This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(lme4)
## 載入需要的套件:Matrix
library(lmerTest)
##
## 載入套件:'lmerTest'
## 下列物件被遮斷自 'package:lme4':
##
## lmer
## 下列物件被遮斷自 'package:stats':
##
## step
library(performance)
library(ggplot2)
## Import the data
library(haven)
hsb1 <- read_sav("HSB/hsb1.sav")
View(hsb1)
## Select a school
hsb_c<-hsb1[hsb1$schoolid=="3881",]
View(hsb_c)
## Regression of uncentered predictor
fit.ses<-lm(mathach ~ ses, data=hsb_c)
summary(fit.ses)
##
## Call:
## lm(formula = mathach ~ ses, data = hsb_c)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9596 -5.9037 -0.8132 5.1900 12.6608
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.644 1.055 11.03 1.47e-13 ***
## ses 2.391 1.943 1.23 0.226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.568 on 39 degrees of freedom
## Multiple R-squared: 0.03737, Adjusted R-squared: 0.01268
## F-statistic: 1.514 on 1 and 39 DF, p-value: 0.2259
library(lm.beta)
std.fit.ses<-lm.beta(fit.ses)
summary(std.fit.ses)
##
## Call:
## lm(formula = mathach ~ ses, data = hsb_c)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9596 -5.9037 -0.8132 5.1900 12.6608
##
## Coefficients:
## Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 11.6441 NA 1.0553 11.03 1.47e-13 ***
## ses 2.3907 0.1933 1.9430 1.23 0.226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.568 on 39 degrees of freedom
## Multiple R-squared: 0.03737, Adjusted R-squared: 0.01268
## F-statistic: 1.514 on 1 and 39 DF, p-value: 0.2259
library(psych)
##
## 載入套件:'psych'
## 下列物件被遮斷自 'package:ggplot2':
##
## %+%, alpha
describe(fit.ses$residuals)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 41 0 6.49 -0.81 -0.18 7.77 -10.96 12.66 23.62 0.22 -1.19 1.01
library(car)
## 載入需要的套件:carData
##
## 載入套件:'car'
## 下列物件被遮斷自 'package:psych':
##
## logit
durbinWatsonTest(fit.ses)
## lag Autocorrelation D-W Statistic p-value
## 1 0.1596718 1.608378 0.162
## Alternative hypothesis: rho != 0
ncvTest(fit.ses)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.04004184, Df = 1, p = 0.8414
ggplot(fit.ses, aes(x = ses, y=mathach)) + geom_point(size=3) + stat_smooth(method="lm")
## `geom_smooth()` using formula = 'y ~ x'
##regression of centered ses
sesdev<-hsb_c$ses-mean(hsb_c$ses)
fit.ses_c<-lm(mathach~sesdev, data=hsb_c)
summary(fit.ses_c)
##
## Call:
## lm(formula = mathach ~ sesdev, data = hsb_c)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9596 -5.9037 -0.8132 5.1900 12.6608
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.949 1.026 11.65 2.86e-14 ***
## sesdev 2.391 1.943 1.23 0.226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.568 on 39 degrees of freedom
## Multiple R-squared: 0.03737, Adjusted R-squared: 0.01268
## F-statistic: 1.514 on 1 and 39 DF, p-value: 0.2259
library(lm.beta)
std.fit.ses_c<-lm.beta(fit.ses_c)
summary(std.fit.ses_c)
##
## Call:
## lm(formula = mathach ~ sesdev, data = hsb_c)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9596 -5.9037 -0.8132 5.1900 12.6608
##
## Coefficients:
## Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 11.9492 NA 1.0257 11.65 2.86e-14 ***
## sesdev 2.3907 0.1933 1.9430 1.23 0.226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.568 on 39 degrees of freedom
## Multiple R-squared: 0.03737, Adjusted R-squared: 0.01268
## F-statistic: 1.514 on 1 and 39 DF, p-value: 0.2259
library(psych)
describe(fit.ses_c$residuals)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 41 0 6.49 -0.81 -0.18 7.77 -10.96 12.66 23.62 0.22 -1.19 1.01
library(car)
durbinWatsonTest(fit.ses_c)
## lag Autocorrelation D-W Statistic p-value
## 1 0.1596718 1.608378 0.162
## Alternative hypothesis: rho != 0
ncvTest(fit.ses_c)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.04004184, Df = 1, p = 0.8414
ggplot(fit.ses_c, aes(x = sesdev, y=mathach)) + geom_point(size=3) + stat_smooth(method="lm")
## `geom_smooth()` using formula = 'y ~ x'
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.