1632.6  314.0 -439.5 -793.8 -854.1 -150.8  291.5 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   218.42     440.49   0.496    0.641    
## x            1113.92      10.25 108.681 1.25e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 940.7 on 5 degrees of freedom
## Multiple R-squared:  0.9996, Adjusted R-squared:  0.9995 
## F-statistic: 1.181e+04 on 1 and 5 DF,  p-value: 1.251e-09
n=length(x)



plot(x,ymat,main="Clotinidina",xlab="[Clotinidina](ug/Kg)",ylab="Area", ylim=c(0,140000))
points(x,ysolv,col="blue")
lines(xs,ycalc1,lty=1)
lines(xs,ycalc2,lty=1,col="blue")

yr=ycalc1/ycalc2*100

plot(xs,yr,type="l",col="orange",main="Clotinidina: %Efecto de Matriz",xlab="[Clotinidina](ug/Kg)",ylab="%EM")