Start with a clean slate.
# Clear the workspace
rm(list = ls()) # Clear all files from your environment
gc() # Clear unused memory
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 525506 28.1 1166812 62.4 NA 669265 35.8
## Vcells 965911 7.4 8388608 64.0 32768 1840568 14.1
cat("\f") # Clear the console
graphics.off() # Clear all graphs
Now, I will load the packages.
# Prepare needed libraries
packages <- c("reader", # importing .txt file,
"readxl", # importing xlsx file,
"psych", # quick summary stats for data exploration,
"mice", # for imputation of missing values and vis of missing data,
"stargazer", # summary stats,
"vtable", # summary stats,
"summarytools",# summary stats,
"naniar", # for visualisation of missing data,
"visdat", # for visualisation of missing data,
"VIM", # for visualisation of missing data,
"DataExplorer",# for visualisation of missing data,
"tidyverse", # data manipulation like selecting variables,
"fastDummies", # Create dummy variables using fastDummies,
"corrplot", # correlation plots,
"ggplot2", # graphing,
"data.table", # reshape for graphing,
"car" # vif for multicollinearity
)
for (i in 1:length(packages)) {
if (!packages[i] %in% rownames(installed.packages())) {
install.packages(packages[i]
, repos = "http://cran.rstudio.com/"
, dependencies = TRUE
)
}
library(packages[i], character.only = TRUE)
}
## Loading required package: NCmisc
##
## Attaching package: 'reader'
## The following objects are masked from 'package:NCmisc':
##
## cat.path, get.ext, rmv.ext
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
## Loading required package: kableExtra
##
## Attaching package: 'vtable'
## The following object is masked from 'package:NCmisc':
##
## pctile
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:vtable':
##
## countNA
## The following object is masked from 'package:datasets':
##
## sleep
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter() masks mice::filter(), stats::filter()
## ✖ dplyr::group_rows() masks kableExtra::group_rows()
## ✖ dplyr::lag() masks stats::lag()
## ✖ tibble::view() masks summarytools::view()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## corrplot 0.92 loaded
##
##
## Attaching package: 'data.table'
##
##
## The following objects are masked from 'package:lubridate':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
##
##
## The following objects are masked from 'package:dplyr':
##
## between, first, last
##
##
## The following object is masked from 'package:purrr':
##
## transpose
##
##
## Loading required package: carData
##
##
## Attaching package: 'car'
##
##
## The following object is masked from 'package:dplyr':
##
## recode
##
##
## The following object is masked from 'package:purrr':
##
## some
##
##
## The following object is masked from 'package:psych':
##
## logit
rm(packages)
Confirm 2019 data.
getwd()
## [1] "/Users/arvindsharma/Library/CloudStorage/GoogleDrive-sharmaar@bc.edu/My Drive/Directed Practicum/Thomas/arvind/scripts"
setwd("~/Library/CloudStorage/GoogleDrive-sharmaar@bc.edu/My Drive/Directed Practicum/Thomas/arvind/")
# import data
## PPP
public_150k_plus_2019 <- read.csv(file = "raw_data/public_150k_plus_230630.csv")
setwd("~/Library/CloudStorage/GoogleDrive-sharmaar@bc.edu/My Drive/Directed Practicum/Thomas/arvind/")
## EIN
ein_data <- readr::read_delim("raw_data/ein/ein_data_edited.txt",
delim = "|",
escape_double = FALSE,
trim_ws = TRUE
)
## Rows: 1287563 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "|"
## chr (6): ID, ORGANISATION, CITY, STATE, COUNTRY, PF
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
class(ein_data)
## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
ein_data <- as.data.frame(ein_data)
## FORM 990
eoextract_990_2019 <- readxl::read_excel("raw_data/form990/19eoextract990.xlsx")
eoextract_ez_2019 <- readxl::read_excel("raw_data/form990/19eoextractez.xlsx")
BusinessType and ForProfit
filters…AS.ForgivenessAmount, ApprovalAmountsstr(public_150k_plus_2019)
## 'data.frame': 965552 obs. of 53 variables:
## $ LoanNumber : num 9.55e+09 9.78e+09 5.79e+09 6.22e+09 9.66e+09 ...
## $ DateApproved : chr "05/01/2020" "05/01/2020" "05/01/2020" "05/01/2020" ...
## $ SBAOfficeCode : int 464 464 1013 920 101 101 491 101 101 101 ...
## $ ProcessingMethod : chr "PPP" "PPP" "PPP" "PPP" ...
## $ BorrowerName : chr "SUMTER COATINGS, INC." "PLEASANT PLACES, INC." "BOYER CHILDREN'S CLINIC" "KIRTLEY CONSTRUCTION INC" ...
## $ BorrowerAddress : chr "2410 Highway 15 South" "7684 Southrail Road" "1850 BOYER AVE E" "1661 MARTIN RANCH RD" ...
## $ BorrowerCity : chr "Sumter" "North Charleston" "SEATTLE" "SAN BERNARDINO" ...
## $ BorrowerState : chr "" "" "" "" ...
## $ BorrowerZip : chr "29150-9662" "29420-9000" "98112-2922" "92407-1740" ...
## $ LoanStatusDate : chr "12/18/2020" "09/28/2021" "03/17/2021" "10/16/2021" ...
## $ LoanStatus : chr "Paid in Full" "Paid in Full" "Paid in Full" "Paid in Full" ...
## $ Term : int 24 24 24 24 24 24 24 24 24 24 ...
## $ SBAGuarantyPercentage : int 100 100 100 100 100 100 100 100 100 100 ...
## $ InitialApprovalAmount : num 769359 736928 691355 499871 367437 ...
## $ CurrentApprovalAmount : num 769359 736928 691355 499871 367437 ...
## $ UndisbursedAmount : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FranchiseName : chr "" "" "" "" ...
## $ ServicingLenderLocationID : int 19248 19248 9551 9551 57328 57328 19248 57328 57328 57328 ...
## $ ServicingLenderName : chr "Synovus Bank" "Synovus Bank" "Bank of America, National Association" "Bank of America, National Association" ...
## $ ServicingLenderAddress : chr "1148 Broadway" "1148 Broadway" "100 N Tryon St, Ste 170" "100 N Tryon St, Ste 170" ...
## $ ServicingLenderCity : chr "COLUMBUS" "COLUMBUS" "CHARLOTTE" "CHARLOTTE" ...
## $ ServicingLenderState : chr "GA" "GA" "NC" "NC" ...
## $ ServicingLenderZip : chr "31901-2429" "31901-2429" "28202-4024" "28202-4024" ...
## $ RuralUrbanIndicator : chr "U" "U" "U" "U" ...
## $ HubzoneIndicator : chr "N" "Y" "N" "N" ...
## $ LMIIndicator : chr "N" "Y" "N" "N" ...
## $ BusinessAgeDescription : chr "Existing or more than 2 years old" "Existing or more than 2 years old" "New Business or 2 years or less" "New Business or 2 years or less" ...
## $ ProjectCity : chr "Sumter" "North Charleston" "SEATTLE" "SAN BERNARDINO" ...
## $ ProjectCountyName : chr "SUMTER" "CHARLESTON" "KING" "SAN BERNARDINO" ...
## $ ProjectState : chr "SC" "SC" "WA" "CA" ...
## $ ProjectZip : chr "29150-9662" "29420-9000" "98112-2922" "92407-1740" ...
## $ CD : chr "SC-05" "SC-06" "WA-07" "CA-23" ...
## $ JobsReported : int 62 73 75 21 25 22 89 19 18 17 ...
## $ NAICSCode : int 325510 561730 NA 236115 484210 326199 813110 423140 444220 424210 ...
## $ Race : chr "Unanswered" "White" "Unanswered" "American Indian or Alaska Native" ...
## $ Ethnicity : chr "Unknown/NotStated" "Unknown/NotStated" "Unknown/NotStated" "Not Hispanic or Latino" ...
## $ UTILITIES_PROCEED : num NA NA NA NA NA NA NA NA NA NA ...
## $ PAYROLL_PROCEED : num 769359 736928 691355 499871 367437 ...
## $ MORTGAGE_INTEREST_PROCEED : num NA NA NA NA NA NA NA NA NA NA ...
## $ RENT_PROCEED : num NA NA NA NA NA NA NA NA NA NA ...
## $ REFINANCE_EIDL_PROCEED : num NA NA NA NA NA NA NA NA NA NA ...
## $ HEALTH_CARE_PROCEED : num NA NA NA NA NA NA NA NA NA NA ...
## $ DEBT_INTEREST_PROCEED : num NA NA NA NA NA NA NA NA NA NA ...
## $ BusinessType : chr "Corporation" "Sole Proprietorship" "Non-Profit Organization" "Corporation" ...
## $ OriginatingLenderLocationID: int 19248 19248 9551 9551 57328 57328 19248 57328 57328 57328 ...
## $ OriginatingLender : chr "Synovus Bank" "Synovus Bank" "Bank of America, National Association" "Bank of America, National Association" ...
## $ OriginatingLenderCity : chr "COLUMBUS" "COLUMBUS" "CHARLOTTE" "CHARLOTTE" ...
## $ OriginatingLenderState : chr "GA" "GA" "NC" "NC" ...
## $ Gender : chr "Unanswered" "Male Owned" "Unanswered" "Male Owned" ...
## $ Veteran : chr "Unanswered" "Non-Veteran" "Unanswered" "Non-Veteran" ...
## $ NonProfit : chr "" "" "Y" "" ...
## $ ForgivenessAmount : num 773553 746336 696677 395264 370819 ...
## $ ForgivenessDate : chr "11/20/2020" "08/12/2021" "02/10/2021" "09/10/2021" ...
naniar::gg_miss_var(public_150k_plus_2019)
# naniar::gg_miss_upset(public_150k_plus_2019)
Make this professional looking.
stargazer(public_150k_plus_2019,
type = "text"
)
##
## ====================================================================================================
## Statistic N Mean St. Dev. Min Max
## ----------------------------------------------------------------------------------------------------
## LoanNumber 965,552 5,426,351,638.000 2,551,023,609.000 1,000,007,108 9,999,007,109
## SBAOfficeCode 965,552 571.145 262.725 101 1,094
## Term 965,552 36.310 17.300 0 203
## SBAGuarantyPercentage 965,552 100.000 0.000 100 100
## InitialApprovalAmount 965,552 531,600.100 743,460.400 0.000 10,000,000.000
## CurrentApprovalAmount 965,552 529,962.400 737,069.600 150,000.000 10,000,000.000
## UndisbursedAmount 965,506 5.383 3,569.594 0.000 3,346,517.000
## ServicingLenderLocationID 965,552 106,619.100 131,046.800 20 596,038
## JobsReported 965,551 51.911 67.558 0 500
## NAICSCode 958,924 511,854.500 181,374.400 111,110 999,990
## UTILITIES_PROCEED 338,349 14,936.930 85,013.160 0.000 10,000,000.000
## PAYROLL_PROCEED 963,725 514,265.600 713,324.000 0.000 10,000,000.000
## MORTGAGE_INTEREST_PROCEED 45,524 47,614.150 158,976.100 0.000 10,000,000.000
## RENT_PROCEED 99,224 56,125.270 111,237.300 0.000 5,518,278.000
## REFINANCE_EIDL_PROCEED 22,848 6,878.027 62,064.420 0.000 2,951,590.000
## HEALTH_CARE_PROCEED 57,426 46,867.770 102,927.000 0.000 3,880,000.000
## DEBT_INTEREST_PROCEED 31,696 14,337.970 55,472.660 0.000 2,497,617.000
## OriginatingLenderLocationID 965,552 106,167.200 132,804.200 20 533,479
## ForgivenessAmount 939,037 528,117.600 731,600.500 0.010 10,276,578.000
## ----------------------------------------------------------------------------------------------------
Plot it with Tableau. library(esquisse) if you want
within R.
state variable missing.str(ein_data)
## 'data.frame': 1287563 obs. of 6 variables:
## $ ID : chr "000004101" "000587764" "000635913" "000765634" ...
## $ ORGANISATION: chr "South Lafourche Quarterback Club" "Iglesia Bethesda Inc." "Ministerio Apostolico Jesucristo Es El Senor Inc." "Mercy Chapel International" ...
## $ CITY : chr "Lockport" "Lowell" "Lawrence" "Mattapan" ...
## $ STATE : chr "LA" "MA" "MA" "MA" ...
## $ COUNTRY : chr "United States" "United States" "United States" "United States" ...
## $ PF : chr "PF" "PC" "PC" "PC" ...
table(ein_data$COUNTRY)
##
## AFGHANISTAN ALBANIA ALGERIA
## 60 1 2
## AMERICAN SAMOA ANTIGUA & BARBUDA ARGENTINA
## 2 2 3
## ARMENIA AUSTRALIA AUSTRIA
## 2 33 3
## BAHRAIN BANGLADESH BARBADOS
## 1 1 1
## BELARUS BELIZE BERMUDA
## 1 2 4
## BOUVET ISLAND BRAZIL BRITISH COLUMBIA CAN
## 1 1 1
## BRITISH VIRGIN ISLAN BRITISH VIRGIN ISLANDS BURKINA FASO
## 1 39 1
## CAMBODIA CAMEROON CANADA
## 1 4 385
## CAPE VERDE CHINA COLOMBIA
## 1 3 1
## COMOROS COSTA RICA CZECH REPUBLIC
## 1 3 1
## DEM REP OF CONGO DENMARK DOMINICAN REPUBLIC
## 2 1 1
## EAST AFRICA ECUADOR EGYPT
## 1 1 1
## FRANCE GEORGIA GERMANY
## 11 13 5
## GREECE GUAM GUATEMALA
## 4 2 2
## HAITI HONG KONG INDIA
## 4 3 4
## INDONESIA IRAN IRELAND
## 1 1 4
## ISRAEL ITALY JAMAICA
## 29 7 1
## JAPAN JERSEY KENYA
## 10 1 11
## LAOS LEBANON LIECHTENSTEIN
## 2 3 1
## MAURITIUS MEXICO MOLDOVA
## 10 10 1
## MONGOLIA NAMIBIA NETHERLANDS
## 1 1 7
## NIGERIA NORTHERN MARIANA ISLAN NORWAY
## 2 3 1
## PAKISTAN PERU PHILIPPINES
## 1 1 6
## PORTUGAL PUERTO RICO REPUBLIC OF KOREA
## 2 8 3
## ROMANIA SENEGAL SIERRA LEONE
## 1 3 1
## SINGAPORE SOUTH AFRICA SPAIN
## 2 2 1
## ST LUCIA SUDAN SWAZILAND
## 1 1 1
## SWEDEN SWITZERLAND TAIWAN
## 5 5 2
## TANZANIA THE BAHAMAS THE GAMBIA
## 1 1 1
## TOGO TURKS AND CAICOS ISLAN UGANDA
## 1 1 5
## UNITED ARAB EMIRATES UNITED KINGDOM United States
## 1 35 1286740
## USA VERNON VIRGIN ISLANDS
## 1 1 2
## WESTERN SAHARA ZIMBABWE
## 2 1
# table(ein_data$STATE, ein_data$COUNTRY)
naniar::gg_miss_var(ein_data)
# naniar::gg_miss_upset(ein_data)
# ?Amelia::missmap
# Amelia::missmap(obj = ein_data)
#
# VIM::matrixplot(ein_data)
#
# DataExplorer::plot_missing(ein_data)
Make this professional looking. All variables are character, so no output for stargazer command on the dataframe.
stargazer(ein_data,
type = "text"
)
##
## =================================
## Statistic N Mean St. Dev. Min Max
## =================================
str(eoextract_990_2019)
## tibble [304,441 × 246] (S3: tbl_df/tbl/data.frame)
## $ elf : chr [1:304441] "E" "E" "E" "E" ...
## $ ein : num [1:304441] 1.42e+08 7.11e+08 2.32e+08 6.50e+08 5.91e+08 ...
## $ tax_pd : num [1:304441] 201806 201806 201808 201709 201709 ...
## $ subseccd : num [1:304441] 9 6 3 3 6 3 3 3 3 3 ...
## $ s501c3or4947a1cd : chr [1:304441] "N" "N" "Y" "Y" ...
## $ schdbind : chr [1:304441] "N" "N" "Y" "N" ...
## $ politicalactvtscd : chr [1:304441] "N" "N" "N" "N" ...
## $ lbbyingactvtscd : chr [1:304441] "N" "N" "N" "N" ...
## $ subjto6033cd : chr [1:304441] "N" "Y" "N" "N" ...
## $ dnradvisedfundscd : chr [1:304441] "N" "N" "N" "N" ...
## $ prptyintrcvdcd : chr [1:304441] "N" "N" "N" "N" ...
## $ maintwrkofartcd : chr [1:304441] "N" "N" "N" "N" ...
## $ crcounselingqstncd : chr [1:304441] "N" "N" "N" "N" ...
## $ hldassetsintermpermcd: chr [1:304441] "N" "N" "N" "N" ...
## $ rptlndbldgeqptcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptinvstothsecd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptinvstprgrelcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptothasstcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptothliabcd : chr [1:304441] "N" "N" "N" "N" ...
## $ sepcnsldtfinstmtcd : chr [1:304441] "N" "N" "N" "N" ...
## $ sepindaudfinstmtcd : chr [1:304441] "N" "Y" "N" "N" ...
## $ inclinfinstmtcd : chr [1:304441] "N" "N" "N" "N" ...
## $ operateschools170cd : chr [1:304441] "N" "N" "N" "N" ...
## $ frgnofficecd : chr [1:304441] "N" "N" "N" "N" ...
## $ frgnrevexpnscd : chr [1:304441] "N" "N" "N" "N" ...
## $ frgngrntscd : chr [1:304441] "N" "N" "N" "N" ...
## $ frgnaggragrntscd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptprofndrsngfeescd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptincfnndrsngcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptincgamingcd : chr [1:304441] "N" "N" "N" "N" ...
## $ operatehosptlcd : chr [1:304441] "N" "N" "N" "N" ...
## $ hospaudfinstmtcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptgrntstogovtcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptgrntstoindvcd : chr [1:304441] "N" "N" "N" "N" ...
## $ rptyestocompnstncd : chr [1:304441] "N" "N" "N" "N" ...
## $ txexmptbndcd : chr [1:304441] "N" "N" "N" "N" ...
## $ invstproceedscd : chr [1:304441] "N" "N" "N" "N" ...
## $ maintescrwaccntcd : chr [1:304441] "N" "N" "N" "N" ...
## $ actonbehalfcd : chr [1:304441] "N" "N" "N" "N" ...
## $ engageexcessbnftcd : chr [1:304441] "N" "N" "N" "N" ...
## $ awarexcessbnftcd : chr [1:304441] "N" "N" "N" "N" ...
## $ loantofficercd : chr [1:304441] "N" "N" "N" "N" ...
## $ grantoofficercd : chr [1:304441] "N" "N" "N" "N" ...
## $ dirbusnreltdcd : chr [1:304441] "N" "N" "N" "N" ...
## $ fmlybusnreltdcd : chr [1:304441] "N" "N" "N" "N" ...
## $ servasofficercd : chr [1:304441] "N" "N" "N" "N" ...
## $ recvnoncashcd : chr [1:304441] "N" "N" "N" "N" ...
## $ recvartcd : chr [1:304441] "N" "N" "N" "N" ...
## $ ceaseoperationscd : chr [1:304441] "N" "N" "N" "N" ...
## $ sellorexchcd : chr [1:304441] "N" "N" "N" "N" ...
## $ ownsepentcd : chr [1:304441] "N" "N" "N" "N" ...
## $ reltdorgcd : chr [1:304441] "Y" "N" "N" "N" ...
## $ intincntrlcd : chr [1:304441] "N" "N" "N" "N" ...
## $ orgtrnsfrcd : chr [1:304441] "N" "N" "N" "N" ...
## $ conduct5percentcd : chr [1:304441] "N" "N" "N" "N" ...
## $ compltschocd : chr [1:304441] "Y" "Y" "Y" "Y" ...
## $ f1096cnt : num [1:304441] 0 0 5 0 0 9 1 9 3 0 ...
## $ fw2gcnt : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ wthldngrulescd : chr [1:304441] "N" "N" "N" "Y" ...
## $ noemplyeesw3cnt : num [1:304441] 0 0 0 9 7 11 0 541 7 21 ...
## $ filerqrdrtnscd : chr [1:304441] "N" "N" "N" "Y" ...
## $ unrelbusinccd : chr [1:304441] "N" "N" "N" "N" ...
## $ filedf990tcd : chr [1:304441] "N" "N" "N" "N" ...
## $ frgnacctcd : chr [1:304441] "N" "N" "N" "N" ...
## $ prohibtdtxshltrcd : chr [1:304441] "N" "N" "N" "N" ...
## $ prtynotifyorgcd : chr [1:304441] "N" "N" "N" "N" ...
## $ filedf8886tcd : chr [1:304441] "N" "N" "N" "N" ...
## $ solicitcntrbcd : chr [1:304441] "N" "N" "N" "N" ...
## $ exprstmntcd : chr [1:304441] "N" "N" "N" "N" ...
## $ providegoodscd : chr [1:304441] "N" "N" "N" "N" ...
## $ notfydnrvalcd : chr [1:304441] "N" "N" "N" "N" ...
## $ filedf8282cd : chr [1:304441] "N" "N" "N" "N" ...
## $ f8282cnt : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ fndsrcvdcd : chr [1:304441] "N" "N" "N" "N" ...
## $ premiumspaidcd : chr [1:304441] "N" "N" "N" "N" ...
## $ filedf8899cd : chr [1:304441] "N" "N" "N" "N" ...
## $ filedf1098ccd : chr [1:304441] "N" "N" "N" "N" ...
## $ excbushldngscd : chr [1:304441] "N" "N" "N" "N" ...
## $ s4966distribcd : chr [1:304441] "N" "N" "N" "N" ...
## $ distribtodonorcd : chr [1:304441] "N" "N" "N" "N" ...
## $ initiationfees : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ grsrcptspublicuse : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ grsincmembers : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ grsincother : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ filedlieuf1041cd : chr [1:304441] "N" "N" "N" "N" ...
## $ txexmptint : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ qualhlthplncd : chr [1:304441] "N" "N" "N" "N" ...
## $ qualhlthreqmntn : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ qualhlthonhnd : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ rcvdpdtngcd : chr [1:304441] "N" "N" "N" "N" ...
## $ filedf720cd : chr [1:304441] "N" "N" "N" "N" ...
## $ totreprtabled : num [1:304441] 0 0 0 0 0 ...
## $ totcomprelatede : num [1:304441] 9141 0 0 0 0 ...
## $ totestcompf : num [1:304441] 0 0 0 0 0 ...
## $ noindiv100kcnt : num [1:304441] 0 0 0 0 0 0 0 1 0 0 ...
## $ nocontractor100kcnt : num [1:304441] 0 0 0 0 0 0 0 0 0 0 ...
## $ totcntrbgfts : num [1:304441] 0 0 30073 3580 397416 ...
## $ prgmservcode2acd : chr [1:304441] NA NA NA "711210" ...
## $ totrev2acola : num [1:304441] 270495 189063 14864 100 95294 ...
## [list output truncated]
str(eoextract_ez_2019)
## tibble [218,671 × 72] (S3: tbl_df/tbl/data.frame)
## $ elf : chr [1:218671] "E" "E" "E" "E" ...
## $ EIN : num [1:218671] 2.63e+08 5.10e+08 7.52e+08 4.65e+08 3.84e+08 ...
## $ tax_pd : num [1:218671] 201806 201806 201809 201712 201809 ...
## $ subseccd : num [1:218671] 3 8 3 3 3 3 3 5 3 19 ...
## $ totcntrbs : num [1:218671] 76123 700 57639 135219 141619 ...
## $ prgmservrev : num [1:218671] 31735 0 43684 0 0 ...
## $ duesassesmnts : num [1:218671] 0 49707 0 0 0 ...
## $ othrinvstinc : num [1:218671] 0 304 5 0 238 ...
## $ grsamtsalesastothr : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ basisalesexpnsothr : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ gnsaleofastothr : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ grsincgaming : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ grsrevnuefndrsng : num [1:218671] 0 7871 0 5656 0 ...
## $ direxpns : num [1:218671] 0 4882 0 653 0 ...
## $ netincfndrsng : num [1:218671] 0 2989 0 5003 0 ...
## $ grsalesminusret : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ costgoodsold : num [1:218671] 0 0 0 0 0 0 0 0 0 1200 ...
## $ grsprft : num [1:218671] 0 0 0 0 0 0 0 0 0 -1200 ...
## $ othrevnue : num [1:218671] 0 1381 0 0 0 ...
## $ totrevnue : num [1:218671] 107858 55081 101328 140222 141857 ...
## $ totexpns : num [1:218671] 89433 53852 101287 85828 123059 ...
## $ totexcessyr : num [1:218671] 18425 1229 41 54394 18798 ...
## $ othrchgsnetassetfnd : num [1:218671] 0 0 0 0 -3252 ...
## $ networthend : num [1:218671] 28437 82735 20332 57297 147355 ...
## $ totassetsend : num [1:218671] 28437 82735 20332 106243 150892 ...
## $ totliabend : num [1:218671] 0 0 0 48946 3537 ...
## $ totnetassetsend : num [1:218671] 28437 82735 20332 57297 147355 ...
## $ actvtynotprevrptcd : chr [1:218671] "N" "N" "N" "N" ...
## $ chngsinorgcd : chr [1:218671] "N" "N" "N" "N" ...
## $ unrelbusincd : chr [1:218671] "N" "N" "N" "N" ...
## $ filedf990tcd : chr [1:218671] "N" "N" "N" "N" ...
## $ contractioncd : chr [1:218671] "N" "N" "N" "N" ...
## $ politicalexpend : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ filedf1120polcd : chr [1:218671] "N" "N" "N" "N" ...
## $ loanstoofficerscd : chr [1:218671] "N" "N" "N" "N" ...
## $ loanstoofficers : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ initiationfee : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ grspublicrcpts : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ s4958excessbenefcd : chr [1:218671] "N" "N" "N" "N" ...
## $ prohibtdtxshltrcd : chr [1:218671] "N" "N" "N" "N" ...
## $ nonpfrea : num [1:218671] 7 NA 7 7 9 9 9 NA 9 NA ...
## $ totnooforgscnt : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ totsupport : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ gftgrntsrcvd170 : num [1:218671] 76123 0 57639 140875 0 ...
## $ txrevnuelevied170 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ srvcsval170 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ pubsuppsubtot170 : num [1:218671] 76123 0 57639 140875 0 ...
## $ exceeds2pct170 : num [1:218671] 0 0 0 9364 0 ...
## $ pubsupplesspct170 : num [1:218671] 76123 0 57639 131511 0 ...
## $ samepubsuppsubtot170 : num [1:218671] 76123 0 57639 140875 0 ...
## $ grsinc170 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ netincunreltd170 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ othrinc170 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ totsupp170 : num [1:218671] 76123 0 57639 140875 0 ...
## $ grsrcptsrelated170 : num [1:218671] 31735 0 0 0 0 ...
## $ totgftgrntrcvd509 : num [1:218671] 0e+00 0e+00 0e+00 0e+00 7e+05 ...
## $ grsrcptsadmissn509 : num [1:218671] 0 0 0 0 0 ...
## $ grsrcptsactivities509: num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ txrevnuelevied509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ srvcsval509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ pubsuppsubtot509 : num [1:218671] 0e+00 0e+00 0e+00 0e+00 7e+05 ...
## $ rcvdfrmdisqualsub509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ exceeds1pct509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ subtotpub509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ pubsupplesub509 : num [1:218671] 0e+00 0e+00 0e+00 0e+00 7e+05 ...
## $ samepubsuppsubtot509 : num [1:218671] 0e+00 0e+00 0e+00 0e+00 7e+05 ...
## $ grsinc509 : num [1:218671] 0 0 0 0 1309 ...
## $ unreltxincls511tx509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ subtotsuppinc509 : num [1:218671] 0 0 0 0 1309 ...
## $ netincunrelatd509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ othrinc509 : num [1:218671] 0 0 0 0 0 0 0 0 0 0 ...
## $ totsupp509 : num [1:218671] 0 0 0 0 701018 ...
naniar::gg_miss_var(eoextract_990_2019)
naniar::gg_miss_var(eoextract_ez_2019)
# naniar::gg_miss_var()
Make this professional looking.
stargazer(eoextract_990_2019,
type = "text"
)
##
## =================================
## Statistic N Mean St. Dev. Min Max
## =================================
stargazer(eoextract_ez_2019,
type = "text"
)
##
## =================================
## Statistic N Mean St. Dev. Min Max
## =================================
eoextract_990_2019 <- as.data.frame(eoextract_990_2019)
eoextract_ez_2019 <- as.data.frame(eoextract_ez_2019)
stargazer(eoextract_990_2019,
type = "text"
)
##
## ============================================================================================
## Statistic N Mean St. Dev. Min Max
## --------------------------------------------------------------------------------------------
## ein 304,441 469,051,127.000 257,598,324.000 10,018,922 996,086,871
## tax_pd 304,441 201,819.400 45.406 200,008 201,912
## subseccd 304,441 4.080 2.762 2 29
## f1096cnt 304,441 170.947 5,373.862 0 999,999
## fw2gcnt 304,441 7.027 1,308.284 0 497,670
## noemplyeesw3cnt 304,441 68.015 914.511 0 228,842
## f8282cnt 304,441 0.013 1.702 0 789
## initiationfees 304,441 3,987.610 119,518.700 -1,400 34,539,062
## grsrcptspublicuse 304,441 2,912.265 65,675.290 -62,563 10,126,879
## grsincmembers 304,441 200,754.400 6,819,695.000 0 1,052,813,352
## grsincother 304,441 7,250.836 458,359.100 -45,244,700 130,264,340
## txexmptint 304,441 0.0003 0.102 0 44
## qualhlthreqmntn 304,441 310.001 151,530.900 0 83,366,896
## qualhlthonhnd 304,441 491.504 283,086.100 -40,976,587 144,752,165
## totreprtabled 304,441 186,563.700 1,029,158.000 -6,000 106,908,921
## totcomprelatede 304,441 127,309.100 956,211.100 -28,525 96,052,991
## totestcompf 304,441 37,676.360 270,271.300 -33,473,859 18,404,791
## noindiv100kcnt 304,441 4.356 107.221 0 32,814
## nocontractor100kcnt 304,441 5.425 1,868.610 0 999,999
## totcntrbgfts 304,441 1,732,888.000 33,499,761.000 -114,181 9,265,119,609
## totrev2acola 304,441 5,520,807.000 112,996,897.000 -32,556,679 40,474,009,543
## totrev2bcola 304,441 815,470.400 33,347,467.000 -619,328,987 14,087,652,086
## totrev2ccola 304,441 263,006.900 14,034,869.000 -339,037,393 5,304,481,846
## totrev2dcola 304,441 116,719.600 5,806,273.000 -79,606,871 1,017,703,423
## totrev2ecola 304,441 49,068.200 4,927,363.000 -116,998,311 2,086,714,309
## totrev2fcola 304,441 49,721.160 7,187,967.000 -1,198,304,884 3,156,640,000
## totprgmrevnue 304,441 6,815,297.000 150,901,464.000 -70,298,800 58,512,193,717
## invstmntinc 304,441 190,762.300 6,142,786.000 -50,986,646 1,702,251,000
## txexmptbndsproceeds 304,441 530.560 46,897.350 -4,848,748 10,577,000
## royaltsinc 304,441 16,194.990 1,136,407.000 -78,343 442,119,958
## grsrntsreal 304,441 34,460.210 897,078.900 -908,764 229,637,926
## grsrntsprsnl 304,441 737.238 39,054.370 -2,550 8,901,492
## rntlexpnsreal 304,441 17,308.730 514,035.000 -2,668,862 144,734,494
## rntlexpnsprsnl 304,441 216.488 21,700.090 0 9,941,575
## rntlincreal 304,441 17,131.200 556,905.800 -16,850,044 163,079,495
## rntlincprsnl 304,441 522.627 33,926.500 -4,273,693 7,678,694
## netrntlinc 304,441 17,672.230 558,031.100 -16,850,044 163,079,495
## grsalesecur 304,441 3,967,154.000 343,748,858.000 -59,964,001 123,159,369,148
## grsalesothr 304,441 210,335.500 60,356,694.000 -6,795,721 32,937,778,000
## cstbasisecur 304,441 3,750,693.000 337,951,423.000 -19,206,751 120,206,114,770
## cstbasisothr 304,441 176,456.200 58,347,389.000 -5,045,205 32,037,434,000
## gnlsecur 304,441 216,461.100 9,571,484.000 -261,238,267 2,953,254,378
## gnlsothr 304,441 33,879.290 5,883,255.000 -485,720,329 2,503,562,118
## netgnls 304,441 250,342.800 11,300,350.000 -326,494,344 2,953,254,378
## grsincfndrsng 304,441 26,673.430 221,624.700 -73,000 43,324,382
## lessdirfndrsng 304,441 19,495.580 201,674.300 -641,707 43,324,382
## netincfndrsng 304,441 7,177.856 108,334.000 -12,386,910 15,046,041
## grsincgaming 304,441 20,655.710 327,236.000 -116,160 49,758,594
## lessdirgaming 304,441 17,689.170 279,818.100 -362,960 31,983,604
## netincgaming 304,441 2,966.549 86,872.200 -582,386 26,940,493
## grsalesinvent 304,441 88,063.520 3,211,215.000 -135,770 1,186,823,337
## lesscstofgoods 304,441 50,408.900 1,971,695.000 -424,306 702,313,503
## netincsales 304,441 37,654.610 1,422,967.000 -40,428,171 484,509,834
## miscrevtota 304,441 85,844.500 2,361,006.000 -93,523,149 567,878,832
## miscrevtot11b 304,441 17,924.970 804,432.300 -97,232,975 285,591,609
## miscrevtot11c 304,441 5,795.521 451,469.700 -192,215,843 47,677,459
## miscrevtot11d 304,441 16,930.120 1,242,685.000 -29,571,629 495,542,067
## miscrevtot11e 304,441 126,483.300 3,240,445.000 -172,459,203 569,093,745
## totrevenue 304,441 9,197,969.000 163,816,402.000 -142,137,362 58,440,598,902
## grntstogovt 304,441 343,100.100 13,570,026.000 -8,401 4,770,141,679
## grnsttoindiv 304,441 222,921.600 5,696,084.000 -5,780 624,325,720
## grntstofrgngovt 304,441 114,594.400 10,101,072.000 0 3,923,609,013
## benifitsmembrs 304,441 681,560.300 29,109,067.000 -8,580,544 5,492,652,894
## compnsatncurrofcr 304,441 137,019.200 851,140.600 -6,000 109,445,743
## compnsatnandothr 304,441 17,691.460 860,546.000 0 380,184,496
## othrsalwages 304,441 2,407,209.000 38,310,801.000 -273,270 6,612,941,799
## pensionplancontrb 304,441 122,985.100 3,060,116.000 -25,718,000 946,979,240
## othremplyeebenef 304,441 341,774.300 6,120,229.000 -21,467,190 1,279,431,012
## payrolltx 304,441 173,818.500 2,486,357.000 -478,831 461,035,788
## feesforsrvcmgmt 304,441 72,607.290 2,683,802.000 -4,818,271 889,710,557
## legalfees 304,441 21,485.480 370,782.000 -5,544,253 91,957,603
## accntingfees 304,441 15,088.360 236,785.000 -2,389,793 114,785,183
## feesforsrvclobby 304,441 3,712.390 178,751.700 -68,784 77,780,053
## profndraising 304,441 3,540.695 104,937.500 -35,000 17,235,812
## feesforsrvcinvstmgmt 304,441 19,630.310 673,451.900 -66,413 156,852,540
## feesforsrvcothr 304,441 557,500.300 13,674,577.000 -43,432,041 3,198,980,844
## advrtpromo 304,441 47,293.600 799,676.100 -43,391 139,067,676
## officexpns 304,441 189,088.800 5,557,443.000 -19,862,713 1,596,432,388
## infotech 304,441 109,416.800 6,110,436.000 -4,618,398 2,962,492,041
## royaltsexpns 304,441 2,933.905 207,647.300 -14,841 53,415,376
## occupancy 304,441 226,512.200 2,838,893.000 -817,177 413,565,854
## travel 304,441 59,169.980 940,807.900 -304,664 210,286,757
## travelofpublicoffcl 304,441 166.444 16,780.070 -4,875 7,924,336
## converconventmtng 304,441 41,362.650 542,035.900 -69,407 100,192,554
## interestamt 304,441 114,271.300 3,293,329.000 -6,886,938 1,157,172,808
## pymtoaffiliates 304,441 29,859.090 2,045,438.000 -80,841,308 842,003,285
## deprcatndepletn 304,441 311,590.700 4,965,283.000 -156,789 1,004,764,292
## insurance 304,441 62,055.220 1,140,066.000 -6,978,763 207,138,670
## othrexpnsa 304,441 1,383,179.000 74,530,038.000 -361,015,133 37,509,179,064
## othrexpnsb 304,441 371,968.000 14,161,598.000 -79,436,406 5,857,619,137
## othrexpnsc 304,441 188,889.200 10,371,422.000 -295,035,255 4,732,693,782
## othrexpnsd 304,441 82,896.700 3,366,731.000 -297,231,728 1,366,753,356
## othrexpnse 304,441 9,725.683 673,774.700 -21,464,931 310,022,821
## othrexpnsf 304,441 121,670.700 4,418,784.000 -125,411,621 1,280,339,023
## totfuncexpns 304,441 8,608,289.000 155,959,787.000 -15,863,306 58,133,304,182
## nonintcashend 304,441 549,920.500 6,489,969.000 -746,919,859 1,076,553,952
## svngstempinvend 304,441 1,157,631.000 25,527,563.000 -99,130,010 9,433,517,363
## pldgegrntrcvblend 304,441 321,218.200 9,326,320.000 -173,320 2,536,192,931
## accntsrcvblend 304,441 806,531.900 17,811,959.000 -70,130,063 5,925,931,110
## currfrmrcvblend 304,441 5,744.138 246,244.300 -57,335 38,779,640
## rcvbldisqualend 304,441 3,312.447 1,011,294.000 -753,698 549,707,150
## notesloansrcvblend 304,441 1,758,738.000 86,995,614.000 -10,290,780 25,871,010,087
## invntriesalesend 304,441 91,848.810 2,161,473.000 -35,666 473,052,659
## prepaidexpnsend 304,441 119,951.400 3,566,003.000 -66,817,978 1,194,046,525
## lndbldgsequipend 304,441 4,461,184.000 68,317,706.000 -16,111,116 17,858,613,936
## invstmntsend 304,441 4,719,191.000 132,948,259.000 -8,311,285 29,991,176,818
## invstmntsothrend 304,441 3,155,197.000 137,213,420.000 -34,136,581 27,417,131,657
## invstmntsprgmend 304,441 596,125.000 37,830,716.000 -97,517,983 14,746,666,554
## intangibleassetsend 304,441 68,458.930 3,573,697.000 -2,300,758 1,080,940,520
## othrassetsend 304,441 1,399,547.000 48,285,422.000 -56,471,471 16,613,780,014
## totassetsend 304,441 19,214,571.000 339,848,094.000 -50,405,717 60,352,981,832
## accntspayableend 304,441 989,187.400 21,882,820.000 -1,898,327 5,582,543,149
## grntspayableend 304,441 60,523.560 5,738,681.000 -993,785 2,562,474,201
## deferedrevnuend 304,441 322,871.400 9,068,730.000 -743,712 2,625,267,168
## txexmptbndsend 304,441 1,468,666.000 39,652,208.000 -189,385 7,565,475,000
## escrwaccntliabend 304,441 69,189.980 7,449,830.000 -109,572 2,362,042,286
## paybletoffcrsend 304,441 9,871.603 636,417.600 -179,945 251,464,160
## secrdmrtgsend 304,441 1,009,403.000 36,090,133.000 -1,889,495 15,858,200,062
## unsecurednotesend 304,441 241,187.300 17,391,554.000 -1,222,565 5,689,742,234
## othrliabend 304,441 3,976,396.000 129,552,895.000 -16,739,163 35,256,038,367
## totliabend 304,441 8,147,483.000 169,337,584.000 -9,604,598 35,468,921,148
## unrstrctnetasstsend 304,441 6,443,755.000 160,724,959.000 -5,035,263,268 56,628,591,335
## temprstrctnetasstsend 304,441 1,508,316.000 81,029,439.000 -362,761,503 25,696,120,000
## permrstrctnetasstsend 304,441 1,192,005.000 42,403,158.000 -41,391,591 12,387,613,285
## capitalstktrstend 304,441 388,050.300 18,046,117.000 -906,774,501 4,325,784,332
## paidinsurplusend 304,441 206,143.700 34,263,924.000 -601,188,056 15,251,182,880
## retainedearnend 304,441 1,322,044.000 64,389,817.000 -4,218,815,300 26,533,916,868
## totnetassetend 304,441 11,067,085.000 238,620,115.000 -5,034,822,702 56,628,591,335
## totnetliabastend 304,441 19,213,898.000 339,848,121.000 -50,405,717 60,352,981,832
## totnooforgscnt 304,441 3.807 1,608.781 0 841,239
## totsupport 304,441 170,816.800 12,792,081.000 -5,062,756 3,589,257,517
## gftgrntsrcvd170 304,441 5,557,900.000 115,743,677.000 -34,940 28,403,631,039
## txrevnuelevied170 304,441 32,852.090 2,232,148.000 -34,702 1,001,307,516
## srvcsval170 304,441 15,558.690 811,311.600 -17,842 283,052,796
## pubsuppsubtot170 304,441 5,606,301.000 115,821,390.000 -34,940 28,403,631,039
## exceeds2pct170 304,441 525,929.000 20,542,735.000 -90,327 6,689,595,671
## pubsupplesspct170 304,441 5,080,276.000 108,832,843.000 -1,091,343 28,398,144,229
## samepubsuppsubtot170 304,441 5,606,136.000 115,821,397.000 -34,940 28,403,631,039
## grsinc170 304,441 316,348.500 13,555,744.000 -12,338,037 3,024,786,800
## netincunreltd170 304,441 6,992.040 287,310.600 -6,568,996 67,709,520
## othrinc170 304,441 106,438.600 7,081,777.000 -15,847,271 2,395,596,124
## totsupp170 304,441 6,035,916.000 125,392,570.000 -3,182,104 30,399,728,474
## grsrcptsrelated170 304,441 3,947,746.000 256,121,380.000 -1,956,907,941 114,555,540,076
## totgftgrntrcvd509 304,441 729,240.000 20,510,433.000 -248,713 7,759,831,000
## grsrcptsadmissn509 304,441 4,994,014.000 487,571,714.000 -5,203,679 256,911,074,239
## grsrcptsactivities509 304,441 47,504.790 4,679,111.000 -19,413,853 2,461,090,614
## txrevnuelevied509 304,441 9,821.879 802,195.600 -7,589 228,896,225
## srvcsval509 304,441 2,522.861 147,285.600 -2,016 43,591,439
## pubsuppsubtot509 304,441 5,783,103.000 488,200,523.000 -5,203,679 256,911,074,602
## rcvdfrmdisqualsub509 304,441 38,997.940 1,170,497.000 0 319,044,029
## exceeds1pct509 304,441 101,208.500 6,818,645.000 -801,187 2,367,763,491
## subtotpub509 304,441 140,283.000 6,950,521.000 -801,187 2,367,763,491
## pubsupplesub509 304,441 5,642,617.000 487,982,510.000 -5,203,679 256,911,074,602
## samepubsuppsubtot509 304,441 5,783,027.000 488,200,524.000 -5,203,679 256,911,074,602
## grsinc509 304,441 65,827.130 2,161,052.000 -1,465,645 611,446,747
## unreltxincls511tx509 304,441 1,197.152 106,426.800 -908,204 46,843,359
## subtotsuppinc509 304,441 66,984.470 2,173,444.000 -1,465,645 611,446,747
## netincunrelatd509 304,441 2,640.385 161,601.100 -7,343,355 75,232,835
## othrinc509 304,441 36,523.980 2,225,672.000 -4,658,272 677,972,487
## totsupp509 304,441 5,889,176.000 489,151,467.000 -5,203,679 257,205,447,242
## --------------------------------------------------------------------------------------------
stargazer(eoextract_ez_2019,
type = "text"
)
##
## =====================================================================================
## Statistic N Mean St. Dev. Min Max
## -------------------------------------------------------------------------------------
## EIN 218,671 482,288,260.000 252,353,915.000 10,015,091 996,078,202
## tax_pd 218,671 201,814.500 78.205 200,611 201,912
## subseccd 218,671 3.882 2.366 2 25
## totcntrbs 218,671 28,749.450 41,456.460 -401,326 873,834
## prgmservrev 218,671 15,538.000 33,125.240 -961,120 836,655
## duesassesmnts 218,671 9,202.136 25,016.950 -9,559 626,865
## othrinvstinc 218,671 678.655 4,365.343 -55,439 197,272
## grsamtsalesastothr 218,671 783.911 8,504.244 -23,714 1,860,032
## basisalesexpnsothr 218,671 626.938 8,062.349 -33,062 1,859,319
## gnsaleofastothr 218,671 156.976 4,273.095 -603,025 250,000
## grsincgaming 218,671 761.053 6,949.433 -24,038 351,016
## grsrevnuefndrsng 218,671 9,073.627 22,381.740 -106,320 640,017
## direxpns 218,671 5,203.924 14,668.120 -45,388 458,416
## netincfndrsng 218,671 4,630.761 13,701.460 -441,941 601,926
## grsalesminusret 218,671 2,527.251 13,327.500 -37,600 399,744
## costgoodsold 218,671 1,452.362 7,989.859 -153,113 393,630
## grsprft 218,671 1,074.894 7,564.207 -354,634 213,395
## othrevnue 218,671 2,025.234 10,132.070 -63,794 379,769
## totrevnue 218,671 62,056.140 50,328.370 -961,120 875,147
## totexpns 218,671 59,159.210 64,963.660 -302,432 12,754,951
## totexcessyr 218,671 2,896.749 48,201.730 -12,754,951 806,470
## othrchgsnetassetfnd 218,671 -5.237 123,450.200 -15,279,420 46,576,714
## networthend 218,671 70,933.260 137,531.900 -17,786,768 2,119,304
## totassetsend 218,671 79,598.240 100,650.600 -3,618,951 2,119,304
## totliabend 218,671 9,009.838 102,835.400 -539,876 17,849,415
## totnetassetsend 218,671 70,588.420 137,109.900 -17,786,768 2,119,304
## politicalexpend 218,671 18.149 993.633 0 196,636
## loanstoofficers 218,671 563.443 12,240.880 -33,423 1,624,694
## initiationfee 218,671 78.007 2,053.792 0 195,215
## grspublicrcpts 218,671 48.595 1,838.355 0 198,194
## nonpfrea 166,878 8.052 2.069 1 16
## totnooforgscnt 218,671 0.032 0.311 0 34
## totsupport 218,671 513.656 31,473.530 -16,244 12,754,951
## gftgrntsrcvd170 218,671 63,404.350 420,469.500 -989,837 120,540,629
## txrevnuelevied170 218,671 846.370 34,155.640 -305 13,378,942
## srvcsval170 218,670 727.587 45,668.500 -32,068 17,500,000
## pubsuppsubtot170 218,671 64,978.300 429,510.100 -989,837 120,540,629
## exceeds2pct170 218,671 5,400.600 48,564.270 -90,924 10,193,320
## pubsupplesspct170 218,671 59,347.370 420,487.700 -989,837 120,540,629
## samepubsuppsubtot170 218,671 64,834.720 429,497.000 -989,837 120,540,629
## grsinc170 218,671 873.263 19,475.870 -53,627 5,897,163
## netincunreltd170 218,671 217.332 5,619.551 -28,318 826,032
## othrinc170 218,671 4,825.193 1,379,672.000 -65,315 645,030,152
## totsupp170 218,671 70,750.510 1,446,353.000 -989,872 645,078,341
## grsrcptsrelated170 218,671 7,040.908 146,103.600 -63,530 42,888,900
## totgftgrntrcvd509 218,671 67,207.620 419,288.200 -110,056 112,389,000
## grsrcptsadmissn509 218,671 51,860.310 456,107.500 -158,234 167,584,700
## grsrcptsactivities509 218,671 5,535.451 58,116.250 -87,637 17,949,609
## txrevnuelevied509 218,671 484.432 79,741.370 0 36,980,362
## srvcsval509 218,671 233.876 9,669.903 -28,170 1,686,177
## pubsuppsubtot509 218,671 125,321.300 769,767.500 -110,056 279,973,700
## rcvdfrmdisqualsub509 218,670 1,765.478 49,245.210 -326,833 20,016,300
## exceeds1pct509 218,671 917.788 18,058.450 0 3,523,010
## subtotpub509 218,671 2,916.861 53,357.610 -33,917 20,016,300
## pubsupplesub509 218,671 122,244.600 746,234.800 -357,382 274,853,000
## samepubsuppsubtot509 218,671 125,102.200 769,725.000 -110,056 279,973,700
## grsinc509 218,671 906.701 17,426.840 -13,757 5,836,401
## unreltxincls511tx509 218,671 29.581 2,351.674 -168,149 598,508
## subtotsuppinc509 218,671 946.348 17,919.630 -99,063 5,836,401
## netincunrelatd509 218,671 230.978 7,030.830 -125,868 1,066,990
## othrinc509 218,671 1,127.196 18,861.770 -1,159,670 3,630,935
## totsupp509 218,671 127,406.800 774,336.700 -297,482 279,973,700
## -------------------------------------------------------------------------------------
plot(eoextract_990_2019$noemplyeesw3cnt, xlim = c(400,600))