These data were collected from 2007 - 2009 by Dr. Kristen Gorman with the Palmer Station Long Term Ecological Research Program, part of the US Long Term Ecological Research Network. The data were imported directly from the Environmental Data Initiative (EDI) Data Portal, and are available for use by CC0 license (“No Rights Reserved”) in accordance with the Palmer Station Data Policy.
Check the appropriateness of response variable for regression: View a histogram of response variable. It should be continuous, and approximately unimodal and symmetric, with few outliers.
pendata<-read.csv("https://raw.githubusercontent.com/kvaranyak4/STAT3220/main/penguins.csv")
head(pendata)
names(pendata)
## [1] "X" "species" "island"
## [4] "bill_length_mm" "bill_depth_mm" "flipper_length_mm"
## [7] "body_mass_g" "sex" "year"
hist(pendata$body_mass_g, xlab="Body Mass", main="Histogram of Body Mass (in grams)")
We explore the box plots and means for each qualitative variable explanatory variable then classify the relationships as existent or not.
#Summary Statistics for response variable grouped by each level of the response
tapply(pendata$body_mass_g,pendata$species,summary)
$Adelie
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
2850 3350 3700 3701 4000 4775 1
$Chinstrap
Min. 1st Qu. Median Mean 3rd Qu. Max.
2700 3488 3700 3733 3950 4800
$Gentoo
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
3950 4700 5000 5076 5500 6300 1
tapply(pendata$body_mass_g,pendata$sex,summary)
$female
Min. 1st Qu. Median Mean 3rd Qu. Max.
2700 3350 3650 3862 4550 5200
$male
Min. 1st Qu. Median Mean 3rd Qu. Max.
3250 3900 4300 4546 5312 6300
#Box plots for species and sex
boxplot(body_mass_g~species,pendata, ylab="Body Mass (grams)")
boxplot(body_mass_g~sex,pendata, ylab="Body Mass (grams)")
#Scatter plots for quantitative variables
for (i in names(pendata)[4:6]) {
plot(pendata[,i], pendata$body_mass_g,xlab=i,ylab="Body Mass (grams)")
}
#Correlations for quantitative variables
round(cor(pendata[4:6],pendata$body_mass_g,use="complete.obs"),3)
[,1]
bill_length_mm 0.595
bill_depth_mm -0.472
flipper_length_mm 0.871
There appears to be relationships with each of the qualitative explanatory variables because the mean value of y is different for each level.
bill length and flipper length have positive linear relationships with the response.
bill depth has a negative relationship. however it appears there might be groups in within with positive relationship (we will look at this later)
For the sake of this example, we will hold off on adding the quantitative variables right now.
Therefore, our hypothesized model is:
\(E(bodymass)=\beta_0+\beta_1 SpeciesC+\beta_2 SpeciesG+\beta_3 Sex\)
penmod1<-lm(body_mass_g~species+sex,data=pendata)
summary(penmod1)
Call:
lm(formula = body_mass_g ~ species + sex, data = pendata)
Residuals:
Min 1Q Median 3Q Max
-816.87 -217.80 -16.87 227.61 882.20
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3372.39 31.43 107.308 <2e-16 ***
speciesChinstrap 26.92 46.48 0.579 0.563
speciesGentoo 1377.86 39.10 35.236 <2e-16 ***
sexmale 667.56 34.70 19.236 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 316.6 on 329 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.8468, Adjusted R-squared: 0.8454
F-statistic: 606.1 on 3 and 329 DF, p-value: < 2.2e-16
The prediction equation is:
\(\widehat{bodymass}=3372.39+26.92SpeciesC+1377.86SpeciesG+667.56Sex\)
Hypotheses:
Distribution of test statistic: F with 3,329 DF
Test Statistic: F=606.1
Pvalue: <2.2e-16
Decision: pvalue<0.05 -> REJECT H0
Conclusion: The model with species and sex is adequate at body mass for the penguins.
Species is determined by two parameters (SpeciesC and SpeciesG dummy variables), so we would want to keep or remove BOTH of those dummy variables. We will cover this later.
We can test sex because it is only one parameter in the model.
Hypotheses:
Distribution of test statistic: T with 329 DF
Test Statistic: t=19.236
Pvalue: <2.2e-16
Decision: pvalue<0.05 -> REJECT H0
Conclusion: The sex of the penguin is significant at predicting the body mass of a penguin given species is a constant in the model. We will keep it in the model.
Note we can include both qualitative and quantitative predictors in the model.
penmod2<-lm(body_mass_g~species+sex+bill_depth_mm,data=pendata)
summary(penmod2)
Call:
lm(formula = body_mass_g ~ species + sex + bill_depth_mm, data = pendata)
Residuals:
Min 1Q Median 3Q Max
-851.2 -187.7 -3.5 221.7 936.3
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1576.99 357.08 4.416 1.37e-05 ***
speciesChinstrap 19.44 44.87 0.433 0.665
speciesGentoo 1721.70 77.88 22.106 < 2e-16 ***
sexmale 513.99 45.24 11.360 < 2e-16 ***
bill_depth_mm 102.04 20.22 5.046 7.48e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 305.5 on 328 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.8578, Adjusted R-squared: 0.8561
F-statistic: 494.8 on 4 and 328 DF, p-value: < 2.2e-16
Interpretation: For each millimeter increase in bill depth, we expect the body weight of a penguin to increase by 102.04 grams, given species and sex are held constant.
plot(body_mass_g~bill_depth_mm , col=factor(species),data=pendata,xlab="Bill Depth",ylab="Body Mass (grams)")
legend("topright",legend = levels(factor(pendata$species)), pch = 19,
col = factor(levels(factor(pendata$species))))
NOTE: When we regroup the scatter plot for Bill Depth by species, the relationships for each level are positive. Note also we see each species would have a similar slope, but different y-intercept.
Let’s suppose we simplify the model to just species and bill depth:
\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 BillDepth\) , where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise
What if there were different slopes for each group? We will explore this next time!
We will explore the various styles of interactions through several combinations of variables.
plot(body_mass_g~bill_depth_mm , col=factor(species),data=pendata,xlab="Bill Depth",ylab="Body Mass (grams)")
legend("topright",legend = levels(factor(pendata$species)), pch = 19,
col = factor(levels(factor(pendata$species))))
Write a model for E(y) as a function of bill depth and species that hypothesizes different bill depth-body mass slopes for each species.
\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 BillDepth\)
\(+\beta_4SpeciesC*BillDepth+ \beta_5SpeciesG*BillDepth\)
, where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise
The bill depth-body mass slope for Adelie (X1=0,X2=0) will be: \(\beta_3\)
The bill depth-body mass slope for Chinstrap (X1=1,X2=0) will be: \(\beta_3+\beta_4\)
The bill depth-body mass slope for Gentoo (X1=0,X2=1) will be: \(\beta_3+\beta_5\)
penmod3<-lm(body_mass_g~species*bill_depth_mm,data=pendata)
summary(penmod3)
Call:
lm(formula = body_mass_g ~ species * bill_depth_mm, data = pendata)
Residuals:
Min 1Q Median 3Q Max
-845.89 -254.74 -28.46 228.01 1161.41
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -283.28 437.94 -0.647 0.5182
speciesChinstrap 247.06 829.77 0.298 0.7661
speciesGentoo -175.71 658.43 -0.267 0.7897
bill_depth_mm 217.15 23.82 9.117 <2e-16 ***
speciesChinstrap:bill_depth_mm -12.53 45.01 -0.278 0.7809
speciesGentoo:bill_depth_mm 152.29 40.49 3.761 0.0002 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 354.9 on 336 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.807, Adjusted R-squared: 0.8041
F-statistic: 281 on 5 and 336 DF, p-value: < 2.2e-16
Write the prediction equation
\(\widehat{body mass}=-283.28+247.06SpeciesC-175.71SpeciesG+217.15 BillDepth\)
\(-12.53SpeciesC*BillDepth+ 152.29SpeciesG*BillDepth\)
Interpret the slope for bill depth
# We need to verify there are observations for every combination of level
table(pendata$species,pendata$sex)
female male
Adelie 73 73
Chinstrap 34 34
Gentoo 58 61
# We can plot interactions either way
interaction.plot(pendata$species, pendata$sex, pendata$body_mass_g,fun=mean,trace.label="Sex", xlab="Species",ylab="Mean Body Mass")
interaction.plot(pendata$sex, pendata$species, pendata$body_mass_g,fun=mean,trace.label="Species", xlab="Sex",ylab="Mean Body Mass")
There is not strong evidence of an interaction because there is not crossing of the levels.
Write a model for E(y) as a function of sex and species and its interaction.
\(E(body mass)=\beta_0+\beta_1SpeciesC+ \beta_2SpeciesG+\beta_3 SexM\)
\(+\beta_4SpeciesC*SexM+ \beta_5SpeciesG*SexM\)
, where SpeciesC= 1 if Chinstrap, 0 otherwise and SpeciesG = 1 if Gentoo, 0 otherwise, SexM= 1 if Male, 0 if female
penmod4<-lm(body_mass_g~species*sex,data=pendata)
summary(penmod4)
Call:
lm(formula = body_mass_g ~ species * sex, data = pendata)
Residuals:
Min 1Q Median 3Q Max
-827.21 -213.97 11.03 206.51 861.03
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3368.84 36.21 93.030 < 2e-16 ***
speciesChinstrap 158.37 64.24 2.465 0.01420 *
speciesGentoo 1310.91 54.42 24.088 < 2e-16 ***
sexmale 674.66 51.21 13.174 < 2e-16 ***
speciesChinstrap:sexmale -262.89 90.85 -2.894 0.00406 **
speciesGentoo:sexmale 130.44 76.44 1.706 0.08886 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 309.4 on 327 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.8546, Adjusted R-squared: 0.8524
F-statistic: 384.3 on 5 and 327 DF, p-value: < 2.2e-16
Write the prediction equation
\(\widehat{body mass}=368.84+158.37SpeciesC+1310.91SpeciesG+674.66 SexM\)
\(-262.89SpeciesC*SexM+ 130.44SpeciesG*SexM\)
Write a model for E(y) as a function of bill depth and bill length that allows for an interaction.
\(E(body mass)=\beta_0+\beta_1BillLength+\beta_2 BillDepth\)
\(+\beta_3BillLength*BillDepth\)
penmod5<-lm(body_mass_g~bill_length_mm*bill_depth_mm,data=pendata)
summary(penmod5)
Call:
lm(formula = body_mass_g ~ bill_length_mm * bill_depth_mm, data = pendata)
Residuals:
Min 1Q Median 3Q Max
-1811.29 -355.81 4.35 354.80 1606.90
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -25583.278 2668.939 -9.586 <2e-16 ***
bill_length_mm 715.006 58.681 12.185 <2e-16 ***
bill_depth_mm 1484.934 149.405 9.939 <2e-16 ***
bill_length_mm:bill_depth_mm -36.079 3.297 -10.944 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 503.5 on 338 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.6093, Adjusted R-squared: 0.6058
F-statistic: 175.7 on 3 and 338 DF, p-value: < 2.2e-16
\(\widehat{body mass}=-25583.278+715.006BillLength+1484.934 BillDepth+36.079 BillLength*BillDepth\)
Suppose a penguin has a bill depth of 17mm. What is the slope of bill length?
We can recoded our base level using the relevel function.
recodedSpecies<-relevel(factor(pendata$species),ref="Chinstrap")
penmod6<-lm(body_mass_g~recodedSpecies,data=pendata)
summary(penmod6)
Call:
lm(formula = body_mass_g ~ recodedSpecies, data = pendata)
Residuals:
Min 1Q Median 3Q Max
-1126.02 -333.09 -33.09 316.91 1223.98
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3733.09 56.06 66.59 <2e-16 ***
recodedSpeciesAdelie -32.43 67.51 -0.48 0.631
recodedSpeciesGentoo 1342.93 69.86 19.22 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 462.3 on 339 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.6697, Adjusted R-squared: 0.6677
F-statistic: 343.6 on 2 and 339 DF, p-value: < 2.2e-16