Renta de Bicis

1. Importar la base de datos

df <- read.csv("C:\\Users\\enriq\\OneDrive\\Documentos\\Datos a Desiciones\\Modulo4\\rentadebicis.csv")

2. Entender la base de datos

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

Observación: 1. Los días llegan hasta el 19 y no hasta 31.

3. Generar regresión lineal

regresion <- lm(rentas_totales ~ hora + dia + mes + año + estacion + dia_de_la_semana + asueto + temperatura + sensacion_termica + humedad + velocidad_del_viento, data =df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion + 
##     dia_de_la_semana + asueto + temperatura + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -305.52  -93.64  -27.70   61.85  649.10 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.661e+05  5.496e+03 -30.217  < 2e-16 ***
## hora                  7.735e+00  2.070e-01  37.368  < 2e-16 ***
## dia                   3.844e-01  2.482e-01   1.549  0.12150    
## mes                   9.996e+00  1.682e+00   5.943 2.89e-09 ***
## año                   8.258e+01  2.732e+00  30.225  < 2e-16 ***
## estacion             -7.774e+00  5.177e+00  -1.502  0.13324    
## dia_de_la_semana      4.393e-01  6.918e-01   0.635  0.52545    
## asueto               -4.864e+00  8.365e+00  -0.582  0.56089    
## temperatura           1.582e+00  1.038e+00   1.524  0.12752    
## sensacion_termica     4.748e+00  9.552e-01   4.971 6.76e-07 ***
## humedad              -2.115e+00  7.884e-02 -26.827  < 2e-16 ***
## velocidad_del_viento  5.582e-01  1.809e-01   3.086  0.00203 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10874 degrees of freedom
## Multiple R-squared:  0.3891, Adjusted R-squared:  0.3885 
## F-statistic: 629.6 on 11 and 10874 DF,  p-value: < 2.2e-16

4. Ajustar el modelo

regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + velocidad_del_viento, data=df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -308.60  -93.85  -28.34   61.05  648.09 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.662e+05  5.496e+03 -30.250  < 2e-16 ***
## hora                  7.734e+00  2.070e-01  37.364  < 2e-16 ***
## mes                   7.574e+00  4.207e-01  18.002  < 2e-16 ***
## año                   8.266e+01  2.732e+00  30.258  < 2e-16 ***
## sensacion_termica     6.172e+00  1.689e-01  36.539  < 2e-16 ***
## humedad              -2.121e+00  7.858e-02 -26.988  < 2e-16 ***
## velocidad_del_viento  6.208e-01  1.771e-01   3.506 0.000457 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared:  0.3886, Adjusted R-squared:  0.3883 
## F-statistic:  1153 on 6 and 10879 DF,  p-value: < 2.2e-16

5. Construir el modelo predictivo

datos <- data.frame(hora=11.54, mes=1:12, año=2013, sensacion_termica=23.66, humedad=61.89, velocidad_del_viento=12.799)
predict(regresion, datos)
##        1        2        3        4        5        6        7        8 
## 273.6001 281.1738 288.7475 296.3213 303.8950 311.4687 319.0424 326.6161 
##        9       10       11       12 
## 334.1898 341.7635 349.3372 356.9110

Precio de casas

1. Importar la base de datos

bd <- read.csv("C:\\Users\\enriq\\OneDrive\\Documentos\\Datos a Desiciones\\Modulo4\\HousePriceData.csv")

2. Entender la base de datos

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
count(bd, Parking, sort=TRUE)
##        Parking   n
## 1         Open 355
## 2 Not Provided 225
## 3      Covered 184
## 4   No Parking 141
count(bd, City_Category, sort=TRUE)
##   City_Category   n
## 1         CAT B 351
## 2         CAT A 320
## 3         CAT C 234

Observación: 1. El precio de la casa esta con datos atípicos 2. Rainfall tiene valores negativos 3. Carpet tiene 7 NA

3. Limpiar la base de datos

# Cuántos NA tengo en la base de datos
sum(is.na(bd))
## [1] 7
# Cuántos NA tengo por variable
sapply(bd, function(x) sum(is.na(x)))
##   Observation     Dist_Taxi   Dist_Market Dist_Hospital        Carpet 
##             0             0             0             0             7 
##       Builtup       Parking City_Category      Rainfall   House_Price 
##             0             0             0             0             0
# Eliminar los NA
bd <- na.omit(bd)

#Eliminar registro de valor atípico
bd <- bd[bd$House_Price<120000000,]

#Eliminar registro de Rainfall negativo
bd <- bd[bd$Rainfall>=0,]

# Gráficas
boxplot(bd$House_Price, horizontal = TRUE)

4. Generar regresión lineal

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + Parking + City_Category + Rainfall, data =bd)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572009  -800792   -65720   761534  4401585 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.599e+06  3.672e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.009e+01  2.682e+01   1.122   0.2622    
## Dist_Market          1.285e+01  2.081e+01   0.618   0.5370    
## Dist_Hospital        4.864e+01  3.008e+01   1.617   0.1062    
## Carpet              -7.997e+02  3.476e+03  -0.230   0.8181    
## Builtup              1.339e+03  2.901e+03   0.462   0.6444    
## ParkingNo Parking   -6.040e+05  1.389e+05  -4.348 1.53e-05 ***
## ParkingNot Provided -4.924e+05  1.235e+05  -3.988 7.22e-05 ***
## ParkingOpen         -2.632e+05  1.126e+05  -2.338   0.0196 *  
## City_CategoryCAT B  -1.877e+06  9.598e+04 -19.554  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.300  < 2e-16 ***
## Rainfall            -1.175e+02  1.550e+02  -0.758   0.4484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1222000 on 884 degrees of freedom
## Multiple R-squared:  0.5007, Adjusted R-squared:  0.4945 
## F-statistic: 80.58 on 11 and 884 DF,  p-value: < 2.2e-16

5. Ajustar el modelo

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + Parking + City_Category + Rainfall, data =bd)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572009  -800792   -65720   761534  4401585 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.599e+06  3.672e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.009e+01  2.682e+01   1.122   0.2622    
## Dist_Market          1.285e+01  2.081e+01   0.618   0.5370    
## Dist_Hospital        4.864e+01  3.008e+01   1.617   0.1062    
## Carpet              -7.997e+02  3.476e+03  -0.230   0.8181    
## Builtup              1.339e+03  2.901e+03   0.462   0.6444    
## ParkingNo Parking   -6.040e+05  1.389e+05  -4.348 1.53e-05 ***
## ParkingNot Provided -4.924e+05  1.235e+05  -3.988 7.22e-05 ***
## ParkingOpen         -2.632e+05  1.126e+05  -2.338   0.0196 *  
## City_CategoryCAT B  -1.877e+06  9.598e+04 -19.554  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.300  < 2e-16 ***
## Rainfall            -1.175e+02  1.550e+02  -0.758   0.4484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1222000 on 884 degrees of freedom
## Multiple R-squared:  0.5007, Adjusted R-squared:  0.4945 
## F-statistic: 80.58 on 11 and 884 DF,  p-value: < 2.2e-16

6. Construir el modelo predictivo

datos <- data.frame(Dist_Taxi=8278, Dist_Market=16251, Dist_Hospital=13857, Carpet=1455, Builtup=1764, Parking="Covered", City_Category="CAT A", Rainfall=390)
predict(regresion, datos)
##       1 
## 7883860
LS0tDQp0aXRsZTogIkFjdGl2aWRhZCA0LjMiDQphdXRob3I6ICJFbnJpcXVlIE1vbnNpdmFpcyINCmRhdGU6ICIyMDIzLTA5LTIwIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdGhlbWU6ICJzaW1wbGV4Ig0KICAgIGhpZ2hsaWdodDogIm1vbm9jaHJvbWUiDQotLS0NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5SZW50YSBkZSBCaWNpczwvc3Bhbj4NCg0KIVtdKEM6XFxVc2Vyc1xcZW5yaXFcXE9uZURyaXZlXFxEb2N1bWVudG9zXFxEYXRvcyBhIERlc2ljaW9uZXNcXE1vZHVsbzRcXGJpY2kuZ2lmKQ0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4xLiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KDQpgYGB7cn0NCmRmIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXGVucmlxXFxPbmVEcml2ZVxcRG9jdW1lbnRvc1xcRGF0b3MgYSBEZXNpY2lvbmVzXFxNb2R1bG80XFxyZW50YWRlYmljaXMuY3N2IikNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4yLiBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGRmKQ0KYGBgDQoNCk9ic2VydmFjacOzbjoNCjEuIExvcyBkw61hcyBsbGVnYW4gaGFzdGEgZWwgMTkgeSBubyBoYXN0YSAzMS4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+My4gR2VuZXJhciByZWdyZXNpw7NuIGxpbmVhbDwvc3Bhbj4NCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKHJlbnRhc190b3RhbGVzIH4gaG9yYSArIGRpYSArIG1lcyArIGHDsW8gKyBlc3RhY2lvbiArIGRpYV9kZV9sYV9zZW1hbmEgKyBhc3VldG8gKyB0ZW1wZXJhdHVyYSArIHNlbnNhY2lvbl90ZXJtaWNhICsgaHVtZWRhZCArIHZlbG9jaWRhZF9kZWxfdmllbnRvLCBkYXRhID1kZikNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjQuIEFqdXN0YXIgZWwgbW9kZWxvPC9zcGFuPg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0ocmVudGFzX3RvdGFsZXMgfiBob3JhICsgbWVzICsgYcOxbyArIHNlbnNhY2lvbl90ZXJtaWNhICsgaHVtZWRhZCArIHZlbG9jaWRhZF9kZWxfdmllbnRvLCBkYXRhPWRmKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij41LiBDb25zdHJ1aXIgZWwgbW9kZWxvIHByZWRpY3Rpdm88L3NwYW4+DQpgYGB7cn0NCmRhdG9zIDwtIGRhdGEuZnJhbWUoaG9yYT0xMS41NCwgbWVzPTE6MTIsIGHDsW89MjAxMywgc2Vuc2FjaW9uX3Rlcm1pY2E9MjMuNjYsIGh1bWVkYWQ9NjEuODksIHZlbG9jaWRhZF9kZWxfdmllbnRvPTEyLjc5OSkNCnByZWRpY3QocmVncmVzaW9uLCBkYXRvcykNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlByZWNpbyBkZSBjYXNhczwvc3Bhbj4NCg0KIVtdKEM6XFxVc2Vyc1xcZW5yaXFcXE9uZURyaXZlXFxEb2N1bWVudG9zXFxEYXRvcyBhIERlc2ljaW9uZXNcXE1vZHVsbzRcXGJpY2kuZ2lmKQ0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4xLiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KDQpgYGB7cn0NCmJkIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXGVucmlxXFxPbmVEcml2ZVxcRG9jdW1lbnRvc1xcRGF0b3MgYSBEZXNpY2lvbmVzXFxNb2R1bG80XFxIb3VzZVByaWNlRGF0YS5jc3YiKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjIuIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpsaWJyYXJ5KGRwbHlyKQ0KY291bnQoYmQsIFBhcmtpbmcsIHNvcnQ9VFJVRSkNCmNvdW50KGJkLCBDaXR5X0NhdGVnb3J5LCBzb3J0PVRSVUUpDQpgYGANCk9ic2VydmFjacOzbjogDQoxLiBFbCBwcmVjaW8gZGUgbGEgY2FzYSBlc3RhIGNvbiBkYXRvcyBhdMOtcGljb3MNCjIuIFJhaW5mYWxsIHRpZW5lIHZhbG9yZXMgbmVnYXRpdm9zDQozLiBDYXJwZXQgdGllbmUgNyBOQQ0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4zLiBMaW1waWFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+DQpgYGB7cn0NCiMgQ3XDoW50b3MgTkEgdGVuZ28gZW4gbGEgYmFzZSBkZSBkYXRvcw0Kc3VtKGlzLm5hKGJkKSkNCg0KIyBDdcOhbnRvcyBOQSB0ZW5nbyBwb3IgdmFyaWFibGUNCnNhcHBseShiZCwgZnVuY3Rpb24oeCkgc3VtKGlzLm5hKHgpKSkNCg0KIyBFbGltaW5hciBsb3MgTkENCmJkIDwtIG5hLm9taXQoYmQpDQoNCiNFbGltaW5hciByZWdpc3RybyBkZSB2YWxvciBhdMOtcGljbw0KYmQgPC0gYmRbYmQkSG91c2VfUHJpY2U8MTIwMDAwMDAwLF0NCg0KI0VsaW1pbmFyIHJlZ2lzdHJvIGRlIFJhaW5mYWxsIG5lZ2F0aXZvDQpiZCA8LSBiZFtiZCRSYWluZmFsbD49MCxdDQoNCiMgR3LDoWZpY2FzDQpib3hwbG90KGJkJEhvdXNlX1ByaWNlLCBob3Jpem9udGFsID0gVFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij40LiBHZW5lcmFyIHJlZ3Jlc2nDs24gbGluZWFsPC9zcGFuPg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0oSG91c2VfUHJpY2UgfiBEaXN0X1RheGkgKyBEaXN0X01hcmtldCArIERpc3RfSG9zcGl0YWwgKyBDYXJwZXQgKyBCdWlsdHVwICsgUGFya2luZyArIENpdHlfQ2F0ZWdvcnkgKyBSYWluZmFsbCwgZGF0YSA9YmQpDQpzdW1tYXJ5KHJlZ3Jlc2lvbikNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij41LiBBanVzdGFyIGVsIG1vZGVsbzwvc3Bhbj4NCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKEhvdXNlX1ByaWNlIH4gRGlzdF9UYXhpICsgRGlzdF9NYXJrZXQgKyBEaXN0X0hvc3BpdGFsICsgQ2FycGV0ICsgQnVpbHR1cCArIFBhcmtpbmcgKyBDaXR5X0NhdGVnb3J5ICsgUmFpbmZhbGwsIGRhdGEgPWJkKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+Ni4gQ29uc3RydWlyIGVsIG1vZGVsbyBwcmVkaWN0aXZvPC9zcGFuPg0KYGBge3J9DQpkYXRvcyA8LSBkYXRhLmZyYW1lKERpc3RfVGF4aT04Mjc4LCBEaXN0X01hcmtldD0xNjI1MSwgRGlzdF9Ib3NwaXRhbD0xMzg1NywgQ2FycGV0PTE0NTUsIEJ1aWx0dXA9MTc2NCwgUGFya2luZz0iQ292ZXJlZCIsIENpdHlfQ2F0ZWdvcnk9IkNBVCBBIiwgUmFpbmZhbGw9MzkwKQ0KcHJlZGljdChyZWdyZXNpb24sIGRhdG9zKQ0KYGBg