renta de bicis

1. Importar la base de datos

df<- read.csv("/Users/enrique/Downloads/Semestre 7- 1 Bloque R/rentadebicis.csv")

##2. Informacion

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

observaciones: 1. Los dias llegan hasta el 19

##3. generar la regresion lineal

regresion <- lm(rentas_totales ~  hora + dia + mes +  año  + estacion + dia_de_la_semana + sensacion_termica + humedad + velocidad_del_viento, data= df)

summary (regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion + 
##     dia_de_la_semana + sensacion_termica + humedad + velocidad_del_viento, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -304.52  -93.34  -27.52   61.53  648.27 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.662e+05  5.495e+03 -30.246  < 2e-16 ***
## hora                  7.733e+00  2.070e-01  37.356  < 2e-16 ***
## dia                   3.925e-01  2.481e-01   1.582 0.113735    
## mes                   1.009e+01  1.672e+00   6.035 1.64e-09 ***
## año                   8.264e+01  2.732e+00  30.254  < 2e-16 ***
## estacion             -8.030e+00  5.144e+00  -1.561 0.118567    
## dia_de_la_semana      5.270e-01  6.792e-01   0.776 0.437775    
## sensacion_termica     6.183e+00  1.692e-01  36.551  < 2e-16 ***
## humedad              -2.123e+00  7.870e-02 -26.973  < 2e-16 ***
## velocidad_del_viento  6.121e-01  1.773e-01   3.452 0.000559 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10876 degrees of freedom
## Multiple R-squared:  0.3889, Adjusted R-squared:  0.3884 
## F-statistic: 769.2 on 9 and 10876 DF,  p-value: < 2.2e-16

##4 ajustar el modelo

regresion <- lm(rentas_totales ~  hora  + mes +  año   + sensacion_termica + humedad + velocidad_del_viento, data= df)

summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -308.60  -93.85  -28.34   61.05  648.09 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.662e+05  5.496e+03 -30.250  < 2e-16 ***
## hora                  7.734e+00  2.070e-01  37.364  < 2e-16 ***
## mes                   7.574e+00  4.207e-01  18.002  < 2e-16 ***
## año                   8.266e+01  2.732e+00  30.258  < 2e-16 ***
## sensacion_termica     6.172e+00  1.689e-01  36.539  < 2e-16 ***
## humedad              -2.121e+00  7.858e-02 -26.988  < 2e-16 ***
## velocidad_del_viento  6.208e-01  1.771e-01   3.506 0.000457 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared:  0.3886, Adjusted R-squared:  0.3883 
## F-statistic:  1153 on 6 and 10879 DF,  p-value: < 2.2e-16

##5. Conrstruir modelo

datos <- data.frame(hora  = 11.54, mes = 1:12, año =2013, sensacion_termica=23.66,humedad=61.89, velocidad_del_viento=12.799)

predict(regresion,datos)
##        1        2        3        4        5        6        7        8 
## 273.6001 281.1738 288.7475 296.3213 303.8950 311.4687 319.0424 326.6161 
##        9       10       11       12 
## 334.1898 341.7635 349.3372 356.9110

house price

house<- read.csv("/Users/enrique/Downloads/Semestre 7- 1 Bloque R/HousePriceData.csv")

##2. Informacion

summary(house)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 

##3. generar la regresion lineal

regresion2 <- lm(House_Price ~  Dist_Taxi + Dist_Market+ Dist_Hospital +  Carpet+ Builtup+ Parking+ City_Category + Rainfall, data= house)

summary (regresion2)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = house)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3586934  -837542   -65314   784513  4577689 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.568e+06  3.688e+05  15.097  < 2e-16 ***
## Dist_Taxi            2.834e+01  2.694e+01   1.052   0.2931    
## Dist_Market          1.237e+01  2.089e+01   0.592   0.5538    
## Dist_Hospital        5.071e+01  3.021e+01   1.679   0.0936 .  
## Carpet               9.907e+03  1.428e+02  69.398  < 2e-16 ***
## Builtup             -7.575e+03  2.412e+02 -31.403  < 2e-16 ***
## ParkingNo Parking   -6.170e+05  1.393e+05  -4.429 1.06e-05 ***
## ParkingNot Provided -5.077e+05  1.239e+05  -4.096 4.58e-05 ***
## ParkingOpen         -2.597e+05  1.131e+05  -2.297   0.0218 *  
## City_CategoryCAT B  -1.883e+06  9.641e+04 -19.529  < 2e-16 ***
## City_CategoryCAT C  -2.902e+06  1.062e+05 -27.321  < 2e-16 ***
## Rainfall            -9.984e+01  1.548e+02  -0.645   0.5191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1228000 on 886 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9429, Adjusted R-squared:  0.9422 
## F-statistic:  1329 on 11 and 886 DF,  p-value: < 2.2e-16

##4 ajustar el modelo

regresion2 <- lm(House_Price ~  Carpet+ Builtup, data= house)
summary(regresion2)
## 
## Call:
## lm(formula = House_Price ~ Carpet + Builtup, data = house)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -4212263 -1302730   -59144  1288045  5568443 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4905496.3   346227.7   14.17   <2e-16 ***
## Carpet        10054.6      198.1   50.76   <2e-16 ***
## Builtup       -7804.7      335.9  -23.23   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1720000 on 895 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.8868, Adjusted R-squared:  0.8865 
## F-statistic:  3505 on 2 and 895 DF,  p-value: < 2.2e-16

##5. Conrstruir modelo

datos2 <- data.frame(Carpet= 1478, Builtup=1774 )

predict(regresion2,datos2)
##       1 
## 5920662
LS0tCnRpdGxlOiAiNC4zIGFjdGl2aWRhZCIKCmF1dGhvcjogRW5yaXF1ZSBkZSBaYXZhbGEgQTAwODI4MjgxCmRhdGU6IDktMjAtMjAyMwoKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUgCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogInNpbXBsZSIKICAgIGhpZ2hsaWdodDogIm1vbm9jaHJvbWUiCi0tLQoKCiMgcmVudGEgZGUgYmljaXMgCgoKIyMgMS4gSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcwpgYGB7cn0KZGY8LSByZWFkLmNzdigiL1VzZXJzL2VucmlxdWUvRG93bmxvYWRzL1NlbWVzdHJlIDctIDEgQmxvcXVlIFIvcmVudGFkZWJpY2lzLmNzdiIpCmBgYAoKIyMyLiBJbmZvcm1hY2lvbgpgYGB7cn0Kc3VtbWFyeShkZikKYGBgCgoKb2JzZXJ2YWNpb25lczogCjEuIExvcyBkaWFzIGxsZWdhbiBoYXN0YSBlbCAxOSAKCgojIzMuIGdlbmVyYXIgbGEgcmVncmVzaW9uIGxpbmVhbCAKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlcyB+ICBob3JhICsgZGlhICsgbWVzICsgIGHDsW8gICsgZXN0YWNpb24gKyBkaWFfZGVfbGFfc2VtYW5hICsgc2Vuc2FjaW9uX3Rlcm1pY2EgKyBodW1lZGFkICsgdmVsb2NpZGFkX2RlbF92aWVudG8sIGRhdGE9IGRmKQoKc3VtbWFyeSAocmVncmVzaW9uKQpgYGAKCgojIzQgYWp1c3RhciBlbCBtb2RlbG8gCgoKYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlcyB+ICBob3JhICArIG1lcyArICBhw7FvICAgKyBzZW5zYWNpb25fdGVybWljYSArIGh1bWVkYWQgKyB2ZWxvY2lkYWRfZGVsX3ZpZW50bywgZGF0YT0gZGYpCgpzdW1tYXJ5KHJlZ3Jlc2lvbikKYGBgCgojIzUuIENvbnJzdHJ1aXIgbW9kZWxvIAoKYGBge3J9CmRhdG9zIDwtIGRhdGEuZnJhbWUoaG9yYSAgPSAxMS41NCwgbWVzID0gMToxMiwgYcOxbyA9MjAxMywgc2Vuc2FjaW9uX3Rlcm1pY2E9MjMuNjYsaHVtZWRhZD02MS44OSwgdmVsb2NpZGFkX2RlbF92aWVudG89MTIuNzk5KQoKcHJlZGljdChyZWdyZXNpb24sZGF0b3MpCmBgYAoKCiMgaG91c2UgcHJpY2UKCmBgYHtyfQpob3VzZTwtIHJlYWQuY3N2KCIvVXNlcnMvZW5yaXF1ZS9Eb3dubG9hZHMvU2VtZXN0cmUgNy0gMSBCbG9xdWUgUi9Ib3VzZVByaWNlRGF0YS5jc3YiKQpgYGAKCiMjMi4gSW5mb3JtYWNpb24KYGBge3J9CnN1bW1hcnkoaG91c2UpCmBgYAoKCgoKIyMzLiBnZW5lcmFyIGxhIHJlZ3Jlc2lvbiBsaW5lYWwgCmBgYHtyfQpyZWdyZXNpb24yIDwtIGxtKEhvdXNlX1ByaWNlIH4gIERpc3RfVGF4aSArIERpc3RfTWFya2V0KyBEaXN0X0hvc3BpdGFsICsgIENhcnBldCsgQnVpbHR1cCsgUGFya2luZysgQ2l0eV9DYXRlZ29yeSArIFJhaW5mYWxsLCBkYXRhPSBob3VzZSkKCnN1bW1hcnkgKHJlZ3Jlc2lvbjIpCmBgYAoKCiMjNCBhanVzdGFyIGVsIG1vZGVsbyAKCgpgYGB7cn0KCnJlZ3Jlc2lvbjIgPC0gbG0oSG91c2VfUHJpY2UgfiAgQ2FycGV0KyBCdWlsdHVwLCBkYXRhPSBob3VzZSkKc3VtbWFyeShyZWdyZXNpb24yKQpgYGAKCiMjNS4gQ29ucnN0cnVpciBtb2RlbG8gCgpgYGB7cn0KZGF0b3MyIDwtIGRhdGEuZnJhbWUoQ2FycGV0PSAxNDc4LCBCdWlsdHVwPTE3NzQgKQoKcHJlZGljdChyZWdyZXNpb24yLGRhdG9zMikKYGBgCgoKCg==