1. Importar la base de datos

library(readr)
df <- read_csv("C:/Users/Asus ZenBook/Downloads/rentadebicis.csv")
## Rows: 10886 Columns: 14
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (14): hora, dia, mes, año, estacion, dia_de_la_semana, asueto, temperatu...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

2. Entender la base de datos

summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

Observaciones:
1. Los días llegan hasta el 19 y no hasta el 31. 2. ¿Cuál es la relación de las estaciones? 1 es primavera, 2 es verano, 3 es otoño y 4 es invierno. 3. ¿Cuál es la relación de los días de la semana? 1 es domingo, 2 es lunes, … y el 7 es sábado

3. Generar la regresión

regresion <- lm(rentas_totales ~ hora + dia + mes + año + estacion + dia_de_la_semana + asueto + temperatura + sensacion_termica + humedad + velocidad_del_viento, data = df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion + 
##     dia_de_la_semana + asueto + temperatura + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -305.52  -93.64  -27.70   61.85  649.10 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.661e+05  5.496e+03 -30.217  < 2e-16 ***
## hora                  7.735e+00  2.070e-01  37.368  < 2e-16 ***
## dia                   3.844e-01  2.482e-01   1.549  0.12150    
## mes                   9.996e+00  1.682e+00   5.943 2.89e-09 ***
## año                   8.258e+01  2.732e+00  30.225  < 2e-16 ***
## estacion             -7.774e+00  5.177e+00  -1.502  0.13324    
## dia_de_la_semana      4.393e-01  6.918e-01   0.635  0.52545    
## asueto               -4.864e+00  8.365e+00  -0.582  0.56089    
## temperatura           1.582e+00  1.038e+00   1.524  0.12752    
## sensacion_termica     4.748e+00  9.552e-01   4.971 6.76e-07 ***
## humedad              -2.115e+00  7.884e-02 -26.827  < 2e-16 ***
## velocidad_del_viento  5.582e-01  1.809e-01   3.086  0.00203 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10874 degrees of freedom
## Multiple R-squared:  0.3891, Adjusted R-squared:  0.3885 
## F-statistic: 629.6 on 11 and 10874 DF,  p-value: < 2.2e-16

4. Ajustar la regresión líneal

regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + velocidad_del_viento, data = df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -308.60  -93.85  -28.34   61.05  648.09 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -1.662e+05  5.496e+03 -30.250  < 2e-16 ***
## hora                  7.734e+00  2.070e-01  37.364  < 2e-16 ***
## mes                   7.574e+00  4.207e-01  18.002  < 2e-16 ***
## año                   8.266e+01  2.732e+00  30.258  < 2e-16 ***
## sensacion_termica     6.172e+00  1.689e-01  36.539  < 2e-16 ***
## humedad              -2.121e+00  7.858e-02 -26.988  < 2e-16 ***
## velocidad_del_viento  6.208e-01  1.771e-01   3.506 0.000457 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared:  0.3886, Adjusted R-squared:  0.3883 
## F-statistic:  1153 on 6 and 10879 DF,  p-value: < 2.2e-16

5. Construir un modelo predictivo

# Usar promedios
datos <- data.frame(hora = 11.54, mes = 1:12, año = 2013, sensacion_termica = 23.66, humedad =  61.89, velocidad_del_viento = 12.799)
predict(regresion,datos)
##        1        2        3        4        5        6        7        8 
## 273.6001 281.1738 288.7475 296.3213 303.8950 311.4687 319.0424 326.6161 
##        9       10       11       12 
## 334.1898 341.7635 349.3372 356.9110

Conclusiones

El modelo predictivo nos muestra las bicicletas rentadas por hora por mes durante el proximo año (2013) considerando las demás variables como promedio, con una R-cuadrada ajustada del 39%.

1. Importar base de datos

library(readr)
bd <- read_csv("C:/Users/Asus ZenBook/Downloads/HousePriceData.csv")
## Rows: 905 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Parking, City_Category
## dbl (8): Observation, Dist_Taxi, Dist_Market, Dist_Hospital, Carpet, Builtup...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

2. Entender los datos

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
summary(bd)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 
count(bd, Parking, sort = TRUE)
## # A tibble: 4 × 2
##   Parking          n
##   <chr>        <int>
## 1 Open           355
## 2 Not Provided   225
## 3 Covered        184
## 4 No Parking     141
count(bd, City_Category, sort = TRUE)
## # A tibble: 3 × 2
##   City_Category     n
##   <chr>         <int>
## 1 CAT B           351
## 2 CAT A           320
## 3 CAT C           234
boxplot(bd$House_Price, horizontal = TRUE)

Observaciones: 1. Tenemos un valor atípico en House Price 2. Tenemos NAs en Carpet 3. Valores negativos en rainfall

3. Limpiar los datos

# ¿Cuántos NA tengo en la base de datos?
sum(is.na(bd))
## [1] 7
# ¿Cuántos NA tengo por variable?
sapply(bd, function(x) sum(is.na(x)))
##   Observation     Dist_Taxi   Dist_Market Dist_Hospital        Carpet 
##             0             0             0             0             7 
##       Builtup       Parking City_Category      Rainfall   House_Price 
##             0             0             0             0             0
# Eliminar NA
bd <- na.omit(bd)

# Eliminar registro de precio alto
bd <- bd[bd$House_Price<15000000,]
boxplot(bd$House_Price, horizontal = TRUE)

bd <- bd[bd$Rainfall>0,]

4. Generar regresión

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + City_Category + Rainfall + Parking, data = bd)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + City_Category + Rainfall + Parking, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572286  -803711   -64861   759084  4399052 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.611e+06  3.681e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.041e+01  2.684e+01   1.133   0.2575    
## Dist_Market          1.248e+01  2.083e+01   0.599   0.5492    
## Dist_Hospital        4.862e+01  3.009e+01   1.616   0.1065    
## Carpet              -7.734e+02  3.478e+03  -0.222   0.8241    
## Builtup              1.315e+03  2.902e+03   0.453   0.6506    
## City_CategoryCAT B  -1.875e+06  9.607e+04 -19.517  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.291  < 2e-16 ***
## Rainfall            -1.260e+02  1.558e+02  -0.809   0.4187    
## ParkingNo Parking   -6.046e+05  1.390e+05  -4.351 1.52e-05 ***
## ParkingNot Provided -4.898e+05  1.236e+05  -3.963 8.00e-05 ***
## ParkingOpen         -2.635e+05  1.126e+05  -2.340   0.0195 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1223000 on 883 degrees of freedom
## Multiple R-squared:  0.5005, Adjusted R-squared:  0.4943 
## F-statistic: 80.43 on 11 and 883 DF,  p-value: < 2.2e-16

5. Ajustar regresión

regresion <- lm(House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + City_Category + Parking + Rainfall, data = bd)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + City_Category + Parking + Rainfall, data = bd)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3572286  -803711   -64861   759084  4399052 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.611e+06  3.681e+05  15.246  < 2e-16 ***
## Dist_Taxi            3.041e+01  2.684e+01   1.133   0.2575    
## Dist_Market          1.248e+01  2.083e+01   0.599   0.5492    
## Dist_Hospital        4.862e+01  3.009e+01   1.616   0.1065    
## Carpet              -7.734e+02  3.478e+03  -0.222   0.8241    
## Builtup              1.315e+03  2.902e+03   0.453   0.6506    
## City_CategoryCAT B  -1.875e+06  9.607e+04 -19.517  < 2e-16 ***
## City_CategoryCAT C  -2.890e+06  1.059e+05 -27.291  < 2e-16 ***
## ParkingNo Parking   -6.046e+05  1.390e+05  -4.351 1.52e-05 ***
## ParkingNot Provided -4.898e+05  1.236e+05  -3.963 8.00e-05 ***
## ParkingOpen         -2.635e+05  1.126e+05  -2.340   0.0195 *  
## Rainfall            -1.260e+02  1.558e+02  -0.809   0.4187    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1223000 on 883 degrees of freedom
## Multiple R-squared:  0.5005, Adjusted R-squared:  0.4943 
## F-statistic: 80.43 on 11 and 883 DF,  p-value: < 2.2e-16

5. Construir un modelo predictivo

datos <- data.frame(Dist_Taxi = 8278, Dist_Market = 16251, Dist_Hospital = 13857, Carpet = 1455, Builtup =  1764, City_Category = "CAT A", Parking = "Covered", Rainfall = 390)
predict(regresion,datos)
##       1 
## 7884599

Conclusiones

El modelo predictivo nos muestra el precio de la casa considerando las demás variables como datos de entrada con una R-cuadrada ajustada del 49%.

LS0tDQp0aXRsZTogIkFjdGl2aWRhZDQzMyINCmF1dGhvcjogIkRhbmllbGEgR2FyemEiDQpkYXRlOiAiMjAyMy0wOS0yMSINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDogDQogICAgdG9jOiBUUlVFIA0KICAgIHRvY19mbG9hdDogVFJVRSANCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFIA0KICAgIHRoZW1lOiAic2ltcGxleCIgDQogICAgaGlnaGxpZ2h0OiAibW9ub2Nocm9tZSINCg0KLS0tDQohW10oQzpcXFVzZXJzXFxBc3VzIFplbkJvb2tcXERvd25sb2Fkc1xcYmljaWNsZXRhLWNpY2xpc21vLmdpZikNCg0KIyMgMS4gSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcw0KYGBge3J9DQpsaWJyYXJ5KHJlYWRyKQ0KZGYgPC0gcmVhZF9jc3YoIkM6L1VzZXJzL0FzdXMgWmVuQm9vay9Eb3dubG9hZHMvcmVudGFkZWJpY2lzLmNzdiIpDQpgYGANCiMjIDIuIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MNCmBgYHtyfQ0Kc3VtbWFyeShkZikNCmBgYA0KT2JzZXJ2YWNpb25lczogIA0KMS4gTG9zIGTDrWFzIGxsZWdhbiBoYXN0YSBlbCAxOSB5IG5vIGhhc3RhIGVsIDMxLiANCjIuIMK/Q3XDoWwgZXMgbGEgcmVsYWNpw7NuIGRlIGxhcyBlc3RhY2lvbmVzPyAgMSBlcyBwcmltYXZlcmEsIDIgZXMgdmVyYW5vLCAzIGVzIG90b8OxbyB5IDQgZXMgaW52aWVybm8uIA0KMy4gwr9DdcOhbCBlcyBsYSByZWxhY2nDs24gZGUgbG9zIGTDrWFzIGRlIGxhIHNlbWFuYT8gIDEgZXMgZG9taW5nbywgMiBlcyBsdW5lcywgLi4uIHkgZWwgNyBlcyBzw6FiYWRvDQoNCiMjIDMuIEdlbmVyYXIgbGEgcmVncmVzacOzbg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0ocmVudGFzX3RvdGFsZXMgfiBob3JhICsgZGlhICsgbWVzICsgYcOxbyArIGVzdGFjaW9uICsgZGlhX2RlX2xhX3NlbWFuYSArIGFzdWV0byArIHRlbXBlcmF0dXJhICsgc2Vuc2FjaW9uX3Rlcm1pY2EgKyBodW1lZGFkICsgdmVsb2NpZGFkX2RlbF92aWVudG8sIGRhdGEgPSBkZikNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQoNCiMjIDQuIEFqdXN0YXIgbGEgcmVncmVzacOzbiBsw61uZWFsDQpgYGB7cn0NCnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlcyB+IGhvcmEgKyBtZXMgKyBhw7FvICsgc2Vuc2FjaW9uX3Rlcm1pY2EgKyBodW1lZGFkICsgdmVsb2NpZGFkX2RlbF92aWVudG8sIGRhdGEgPSBkZikNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQoNCiMjIDUuIENvbnN0cnVpciB1biBtb2RlbG8gcHJlZGljdGl2bw0KYGBge3J9DQojIFVzYXIgcHJvbWVkaW9zDQpkYXRvcyA8LSBkYXRhLmZyYW1lKGhvcmEgPSAxMS41NCwgbWVzID0gMToxMiwgYcOxbyA9IDIwMTMsIHNlbnNhY2lvbl90ZXJtaWNhID0gMjMuNjYsIGh1bWVkYWQgPSAgNjEuODksIHZlbG9jaWRhZF9kZWxfdmllbnRvID0gMTIuNzk5KQ0KcHJlZGljdChyZWdyZXNpb24sZGF0b3MpDQpgYGANCg0KIyMgQ29uY2x1c2lvbmVzDQpFbCBtb2RlbG8gcHJlZGljdGl2byBub3MgbXVlc3RyYSBsYXMgYmljaWNsZXRhcyByZW50YWRhcyBwb3IgaG9yYSBwb3IgbWVzIGR1cmFudGUgZWwgcHJveGltbyBhw7FvICgyMDEzKSBjb25zaWRlcmFuZG8gbGFzIGRlbcOhcyB2YXJpYWJsZXMgY29tbyBwcm9tZWRpbywgY29uIHVuYSBSLWN1YWRyYWRhIGFqdXN0YWRhIGRlbCAzOSUuDQoNCg0KIVtdKEM6XFxVc2Vyc1xcQXN1cyBaZW5Cb29rXFxEb3dubG9hZHNcXGhvdXNlcHJpY2UuZ2lmKQ0KDQojIyAxLiBJbXBvcnRhciBiYXNlIGRlIGRhdG9zDQpgYGB7cn0NCmxpYnJhcnkocmVhZHIpDQpiZCA8LSByZWFkX2NzdigiQzovVXNlcnMvQXN1cyBaZW5Cb29rL0Rvd25sb2Fkcy9Ib3VzZVByaWNlRGF0YS5jc3YiKQ0KYGBgDQoNCiMjIDIuIEVudGVuZGVyIGxvcyBkYXRvcw0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0Kc3VtbWFyeShiZCkNCmNvdW50KGJkLCBQYXJraW5nLCBzb3J0ID0gVFJVRSkNCmNvdW50KGJkLCBDaXR5X0NhdGVnb3J5LCBzb3J0ID0gVFJVRSkNCmJveHBsb3QoYmQkSG91c2VfUHJpY2UsIGhvcml6b250YWwgPSBUUlVFKQ0KYGBgDQpPYnNlcnZhY2lvbmVzOg0KMS4gVGVuZW1vcyB1biB2YWxvciBhdMOtcGljbyBlbiBIb3VzZSBQcmljZQ0KMi4gVGVuZW1vcyBOQXMgZW4gQ2FycGV0DQozLiBWYWxvcmVzIG5lZ2F0aXZvcyBlbiByYWluZmFsbA0KDQojIyAzLiBMaW1waWFyIGxvcyBkYXRvcw0KYGBge3J9DQojIMK/Q3XDoW50b3MgTkEgdGVuZ28gZW4gbGEgYmFzZSBkZSBkYXRvcz8NCnN1bShpcy5uYShiZCkpDQoNCiMgwr9DdcOhbnRvcyBOQSB0ZW5nbyBwb3IgdmFyaWFibGU/DQpzYXBwbHkoYmQsIGZ1bmN0aW9uKHgpIHN1bShpcy5uYSh4KSkpDQoNCiMgRWxpbWluYXIgTkENCmJkIDwtIG5hLm9taXQoYmQpDQoNCiMgRWxpbWluYXIgcmVnaXN0cm8gZGUgcHJlY2lvIGFsdG8NCmJkIDwtIGJkW2JkJEhvdXNlX1ByaWNlPDE1MDAwMDAwLF0NCmJveHBsb3QoYmQkSG91c2VfUHJpY2UsIGhvcml6b250YWwgPSBUUlVFKQ0KDQpiZCA8LSBiZFtiZCRSYWluZmFsbD4wLF0NCmBgYA0KDQoNCiMjIDQuIEdlbmVyYXIgcmVncmVzacOzbg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0oSG91c2VfUHJpY2UgfiBEaXN0X1RheGkgKyBEaXN0X01hcmtldCArIERpc3RfSG9zcGl0YWwgKyBDYXJwZXQgKyBCdWlsdHVwICsgQ2l0eV9DYXRlZ29yeSArIFJhaW5mYWxsICsgUGFya2luZywgZGF0YSA9IGJkKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCg0KIyMgNS4gQWp1c3RhciByZWdyZXNpw7NuDQpgYGB7cn0NCnJlZ3Jlc2lvbiA8LSBsbShIb3VzZV9QcmljZSB+IERpc3RfVGF4aSArIERpc3RfTWFya2V0ICsgRGlzdF9Ib3NwaXRhbCArIENhcnBldCArIEJ1aWx0dXAgKyBDaXR5X0NhdGVnb3J5ICsgUGFya2luZyArIFJhaW5mYWxsLCBkYXRhID0gYmQpDQpzdW1tYXJ5KHJlZ3Jlc2lvbikNCmBgYA0KDQoNCiMjIDUuIENvbnN0cnVpciB1biBtb2RlbG8gcHJlZGljdGl2bw0KYGBge3J9DQpkYXRvcyA8LSBkYXRhLmZyYW1lKERpc3RfVGF4aSA9IDgyNzgsIERpc3RfTWFya2V0ID0gMTYyNTEsIERpc3RfSG9zcGl0YWwgPSAxMzg1NywgQ2FycGV0ID0gMTQ1NSwgQnVpbHR1cCA9ICAxNzY0LCBDaXR5X0NhdGVnb3J5ID0gIkNBVCBBIiwgUGFya2luZyA9ICJDb3ZlcmVkIiwgUmFpbmZhbGwgPSAzOTApDQpwcmVkaWN0KHJlZ3Jlc2lvbixkYXRvcykNCmBgYA0KDQojIyBDb25jbHVzaW9uZXMNCkVsIG1vZGVsbyBwcmVkaWN0aXZvIG5vcyBtdWVzdHJhIGVsIHByZWNpbyBkZSBsYSBjYXNhIGNvbnNpZGVyYW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBjb21vIGRhdG9zIGRlIGVudHJhZGEgY29uIHVuYSBSLWN1YWRyYWRhIGFqdXN0YWRhIGRlbCA0OSUu