# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("AAPL", "ROKU", "CL=F") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
perio = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 63 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2022-01-31 -0.0397
## 2 AAPL 2022-02-28 -0.0541
## 3 AAPL 2022-03-31 0.0575
## 4 AAPL 2022-04-29 -0.0971
## 5 AAPL 2022-05-31 -0.0545
## 6 AAPL 2022-06-30 -0.0814
## 7 AAPL 2022-07-29 0.189
## 8 AAPL 2022-08-31 -0.0312
## 9 AAPL 2022-09-30 -0.121
## 10 AAPL 2022-10-31 0.110
## # ℹ 53 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 21 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 11 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 63 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2022-01-31 -0.0397 -0.101
## 2 AAPL 2022-02-28 -0.0541 -0.0343
## 3 AAPL 2022-03-31 0.0575 0.0341
## 4 AAPL 2022-04-29 -0.0971 -0.133
## 5 AAPL 2022-05-31 -0.0545 -0.0205
## 6 AAPL 2022-06-30 -0.0814 -0.0871
## 7 AAPL 2022-07-29 0.189 0.123
## 8 AAPL 2022-08-31 -0.0312 -0.0464
## 9 AAPL 2022-09-30 -0.121 -0.105
## 10 AAPL 2022-10-31 0.110 0.0390
## # ℹ 53 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.0733 0.0078 0.098 1.08 0.718 1.28
## 2 ROKU -0.403 -0.0267 -0.277 1.68 2.50 0.797
## 3 CL=F 0.191 0.0107 0.136 -0.122 0.239 -0.912
## # ℹ 6 more variables: Correlation <dbl>, `Correlationp-value` <dbl>,
## # InformationRatio <dbl>, `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 AAPL 0.416
## 2 ROKU 1.09
## 3 CL=F 0.139
All of my stocks, which are Apple, Roku, and Crude Oil, had a positively skewed distribution of return.
Apple and Crude Oil Nov 23 beat the market in 2022, while Roku failed to beat the market.