Renta de Bicis

1. Importar la base de datos

#file.choose()
df <- read.csv("/Users/paulinapozos/Downloads/rentadebicis.csv")

2. Entender la base de datos

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

Observaciones:
1. Los días llegan hasta el 19 y no hasta el 31.
2. ¿Cuál es la relación de las estaciones? 1 es primavera, 2 verano, 3 otoño y 4 invierno.
3. ¿Cuál es la relación de los días de la semana? 1 es domingo, 2 es lunes… y el 7 es sábado.

3. Generar la regresión lineal

regresion <- lm(rentas_totales ~ hora + dia + mes + año + estacion + 
dia_de_la_semana + asueto + temperatura + sensacion_termica + humedad + 
velocidad_del_viento, data = df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion + 
##     dia_de_la_semana + asueto + temperatura + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -305.52  -93.64  -27.70   61.85  649.10 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.661e+05  5.496e+03 -30.217  < 2e-16 ***
## hora                  7.735e+00  2.070e-01  37.368  < 2e-16 ***
## dia                   3.844e-01  2.482e-01   1.549  0.12150    
## mes                   9.996e+00  1.682e+00   5.943 2.89e-09 ***
## año                   8.258e+01  2.732e+00  30.225  < 2e-16 ***
## estacion             -7.774e+00  5.177e+00  -1.502  0.13324    
## dia_de_la_semana      4.393e-01  6.918e-01   0.635  0.52545    
## asueto               -4.864e+00  8.365e+00  -0.582  0.56089    
## temperatura           1.582e+00  1.038e+00   1.524  0.12752    
## sensacion_termica     4.748e+00  9.552e-01   4.971 6.76e-07 ***
## humedad              -2.115e+00  7.884e-02 -26.827  < 2e-16 ***
## velocidad_del_viento  5.582e-01  1.809e-01   3.086  0.00203 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10874 degrees of freedom
## Multiple R-squared:  0.3891, Adjusted R-squared:  0.3885 
## F-statistic: 629.6 on 11 and 10874 DF,  p-value: < 2.2e-16

4. Ajustar la regresión lineal

regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + 
velocidad_del_viento, data = df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -308.60  -93.85  -28.34   61.05  648.09 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.662e+05  5.496e+03 -30.250  < 2e-16 ***
## hora                  7.734e+00  2.070e-01  37.364  < 2e-16 ***
## mes                   7.574e+00  4.207e-01  18.002  < 2e-16 ***
## año                   8.266e+01  2.732e+00  30.258  < 2e-16 ***
## sensacion_termica     6.172e+00  1.689e-01  36.539  < 2e-16 ***
## humedad              -2.121e+00  7.858e-02 -26.988  < 2e-16 ***
## velocidad_del_viento  6.208e-01  1.771e-01   3.506 0.000457 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared:  0.3886, Adjusted R-squared:  0.3883 
## F-statistic:  1153 on 6 and 10879 DF,  p-value: < 2.2e-16

5. Construir un modelo predictivo

datos <- data.frame(hora=11.54, mes= 1:12, año = 2013, sensacion_termica=23.66,
humedad=61.89, velocidad_del_viento=12.799)
predict(regresion,datos)
##        1        2        3        4        5        6        7        8 
## 273.6001 281.1738 288.7475 296.3213 303.8950 311.4687 319.0424 326.6161 
##        9       10       11       12 
## 334.1898 341.7635 349.3372 356.9110

Conclusiones

El modelo predictivo nos muestra las bicicletas rentadas por hora por mes durante el próximo año (2013), cosiderando las demás variables como promedio, con una R-cuadrada ajustada del 39%.


Venta de casas

1. Importar la base de datos

#file.choose()
bd <- read.csv("/Users/paulinapozos/Downloads/HousePriceData.csv")

2. Entender la base de datos

summary(bd)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
count(bd, Parking, sort= TRUE)
##        Parking   n
## 1         Open 355
## 2 Not Provided 225
## 3      Covered 184
## 4   No Parking 141
count(bd, City_Category, sort= TRUE)
##   City_Category   n
## 1         CAT B 351
## 2         CAT A 320
## 3         CAT C 234
boxplot(bd$House_Price, horizontal= TRUE)

Observaciones:
1. Carpet tiene 7 NA´s.
2. Cuenta con dos variables categóricas, Parking y City_Category.
3. El precio máximo de casa está con atípicos.
4. Rainfall tiene valores negativos.

3. Limpiar la base de datos

#¿Cuántos NA´s tengo en la base de datos?
sum(is.na(bd))
## [1] 7
# ¿Cuántos NA tengo por variable?
sapply(bd, function (x) sum(is.na(x)))
##   Observation     Dist_Taxi   Dist_Market Dist_Hospital        Carpet 
##             0             0             0             0             7 
##       Builtup       Parking City_Category      Rainfall   House_Price 
##             0             0             0             0             0
# Eliminar NA
bd <-na.omit(bd)

# Eliminar renglon de registro de precio alto
bd <- bd [bd$House_Price<15000000,]
boxplot(bd$House_Price, horizontal= TRUE)

#Eliminar registro negativo de Rainfall
bd<-bd[bd$Rainfall>0,]

4. Generar la regresión lineal

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + 
Builtup + Parking + City_Category + Rainfall, data = bd)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + Parking + City_Category + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572286  -803711   -64861   759084  4399052 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.611e+06  3.681e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.041e+01  2.684e+01   1.133   0.2575    
## Dist_Market          1.248e+01  2.083e+01   0.599   0.5492    
## Dist_Hospital        4.862e+01  3.009e+01   1.616   0.1065    
## Carpet              -7.734e+02  3.478e+03  -0.222   0.8241    
## Builtup              1.315e+03  2.902e+03   0.453   0.6506    
## ParkingNo Parking   -6.046e+05  1.390e+05  -4.351 1.52e-05 ***
## ParkingNot Provided -4.898e+05  1.236e+05  -3.963 8.00e-05 ***
## ParkingOpen         -2.635e+05  1.126e+05  -2.340   0.0195 *  
## City_CategoryCAT B  -1.875e+06  9.607e+04 -19.517  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.291  < 2e-16 ***
## Rainfall            -1.260e+02  1.558e+02  -0.809   0.4187    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1223000 on 883 degrees of freedom
## Multiple R-squared:  0.5005, Adjusted R-squared:  0.4943 
## F-statistic: 80.43 on 11 and 883 DF,  p-value: < 2.2e-16

5. Construir un modelo predictivo

datos <- data.frame(Dist_Taxi=8278, Dist_Market=16251, Dist_Hospital=13857,
Carpet=1455, Builtup=1764, Parking="Covered", City_Category="CAT A", Rainfall=390)
predict(regresion,datos)
##       1 
## 7884599

Conclusiones

El modelo predictivo nos muestra el precio de la casa, considerando las demás variables como promedio, con una R-cuadrada ajustada del 49%.

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDQuMyBSZWdyZXNpw7NuIExpbmVhbCIKYXV0aG9yOiAiUGF1bGluYSBQb3pvcyBSaWHDsW8gQTAxNjEyOTU1IgpkYXRlOiAiMjAyMy0wOS0yMSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAic2ltcGxleCIKICAgIGhpZ2hsaWdodDogIm1vbm9jaHJvbWUiCi0tLQoKIyBSZW50YSBkZSBCaWNpcwohW10oL1VzZXJzL3BhdWxpbmFwb3pvcy9EZXNrdG9wL01UWS9iaWNpcy5naWYpCgojIyAxLiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQojZmlsZS5jaG9vc2UoKQpkZiA8LSByZWFkLmNzdigiL1VzZXJzL3BhdWxpbmFwb3pvcy9Eb3dubG9hZHMvcmVudGFkZWJpY2lzLmNzdiIpCmBgYAoKCiMjIDIuIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MKYGBge3J9CnN1bW1hcnkoZGYpCmBgYAoKT2JzZXJ2YWNpb25lczogIAoxLiBMb3MgZMOtYXMgbGxlZ2FuIGhhc3RhIGVsIDE5IHkgbm8gaGFzdGEgZWwgMzEuICAKMi4gwr9DdcOhbCBlcyBsYSByZWxhY2nDs24gZGUgbGFzIGVzdGFjaW9uZXM/IDEgZXMgcHJpbWF2ZXJhLCAKMiB2ZXJhbm8sIDMgb3Rvw7FvIHkgNCBpbnZpZXJuby4gIAozLiDCv0N1w6FsIGVzIGxhIHJlbGFjacOzbiBkZSBsb3MgZMOtYXMgZGUgbGEgc2VtYW5hPyAxIGVzIGRvbWluZ28sIDIgZXMgbHVuZXMuLi4geQplbCA3IGVzIHPDoWJhZG8uICAKCgojIyAzLiBHZW5lcmFyIGxhIHJlZ3Jlc2nDs24gbGluZWFsCmBgYHtyfQpyZWdyZXNpb24gPC0gbG0ocmVudGFzX3RvdGFsZXMgfiBob3JhICsgZGlhICsgbWVzICsgYcOxbyArIGVzdGFjaW9uICsgCmRpYV9kZV9sYV9zZW1hbmEgKyBhc3VldG8gKyB0ZW1wZXJhdHVyYSArIHNlbnNhY2lvbl90ZXJtaWNhICsgaHVtZWRhZCArIAp2ZWxvY2lkYWRfZGVsX3ZpZW50bywgZGF0YSA9IGRmKQpzdW1tYXJ5KHJlZ3Jlc2lvbikKYGBgCgoKIyMgNC4gQWp1c3RhciBsYSByZWdyZXNpw7NuIGxpbmVhbApgYGB7cn0KcmVncmVzaW9uIDwtIGxtKHJlbnRhc190b3RhbGVzIH4gaG9yYSArIG1lcyArIGHDsW8gKyBzZW5zYWNpb25fdGVybWljYSArIGh1bWVkYWQgKyAKdmVsb2NpZGFkX2RlbF92aWVudG8sIGRhdGEgPSBkZikKc3VtbWFyeShyZWdyZXNpb24pCmBgYAoKIyMgNS4gQ29uc3RydWlyIHVuIG1vZGVsbyBwcmVkaWN0aXZvCmBgYHtyfQpkYXRvcyA8LSBkYXRhLmZyYW1lKGhvcmE9MTEuNTQsIG1lcz0gMToxMiwgYcOxbyA9IDIwMTMsIHNlbnNhY2lvbl90ZXJtaWNhPTIzLjY2LApodW1lZGFkPTYxLjg5LCB2ZWxvY2lkYWRfZGVsX3ZpZW50bz0xMi43OTkpCnByZWRpY3QocmVncmVzaW9uLGRhdG9zKQpgYGAKCgojIyBDb25jbHVzaW9uZXMKRWwgbW9kZWxvIHByZWRpY3Rpdm8gbm9zIG11ZXN0cmEgbGFzIGJpY2ljbGV0YXMgcmVudGFkYXMgcG9yIGhvcmEgcG9yIG1lcyBkdXJhbnRlCmVsIHByw7N4aW1vIGHDsW8gKDIwMTMpLCBjb3NpZGVyYW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBjb21vIHByb21lZGlvLCBjb24gdW5hClItY3VhZHJhZGEgYWp1c3RhZGEgZGVsIDM5JS4gIAoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgojIFZlbnRhIGRlIGNhc2FzCiFbXSgvVXNlcnMvcGF1bGluYXBvem9zL0Rlc2t0b3AvTVRZL2Nhc2EtMjYuZ2lmKQoKIyMgMS4gSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcwpgYGB7cn0KI2ZpbGUuY2hvb3NlKCkKYmQgPC0gcmVhZC5jc3YoIi9Vc2Vycy9wYXVsaW5hcG96b3MvRG93bmxvYWRzL0hvdXNlUHJpY2VEYXRhLmNzdiIpCmBgYAoKCiMjIDIuIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MKYGBge3J9CnN1bW1hcnkoYmQpCmxpYnJhcnkoZHBseXIpCmNvdW50KGJkLCBQYXJraW5nLCBzb3J0PSBUUlVFKQpjb3VudChiZCwgQ2l0eV9DYXRlZ29yeSwgc29ydD0gVFJVRSkKYm94cGxvdChiZCRIb3VzZV9QcmljZSwgaG9yaXpvbnRhbD0gVFJVRSkKYGBgCgpPYnNlcnZhY2lvbmVzOiAgCjEuIENhcnBldCB0aWVuZSA3IE5BwrRzLiAgCjIuIEN1ZW50YSBjb24gZG9zIHZhcmlhYmxlcyBjYXRlZ8OzcmljYXMsIFBhcmtpbmcgeSBDaXR5X0NhdGVnb3J5LiAgCjMuIEVsIHByZWNpbyBtw6F4aW1vIGRlIGNhc2EgZXN0w6EgY29uIGF0w61waWNvcy4gIAo0LiBSYWluZmFsbCB0aWVuZSB2YWxvcmVzIG5lZ2F0aXZvcy4gIAoKCiMjIDMuIExpbXBpYXIgbGEgYmFzZSBkZSBkYXRvcwpgYGB7cn0KI8K/Q3XDoW50b3MgTkHCtHMgdGVuZ28gZW4gbGEgYmFzZSBkZSBkYXRvcz8Kc3VtKGlzLm5hKGJkKSkKCiMgwr9DdcOhbnRvcyBOQSB0ZW5nbyBwb3IgdmFyaWFibGU/CnNhcHBseShiZCwgZnVuY3Rpb24gKHgpIHN1bShpcy5uYSh4KSkpCgojIEVsaW1pbmFyIE5BCmJkIDwtbmEub21pdChiZCkKCiMgRWxpbWluYXIgcmVuZ2xvbiBkZSByZWdpc3RybyBkZSBwcmVjaW8gYWx0bwpiZCA8LSBiZCBbYmQkSG91c2VfUHJpY2U8MTUwMDAwMDAsXQpib3hwbG90KGJkJEhvdXNlX1ByaWNlLCBob3Jpem9udGFsPSBUUlVFKQoKI0VsaW1pbmFyIHJlZ2lzdHJvIG5lZ2F0aXZvIGRlIFJhaW5mYWxsCmJkPC1iZFtiZCRSYWluZmFsbD4wLF0KYGBgCgoKIyMgNC4gR2VuZXJhciBsYSByZWdyZXNpw7NuIGxpbmVhbApgYGB7cn0KcmVncmVzaW9uIDwtIGxtKEhvdXNlX1ByaWNlIH4gRGlzdF9UYXhpICsgRGlzdF9NYXJrZXQgKyBEaXN0X0hvc3BpdGFsICsgQ2FycGV0ICsgCkJ1aWx0dXAgKyBQYXJraW5nICsgQ2l0eV9DYXRlZ29yeSArIFJhaW5mYWxsLCBkYXRhID0gYmQpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKCgojIyA1LiBDb25zdHJ1aXIgdW4gbW9kZWxvIHByZWRpY3Rpdm8KYGBge3J9CmRhdG9zIDwtIGRhdGEuZnJhbWUoRGlzdF9UYXhpPTgyNzgsIERpc3RfTWFya2V0PTE2MjUxLCBEaXN0X0hvc3BpdGFsPTEzODU3LApDYXJwZXQ9MTQ1NSwgQnVpbHR1cD0xNzY0LCBQYXJraW5nPSJDb3ZlcmVkIiwgQ2l0eV9DYXRlZ29yeT0iQ0FUIEEiLCBSYWluZmFsbD0zOTApCnByZWRpY3QocmVncmVzaW9uLGRhdG9zKQpgYGAKCgojIyBDb25jbHVzaW9uZXMKRWwgbW9kZWxvIHByZWRpY3Rpdm8gbm9zIG11ZXN0cmEgZWwgcHJlY2lvIGRlIGxhIGNhc2EsIGNvbnNpZGVyYW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBjb21vIHByb21lZGlvLCBjb24gdW5hIFItY3VhZHJhZGEgYWp1c3RhZGEgZGVsIDQ5JS4gIA==