Chorionicity effects reupload
library(pacman)
## Warning: package 'pacman' was built under R version 4.3.1
p_load(stringr, psych, kirkegaard, psychometric)
d_table = read.csv("chorion_data.csv", row.names = 1)
v_MC = str_detect(d_table$X, pattern = "MCMZ")
v_DC = str_detect(d_table$X, pattern = "DCMZ")
v_traits = c(v_MC[-1], F)
v_MC_vals = d_table[v_MC, "correlation"]
v_DC_vals = d_table[v_DC, "correlation"]
v_MC_N = d_table[v_MC, c("N.1st.borns", "N.2nd.borns")] %>% apply(MARGIN = 1, FUN = mean)
v_DC_N = d_table[v_DC, c("N.1st.borns", "N.2nd.borns")] %>% apply(MARGIN = 1, FUN = mean)
d_data = data.frame(MC = v_MC_vals, DC = v_DC_vals, MC_N = v_MC_N, DC_N = v_DC_N)
rownames(d_data) = d_table[v_traits, "X"] %>% as.character()
d_data$delta = d_data$MC - d_data$DC #deltas
d_data$delta_abs = abs(d_data$delta) #absolute values
d_data$delta_se = apply(X = d_data, MARGIN = 1, FUN = function(row) {
CIrdif(r1 = row["MC"], r2 = row["DC"], n1 = row["MC_N"], n2 = row["DC_N"])["SED"]
}) %>% unlist()
describe(d_data$delta)
## d_data$delta
## n missing distinct Info Mean Gmd .05 .10
## 66 0 27 0.992 0.00303 0.0545 -0.0675 -0.0450
## .25 .50 .75 .90 .95
## -0.0200 0.0000 0.0200 0.0400 0.0975
##
## lowest : -0.16 -0.11 -0.09 -0.07 -0.06, highest: 0.06 0.11 0.13 0.17 0.24
GG_denhist(d_data, var = "delta")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggsave("chorion_effects.png")
## Saving 7 x 5 in image
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
GG_scatter(d_data, "delta_abs", "delta_se")
## `geom_smooth()` using formula = 'y ~ x'
ggsave("chorion_effects_errors.png")
## Saving 7 x 5 in image
## `geom_smooth()` using formula = 'y ~ x'