Titanic
#file.choose()
titanic <- read.csv("/Users/davidcavazos/Desktop/titanic.csv")
## pclass survived name sex
## Min. :1.000 Min. :0.000 Length:1310 Length:1310
## 1st Qu.:2.000 1st Qu.:0.000 Class :character Class :character
## Median :3.000 Median :0.000 Mode :character Mode :character
## Mean :2.295 Mean :0.382
## 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :3.000 Max. :1.000
## NA's :1 NA's :1
## age sibsp parch ticket
## Min. : 0.1667 Min. :0.0000 Min. :0.000 Length:1310
## 1st Qu.:21.0000 1st Qu.:0.0000 1st Qu.:0.000 Class :character
## Median :28.0000 Median :0.0000 Median :0.000 Mode :character
## Mean :29.8811 Mean :0.4989 Mean :0.385
## 3rd Qu.:39.0000 3rd Qu.:1.0000 3rd Qu.:0.000
## Max. :80.0000 Max. :8.0000 Max. :9.000
## NA's :264 NA's :1 NA's :1
## fare cabin embarked boat
## Min. : 0.000 Length:1310 Length:1310 Length:1310
## 1st Qu.: 7.896 Class :character Class :character Class :character
## Median : 14.454 Mode :character Mode :character Mode :character
## Mean : 33.295
## 3rd Qu.: 31.275
## Max. :512.329
## NA's :2
## body home.dest
## Min. : 1.0 Length:1310
## 1st Qu.: 72.0 Class :character
## Median :155.0 Mode :character
## Mean :160.8
## 3rd Qu.:256.0
## Max. :328.0
## NA's :1189
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#count(titanic,name,sort= TRUE)
#count(titanic,sex,sort= TRUE)
#count(titanic,ticket,sort= TRUE)
#count(titanic,cabin,sort= TRUE)
#count(titanic,embarked,sort= TRUE)
#count(titanic,boat,sort= TRUE)
#count(titanic,home.dest,sort= TRUE)
3.Limpiar base de
datos
#Cambiar de nombre a las variables pclass
colnames(titanic)[1] <- "class"
#Extraer las variables de interés
Titanic<- titanic[,c("class", "age", "sex", "survived")]
#¿Cuántos NA tengo en la base de datos?
sum(is.na(Titanic))
## [1] 266
#¿CUántos NA tengo por variable?
sapply(Titanic, function(x)sum(is.na(x)))
## class age sex survived
## 1 264 0 1
#Eliminar NA
Titanic <- na.omit(Titanic)
str(Titanic)
## 'data.frame': 1046 obs. of 4 variables:
## $ class : int 1 1 1 1 1 1 1 1 1 1 ...
## $ age : num 29 0.917 2 30 25 ...
## $ sex : chr "female" "male" "female" "male" ...
## $ survived: int 1 1 0 0 0 1 1 0 1 0 ...
## - attr(*, "na.action")= 'omit' Named int [1:264] 16 38 41 47 60 70 71 75 81 107 ...
## ..- attr(*, "names")= chr [1:264] "16" "38" "41" "47" ...
#Convertir las variables categoricas
Titanic$class<-as.factor(Titanic$class)
Titanic$sex<-as.factor(Titanic$sex)
Titanic$survived<-as.factor(Titanic$survived)
str(Titanic)
## 'data.frame': 1046 obs. of 4 variables:
## $ class : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ age : num 29 0.917 2 30 25 ...
## $ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...
## $ survived: Factor w/ 2 levels "0","1": 2 2 1 1 1 2 2 1 2 1 ...
## - attr(*, "na.action")= 'omit' Named int [1:264] 16 38 41 47 60 70 71 75 81 107 ...
## ..- attr(*, "names")= chr [1:264] "16" "38" "41" "47" ...
4. Crear el árbol de
decisión
library(rpart)
library(rpart.plot)
arbol <- rpart(formula = survived ~ ., data = Titanic)
arbol
## n= 1046
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 1046 427 0 (0.59177820 0.40822180)
## 2) sex=male 658 135 0 (0.79483283 0.20516717)
## 4) age>=9.5 615 110 0 (0.82113821 0.17886179) *
## 5) age< 9.5 43 18 1 (0.41860465 0.58139535)
## 10) class=3 29 11 0 (0.62068966 0.37931034) *
## 11) class=1,2 14 0 1 (0.00000000 1.00000000) *
## 3) sex=female 388 96 1 (0.24742268 0.75257732)
## 6) class=3 152 72 0 (0.52631579 0.47368421)
## 12) age>=1.5 145 66 0 (0.54482759 0.45517241) *
## 13) age< 1.5 7 1 1 (0.14285714 0.85714286) *
## 7) class=1,2 236 16 1 (0.06779661 0.93220339) *


Crear el árbol de
decisión
library(rpart)
library(rpart.plot)
arbol <- rpart(formula = diagnosis ~ ., data = cancer_de_mama)
arbol
## n= 569
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 569 212 B (0.62741652 0.37258348)
## 2) radius_worst< 16.795 379 33 B (0.91292876 0.08707124)
## 4) concave.points_worst< 0.1358 333 5 B (0.98498498 0.01501502) *
## 5) concave.points_worst>=0.1358 46 18 M (0.39130435 0.60869565)
## 10) texture_worst< 25.67 19 4 B (0.78947368 0.21052632) *
## 11) texture_worst>=25.67 27 3 M (0.11111111 0.88888889) *
## 3) radius_worst>=16.795 190 11 M (0.05789474 0.94210526) *


LS0tCnRpdGxlOiAiQWN0IDQuMiIKYXV0aG9yOiAiRGF2aWQgQ2F2YXpvcyAtIEEwMTE3NzIzOCIKZGF0ZTogIjIwMjMtMDktMTciCm91dHB1dDogCiBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAieWV0aSIKICAgIGhpZ2hsaWdodDogInRhbmdvIgotLS0KCiFbIF0oL1VzZXJzL2RhdmlkY2F2YXpvcy9EZXNrdG9wL3RpdGFuaWMucG5nKQoKPGNlbnRlcj4KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPipUaXRhbmljPC9zcGFuPioKCgpgYGB7cn0KI2ZpbGUuY2hvb3NlKCkKdGl0YW5pYyA8LSByZWFkLmNzdigiL1VzZXJzL2RhdmlkY2F2YXpvcy9EZXNrdG9wL3RpdGFuaWMuY3N2IikKYGBgCgoKYGBge3J9CnN1bW1hcnkodGl0YW5pYykKCmxpYnJhcnkoZHBseXIpCgojY291bnQodGl0YW5pYyxuYW1lLHNvcnQ9IFRSVUUpCiNjb3VudCh0aXRhbmljLHNleCxzb3J0PSBUUlVFKQojY291bnQodGl0YW5pYyx0aWNrZXQsc29ydD0gVFJVRSkKI2NvdW50KHRpdGFuaWMsY2FiaW4sc29ydD0gVFJVRSkKI2NvdW50KHRpdGFuaWMsZW1iYXJrZWQsc29ydD0gVFJVRSkKI2NvdW50KHRpdGFuaWMsYm9hdCxzb3J0PSBUUlVFKQojY291bnQodGl0YW5pYyxob21lLmRlc3Qsc29ydD0gVFJVRSkKCmBgYAoKPGNlbnRlcj4KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiozLkxpbXBpYXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4qCgpgYGB7cn0KI0NhbWJpYXIgZGUgbm9tYnJlIGEgbGFzIHZhcmlhYmxlcyBwY2xhc3MKY29sbmFtZXModGl0YW5pYylbMV0gPC0gImNsYXNzIgoKI0V4dHJhZXIgbGFzIHZhcmlhYmxlcyBkZSBpbnRlcsOpcwpUaXRhbmljPC0gdGl0YW5pY1ssYygiY2xhc3MiLCAiYWdlIiwgInNleCIsICJzdXJ2aXZlZCIpXQoKI8K/Q3XDoW50b3MgTkEgdGVuZ28gZW4gbGEgYmFzZSBkZSBkYXRvcz8Kc3VtKGlzLm5hKFRpdGFuaWMpKQoKI8K/Q1XDoW50b3MgTkEgdGVuZ28gcG9yIHZhcmlhYmxlPwpzYXBwbHkoVGl0YW5pYywgZnVuY3Rpb24oeClzdW0oaXMubmEoeCkpKQoKI0VsaW1pbmFyIE5BCgpUaXRhbmljIDwtIG5hLm9taXQoVGl0YW5pYykKc3RyKFRpdGFuaWMpCgojQ29udmVydGlyIGxhcyB2YXJpYWJsZXMgY2F0ZWdvcmljYXMKClRpdGFuaWMkY2xhc3M8LWFzLmZhY3RvcihUaXRhbmljJGNsYXNzKQpUaXRhbmljJHNleDwtYXMuZmFjdG9yKFRpdGFuaWMkc2V4KQpUaXRhbmljJHN1cnZpdmVkPC1hcy5mYWN0b3IoVGl0YW5pYyRzdXJ2aXZlZCkKc3RyKFRpdGFuaWMpCgoKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPio0LiBDcmVhciBlbCDDoXJib2wgZGUgZGVjaXNpw7NuPC9zcGFuPioKYGBge3J9CmxpYnJhcnkocnBhcnQpCmxpYnJhcnkocnBhcnQucGxvdCkKYXJib2wgPC0gcnBhcnQoZm9ybXVsYSA9IHN1cnZpdmVkIH4gLiwgZGF0YSA9IFRpdGFuaWMpCmFyYm9sCgpycGFydC5wbG90KGFyYm9sKQoKcHJwKGFyYm9sLGV4dHJhID0gNykKCmBgYAoKCgo8Y2VudGVyPgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+KkPDoW5jZXIgZGUgbWFtYTwvc3Bhbj4qCgoKPGNlbnRlcj4KIVsgXSgvVXNlcnMvZGF2aWRjYXZhem9zL0Rlc2t0b3AvQmFubmVyLS0tMjIuMS5wbmcpIAoKYGBge3J9CiMjIGZpbGUuY2hvb3NlKCkKY2FuY2VyX2RlX21hbWEgPC0gcmVhZC5jc3YoIi9Vc2Vycy9kYXZpZGNhdmF6b3MvRGVza3RvcC9jYW5jZXJfZGVfbWFtYS5jc3YiKQpgYGAKCgpgYGB7cn0Kc3VtbWFyeShjYW5jZXJfZGVfbWFtYSkKCmxpYnJhcnkoZHBseXIpCgpjb3VudChjYW5jZXJfZGVfbWFtYSxkaWFnbm9zaXMsc29ydCA9IFRSVUUpCgpgYGAKCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+KkNyZWFyIGVsIMOhcmJvbCBkZSBkZWNpc2nDs248L3NwYW4+KgpgYGB7cn0KbGlicmFyeShycGFydCkKbGlicmFyeShycGFydC5wbG90KQphcmJvbCA8LSBycGFydChmb3JtdWxhID0gZGlhZ25vc2lzIH4gLiwgZGF0YSA9IGNhbmNlcl9kZV9tYW1hKQphcmJvbAoKcnBhcnQucGxvdChhcmJvbCkKCnBycChhcmJvbCxleHRyYSA9IDcpCgpgYGAKCg==