Load libraries

suppressPackageStartupMessages({library(MOFA2)
library(kableExtra)
library(data.table)
library(ggplot2)
library(tidyverse)
library(here)})

Load data and Generate Mofa object

set.seed(1)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

imputationTestingList <- list()

add_cols <- function(df, cols) {
  add <- cols[!cols %in% names(df)]
  if(length(add) != 0) df[add] <- NA
  return(as.matrix(df[, sort(cols)]))
}

df_source<- readRDS(here("./data/master_normalized_data_challenge2_train_Aug25.RDS"))

metaDf <- df_source[["subject_specimen"]]
metaDf["age_at_boost"] <- as.numeric(round(difftime(metaDf$date_of_boost, metaDf$year_of_birth,units="weeks")/52, 2))

normalizedData <- list()

normalizedData[["abtiter"]] <- as.data.frame(df_source[["abtiter_wide"]]$batchCorrected_data)
normalizedData[["cytof"]] <- as.data.frame(df_source[["pbmc_cell_frequency"]]$batchCorrected_data)
normalizedData[["rnaseq"]] <- as.data.frame(df_source[["pbmc_gene_expression"]]$batchCorrected_data)
normalizedData[["olink"]] <- as.data.frame(df_source[["plasma_cytokine_concentrations"]]$batchCorrected_data)

int_cols <- Reduce(intersect, lapply(normalizedData[c("abtiter", "cytof", "olink")], colnames))
cols <- unique(c(int_cols, colnames(normalizedData[["rnaseq"]])))

dataset_cols <- metaDf[metaDf$dataset=="2020_dataset", ]$specimen_id
cols <- intersect(cols, dataset_cols)

common_cols <- Reduce(intersect, lapply(normalizedData[c("rnaseq", "abtiter", "cytof", "olink")], colnames))
common_cols <- intersect(common_cols, dataset_cols)
removingNums <- sample(common_cols, 20, replace=FALSE)
# cols <- cols[! cols %in% removingNums]

normalizedData[["abtiter"]][, removingNums] <- NA
normalizedData[["cytof"]][, removingNums] <- NA
normalizedData[["rnaseq"]][, removingNums] <- NA
normalizedData[["olink"]][, removingNums] <- NA

imputationTestingList$actualData[["abtiter"]] <- normalizedData$abtiter[, removingNums]
imputationTestingList$actualData[["cytof"]] <- normalizedData$cytof[, removingNums]
imputationTestingList$actualData[["rnaseq"]] <- normalizedData$rnaseq[, removingNums]
imputationTestingList$actualData[["olink"]] <- normalizedData$olink[, removingNums]
normalizedData[["abtiter"]] <- add_cols(normalizedData[["abtiter"]],  cols)
normalizedData[["cytof"]] <- add_cols(normalizedData[["cytof"]],  cols)
normalizedData[["rnaseq"]] <- add_cols(normalizedData[["rnaseq"]],  cols)
normalizedData[["olink"]] <- add_cols(normalizedData[["olink"]],  cols)

normalizedData[["abtiter"]] <- normalizedData$abtiter[, !duplicated(cols)]
normalizedData[["cytof"]] <- normalizedData$cytof[, !duplicated(cols)]
normalizedData[["rnaseq"]] <- normalizedData$rnaseq[, !duplicated(cols)]

#
MOFAobject <- create_mofa(normalizedData)

Plot multiomic missing values

plot_data_overview(MOFAobject)

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]
samples_metadata(MOFAobject) <- metaDf1

Setting data Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)

data_opts <- get_default_data_options(MOFAobject)
data_opts
## $scale_views
## [1] FALSE
## 
## $scale_groups
## [1] FALSE
## 
## $center_groups
## [1] TRUE
## 
## $use_float32
## [1] TRUE
## 
## $views
## [1] "abtiter" "cytof"   "rnaseq"  "olink"  
## 
## $groups
## [1] "group1"

Setting model Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
model_opts <- get_default_model_options(MOFAobject)
model_opts$num_factors <- 15

model_opts
## $likelihoods
##    abtiter      cytof     rnaseq      olink 
## "gaussian" "gaussian" "gaussian" "gaussian" 
## 
## $num_factors
## [1] 15
## 
## $spikeslab_factors
## [1] FALSE
## 
## $spikeslab_weights
## [1] FALSE
## 
## $ard_factors
## [1] FALSE
## 
## $ard_weights
## [1] TRUE

Setting training Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
train_opts <- get_default_training_options(MOFAobject)
train_opts$convergence_mode <- "medium"
train_opts$seed <- 42

train_opts
## $maxiter
## [1] 1000
## 
## $convergence_mode
## [1] "medium"
## 
## $drop_factor_threshold
## [1] -1
## 
## $verbose
## [1] FALSE
## 
## $startELBO
## [1] 1
## 
## $freqELBO
## [1] 5
## 
## $stochastic
## [1] FALSE
## 
## $gpu_mode
## [1] FALSE
## 
## $seed
## [1] 42
## 
## $outfile
## NULL
## 
## $weight_views
## [1] FALSE
## 
## $save_interrupted
## [1] FALSE

Training Model

MOFAobject <- prepare_mofa(MOFAobject,
  data_options = data_opts,
  model_options = model_opts,
  training_options = train_opts
)
MOFAobject <- run_mofa(MOFAobject, outfile=".../MOFA2_2ndChallenge_F40.hdf5", use_basilisk = TRUE)

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 190 
##  Number of factors: 15

Impute Data

imputed_data <- impute(MOFAobject, views = "all")

Add meta data to Mofa and Imputed objects

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]

samples_metadata(MOFAobject) <- metaDf1
samples_metadata(imputed_data) <- metaDf1

Mofa object

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 190 
##  Number of factors: 15
slotNames(MOFAobject)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Imputed data

imputed_data
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 190 
##  Number of factors: 15
slotNames(imputed_data)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Results for Actual Data

plot_object = MOFAobject

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 1,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 15,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

Results for Imputed Data

plot_object = imputed_data

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_object = imputed_data
plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 15,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 1,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

results <- imputed_data@imputed_data

imputationTestingList$imputedData[["abtiter"]] <- results$abtiter$group1[, removingNums]
imputationTestingList$imputedData[["cytof"]] <- results$cytof$group1[, removingNums]
imputationTestingList$imputedData[["rnaseq"]] <- results$rnaseq$group1[, removingNums]
imputationTestingList$imputedData[["olink"]] <- results$olink$group1[, removingNums]

saveRDS(results, file = here("./results/imputedData2020_removed20Samples.RDS"))

saveRDS(imputationTestingList, file = here("./results/2020Data_imputationTest_removed20Samples.RDS"))


knitr::kable(MOFAobject@data$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer Before Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer Before Imputation
1 102 103 104 105 106 114 115 116 117 118 131 132 133 134 135 138 139 140 141 142 146 147 148 149 150 153 154 155 156 157 160 161 162 163 164 167 168 169 170 171 174 175 176 177 178 181 182 183 184 185 19 191 192 193 194 195 2 20 201 202 203 204 205 208 209 21 210 211 212 22 223 224 225 226 227 23 241 242 243 244 245 248 249 250 251 252 255 256 257 258 259 27 274 275 276 277 278 28 281 282 283 284 285 29 293 294 295 296 297 3 30 31 324 325 326 327 328 332 333 334 335 336 342 343 344 345 346 349 350 351 352 353 355 356 357 358 359 360 361 362 363 364 369 37 370 371 372 373 38 385 386 387 388 389 39 397 398 399 4 40 400 401 405 406 407 408 409 41 45 46 47 48 49 5 70 71 72 73 74 77 78 79 80 81 87 88 89 90 91
IgG_PT 0.1775434 -1.9182090 -1.5012426 -1.2412598 -1.3207808 -0.3790212 -3.1615927 NA -2.3882227 -2.5981243 1.8689983 6.2373667 4.3402700 4.1486931 5.1598711 NA -1.2966101 -1.9742597 -2.3253355 6.6478567 6.2358379 -0.0738690 0.0912969 0.6148360 5.4922934 5.5617456 1.2666233 1.5154083 -2.1394799 NA 3.6058519 2.2242539 -2.9434149 -3.2940013 -2.0979593 -1.5814126 -0.0709701 -3.1478009 -3.3512290 3.8128078 1.3126671 -3.143080 -3.1198630 -3.1745422 0.7795751 3.5502174 -3.2554107 NA -3.2966945 -3.3035052 -2.2033014 -2.3895802 -2.7929854 NA -3.1451752 -2.9689417 -2.2315068 NA -2.7625818 -2.8186316 -3.2541749 NA -2.4519558 NA -2.7688606 -3.2541749 -2.9534814 -2.9658356 -3.4270289 -1.1262276 2.7898152 NA -2.6939869 -2.4808145 -1.5933034 0.5232503 3.3901160 -3.3372946 NA NA NA -1.7067630 -1.8554653 -2.0001836 -1.9087694 4.2757568 10.9944754 -2.9144862 NA NA -2.8450553 NA NA -2.2049170 -1.7253544 -1.2514839 0.4365656 0.6424520 NA -2.4274793 -2.9469082 NA -2.0374427 -1.2618380 -1.8732808 -2.7680748 -2.9290950 -2.9872820 1.3263462 2.9644034 -1.2626779 -2.0737247 4.2213116 -2.3196733 -2.4004617 -2.4028468 4.2934847 5.1615791 -2.4790683 NA -2.6766074 -2.7038703 -2.0508611 -2.5770750 -2.6758547 NA 8.7744541 NA -3.3552258 -3.3246915 -3.4270289 -3.0439770 -1.4155581 6.1132040 6.9018764 5.7190428 9.2250233 7.2072124 1.7102396 NA 2.0501964 NA 11.4276514 -3.4270289 0.2368605 NA -3.4270289 -3.2660348 -3.4270289 -0.3868096 -3.0453944 -3.0848818 -3.2711132 -2.5777981 -0.6534762 -1.2797709 -0.6136370 NA -3.4270289 -0.2955337 2.3745949 -0.0183160 2.3728068 13.1587887 5.1633587 2.5137141 3.0912979 8.1630716 1.7234910 -3.2480388 NA NA -3.2853639 5.4193544 7.1160011 -3.2407651 -3.2672994 -3.1152918 -2.5727410 -2.5329771 -3.4270289 NA -3.4270289 -3.2096739 -3.2529421 NA -1.5406537 -1.5883708 24.8264408 18.5075645
IgG_PRN -0.2664616 -1.4084675 -1.2341212 -2.0350792 8.6411228 9.9514380 -1.5234659 NA -0.6218860 2.1405807 12.4194641 -2.0403881 -2.0586271 -2.0573983 -2.0291414 NA -0.7795278 -1.3499696 -1.6366892 -1.8125179 -1.9104714 -0.2805498 -2.0246704 -2.0169945 -1.9483401 -1.9209857 -1.9558985 -1.9501969 -0.4511683 NA -2.0073400 -0.5862951 9.2569113 2.8906407 7.4394464 8.9832611 -1.1806791 -0.7766815 -1.7174357 -1.9365985 -1.9560530 -2.080035 -2.0523975 -2.1239679 -1.9004500 26.2269745 -1.4837518 NA -1.5741569 -1.6123693 1.1872408 3.8042440 -1.7666671 NA -2.0417819 -1.9022104 2.6889405 NA 1.9010396 -1.4162852 -2.0596409 NA 1.9159732 NA -1.7200061 -2.1426401 0.5987520 -1.8760201 -1.9395211 -1.9730065 6.0806046 NA 1.7284665 2.9296775 4.0155034 -1.9504691 4.1461864 0.1165447 NA NA NA 1.8222966 -1.1721364 -1.2431623 -1.2818067 -1.8741727 -1.7415407 -2.2168565 NA NA -2.2007315 NA NA -1.2718529 -0.7193775 0.1147797 -1.9970487 3.8459373 NA 0.8964565 -0.7614756 NA 1.1517451 1.3318114 0.9214506 -1.9777467 -2.0569930 -2.1023104 -1.9761466 -1.9039178 -1.2594619 0.0184994 3.8999133 1.5839171 1.1396067 1.1369650 -1.9239234 -1.8970969 -1.1720872 NA -1.3753983 -1.4143434 5.7471581 -1.8343945 -1.8882678 NA -1.8522301 NA -2.2513340 -2.2397442 -2.3086960 -1.2336348 7.5022888 -2.1011472 -2.0902224 -2.1053424 -1.9153482 -1.9309795 -1.9944205 NA -1.9883370 NA -1.8372382 -1.5225313 1.8823657 NA -2.3248520 1.7487793 -1.8908386 1.3316498 -2.1633630 -2.1780887 -2.2587419 -0.4366543 -1.8596776 0.3808739 -0.7909501 NA -2.0392327 -0.5624478 1.9001360 -1.9992288 -1.9274292 -2.0531764 -2.1752894 -2.2191322 -2.0537205 -1.9816220 1.7164226 -2.2913616 NA NA -2.2952900 -0.5454397 3.8101449 -2.2387884 -2.2431726 -0.5500689 0.8692341 0.9012675 -2.3102531 NA -2.3046074 6.3517580 5.5704746 NA 2.8565350 2.5595021 5.4601917 3.9011688
IgG_FHA 28.0613098 -2.5793495 1.1089225 -1.4341834 66.4159927 16.9725800 -2.4813159 NA -3.0577209 -2.5685899 -3.5335193 -1.3336864 -1.4477656 -1.4483809 -1.3598123 NA 6.1153202 1.4827271 -2.8666260 -0.6806469 -0.7158184 -2.6257050 -1.8966284 -1.8516359 -1.4629042 -1.5247996 -1.8373947 -1.8415339 7.6433306 NA -1.2539155 9.6368856 -2.7845733 -3.2919197 12.4906454 -3.5335193 -0.4391351 -3.1285663 -3.3604131 -1.3435822 -1.4441152 -1.542067 -1.6622846 -1.8523204 -0.7158184 58.9181557 -3.1243575 NA -3.1440032 -3.1528676 -1.6529603 -2.5921626 -3.3603220 NA -3.4655411 -3.4176490 -2.3631580 NA -2.9139936 -2.7040498 -3.2571447 NA -1.3945518 NA -1.5614085 -2.8852706 -3.0486054 -1.9787529 -1.5033069 -1.5307574 -3.5335193 NA 0.2205386 2.0547566 7.6768513 -1.2195704 7.1446867 -3.3083167 NA NA NA 2.1147380 -2.9188335 -2.9917574 -2.9646182 -1.4908748 -0.5034194 -3.0627172 NA NA -2.9849627 NA NA -1.3933091 -0.3947515 3.1452742 -1.4596686 -3.5335193 NA -0.8128171 -2.2888887 NA -1.3628054 -0.4391351 -2.8494787 -2.9012678 -3.0148933 -3.0644038 -1.4379005 -0.8623281 0.5169520 -2.9553888 -0.8855796 -2.8435552 -2.8988769 -2.8629706 -1.6010144 -1.1773982 -2.6597197 NA -2.8295269 -2.8643422 0.4174809 -3.2000422 -3.2352481 NA -1.3864009 NA -3.3642855 -3.3519869 -3.4787526 0.2891197 -3.5335193 -1.6843772 -1.6480272 -1.6913369 -1.3067961 -1.2943463 -1.7886808 NA -1.7724955 NA -0.8266416 -3.2431321 -3.5335193 NA -3.5335193 -1.6323407 -1.2489736 6.1840420 -3.1201210 -3.1352091 -3.3274226 -2.3137705 -1.1197290 0.7290092 -3.5335193 NA -1.4282377 6.0036888 -3.5335193 -1.3042712 -0.7947035 -1.0604801 -0.8212199 -1.5370457 -1.6091835 -0.8063645 -3.5335193 -3.2592545 NA NA -3.2542133 5.7685871 -3.5335193 -3.2623641 -3.3000784 -3.0123711 1.8149095 1.9608793 -3.5146775 NA -3.5127501 -1.3063426 -1.5312872 NA -0.7873735 -0.9553404 14.5338469 29.8643074
IgG1_PT 5.3107424 -4.5164723 -5.5945406 -3.7484283 -0.9232473 28.2186470 -12.8137875 NA -12.6360989 -12.3345642 -4.1810107 37.1115646 30.8475761 24.6828575 4.8338165 NA -5.2144575 -6.3212843 -6.9836893 4.3730688 36.0499077 0.9189491 8.2553530 1.1382341 3.3419075 29.7213020 -10.9125996 -10.9255009 -10.8723764 NA 14.8370523 -12.5669851 -12.5245438 -12.5056801 -7.0047526 -6.5874081 -12.6966686 -12.6974545 -12.6408653 19.1268158 23.2861099 -12.711602 -12.6581564 -12.7398968 2.5053530 19.9465714 -12.7532578 NA -12.7815523 -12.7839108 -9.1523571 -9.3925495 -11.2402859 NA -11.6843529 -11.8981342 -11.3620434 NA -8.3637409 -10.7388449 -10.8535948 NA 0.9703884 NA -12.3681374 -12.3940744 -10.2949696 -12.4600945 -6.0108948 5.9175949 13.3002329 NA -11.9151230 -11.7038136 -9.5574484 -1.0127492 29.6482697 -12.8651810 NA NA NA -6.8997836 -8.8311777 -7.4044266 -8.4012651 25.0003090 39.6716652 -10.9634008 NA NA -9.9218311 NA NA -5.6066375 -5.5658731 -6.7218790 0.5623226 10.1592836 NA -10.0898800 -11.2229614 NA -8.0569868 -3.6085501 -1.9718113 -11.2650337 -11.1464300 -11.5487747 8.1315012 15.1126070 7.6733809 -1.7721162 22.9530067 -9.7635069 -10.5265274 -7.6983089 20.0620575 35.7031746 -12.5255127 NA -12.7633266 -12.1306028 -11.0932741 -9.6373882 -11.3041649 NA 43.0330505 NA -12.8628807 -12.9236088 -12.9054461 -12.7966690 -12.7588329 25.6932678 7.6299086 35.7780571 38.9326096 33.5575752 17.8011742 NA 19.8263626 NA 41.3250580 -12.9221191 5.6132336 NA -12.9221191 -12.8656006 -12.6562920 1.7381372 -12.6811428 -12.8467693 -12.7557812 -11.9183750 -3.6018324 2.5259638 -10.0361013 NA -9.0409222 3.3778276 21.0875015 -4.9611096 -6.7529583 8.4358339 10.9451036 11.4043074 21.3174248 29.0150719 19.2978287 -12.7258577 NA NA -12.8337097 -10.7845182 35.2919769 -12.9236088 -12.9236088 -12.9236088 -12.7764139 -11.6914158 -12.9236088 NA -12.9236088 -12.9236088 -12.8650875 NA -7.8843665 -6.1922579 56.9808159 52.8651924
IgG1_PRN 0.5836387 -0.2182302 -0.4338741 -0.4939656 0.7812977 1.5184584 -1.7075391 NA -1.6645025 -1.5183375 -0.4293845 -0.1532995 -0.3599730 -0.5643780 -0.7652701 NA -0.1837747 -0.2868739 -0.5277286 0.2171468 1.3512182 -0.1831510 0.2229871 -0.3388543 -0.1290329 0.9297349 -0.8238397 -0.7010627 -0.6449368 NA 0.2020707 1.1111410 1.5343816 1.2032275 1.6415880 1.3062749 -0.2212590 -0.2450826 -0.1417083 0.8926291 0.9105711 -1.528410 -1.4901493 -1.5397570 0.7332900 0.7476971 -0.2121692 NA -0.3162862 -0.3238907 0.3508272 1.6640940 -1.2353375 NA -1.3272753 -1.3597134 0.2874024 NA 1.7603393 -0.4902402 -0.5183711 NA -0.5298381 NA -1.2978967 -1.3331866 1.6240985 -1.3607531 0.4288189 0.8635921 1.8261559 NA 1.0754619 1.1006172 1.2182674 1.4578793 2.0844631 0.4075572 NA NA NA 0.9079003 -1.6062375 -1.5584702 -1.5981234 1.3518195 1.3257031 -1.7227712 NA NA -1.7123802 NA NA 0.6357236 0.6027207 0.3264422 0.8197267 1.2487571 NA 0.7318165 0.5330858 NA 0.4560485 0.6736450 1.0927658 -1.4343462 -1.3923340 -1.4374583 0.6468575 0.9622691 0.6687171 1.1054044 1.4272566 0.8159201 0.6161621 1.0767393 1.4135094 1.7759974 -0.4583679 NA -0.8428288 -0.1372392 1.1908610 -0.9433998 -1.2446773 NA 1.3683000 NA -1.7625248 -1.7701080 -1.7748574 -0.3326055 0.4805336 -1.5259496 -1.5960537 -1.3847563 1.1839428 1.0642865 0.1872531 NA 0.2275022 NA 1.3532410 -1.2453778 1.2244632 NA -1.2235131 0.9455297 1.3327246 1.0246775 -1.6601901 -1.7310611 -1.6934785 -0.1901067 1.0992558 1.0979493 -0.4845189 NA -0.2782775 0.4467261 1.4331758 0.9023359 1.1885550 -1.7540766 -1.7361413 -1.7264299 -0.7825124 0.0875368 1.4627726 -1.7696346 NA NA -1.7774737 -1.5358046 1.4206333 -1.7385660 -1.7548202 -1.7580199 -0.6230745 0.4446220 -1.7617635 NA -1.7824972 0.6746366 1.0931575 NA 1.3322668 1.4984848 1.9636042 1.8612773
IgG1_FHA 2.1896586 -0.4827456 0.9848995 0.9259772 0.8197672 2.6758797 -0.6902144 NA -0.7248180 -0.7746767 1.6724644 1.2877469 1.0792770 0.8764617 -0.1774995 NA 1.0508599 0.8833599 0.5766098 0.7260783 2.4746754 -1.2195910 -0.6766056 -1.2315463 -0.5321199 0.7860157 -2.2998071 -2.2525144 -2.2641652 NA 0.9429374 -1.2215143 -1.1076941 -1.0804830 2.1586535 1.9922378 -1.6680492 -1.6737635 -1.5638305 1.5111837 1.8474746 0.218266 0.2812402 0.1085662 1.9364550 1.8834321 -1.3527498 NA -1.4185231 -1.4084160 0.1593513 -0.6080153 -2.2166646 NA -2.2657225 -2.3182788 -1.1511376 NA -0.4194939 -0.9371191 -0.9722604 NA 0.1010915 NA -0.3139062 -0.2833909 -0.8625193 -0.3592322 0.2391768 1.4392686 1.7084007 NA 0.8952918 0.9102635 1.0975325 1.7901199 2.2215936 -2.0451696 NA NA NA 0.8136718 -1.7231545 -1.5464064 -1.7709496 0.7988477 1.8923137 -1.2565200 NA NA -0.8843291 NA NA 0.8748169 0.8035996 0.5912287 1.1805913 1.7857397 NA 0.6388290 0.1882182 NA 0.0799135 0.5374608 -0.5025408 -1.8072490 -1.8065678 -1.8635008 0.7449999 1.9145100 2.3230860 -0.3952787 0.5600455 -1.2102602 -1.3878250 -0.7845484 0.3354826 2.3578513 -1.0048590 NA -1.5825576 -0.6249858 0.5592828 -1.8772191 -2.2000623 NA 1.5167377 NA -2.3659787 -2.4470203 -2.4715343 0.5225642 0.6803029 -0.5264884 -1.1626905 0.0352719 1.3076885 1.1664453 -0.0766038 NA -0.0192666 NA 2.1927197 -2.0816298 1.9490499 NA -2.1237459 0.3639867 1.9710567 1.6577356 -1.9571284 -2.2049489 -2.0780830 -0.9318129 1.4101307 1.8738041 0.7400808 NA 0.8870442 2.0054440 2.3286932 1.7985840 1.8877289 -0.3188827 -0.2660527 -0.1726582 0.2133904 1.6233664 2.3380377 -1.6347257 NA NA -1.8688335 -0.1766101 3.0109050 -2.0141251 -2.1843631 -2.1703053 -0.4286762 1.2512436 -2.6180437 NA -2.6509535 -2.2047591 0.4505558 NA 0.3864052 0.9029980 2.4402230 3.6141083
IgG1_TT 0.2402147 -0.2566868 0.1252924 0.1630322 0.5428075 0.6740308 -1.2900429 NA -1.2680643 -0.3843768 0.4281839 0.0658787 -0.0610327 -0.1452347 -0.2378706 NA 0.2981180 0.2460173 0.1361198 0.3440421 0.7316295 -0.0992582 0.1498328 -0.1526445 0.3131125 0.6370213 -0.6660142 -0.5575152 -0.5452248 NA -0.0774029 0.1493797 0.2224813 0.2160029 0.9060086 0.6673689 -0.6610156 -0.6781712 -0.5975116 0.4675794 0.4972119 -0.789803 -0.7330374 -0.8072586 0.5397211 0.4602213 -0.2324039 NA -0.2851705 -0.2715739 0.2663577 0.1843317 -0.3846254 NA -0.4482293 -0.4669846 0.3609977 NA 0.2558390 -0.1506845 -0.1236113 NA 0.4458575 NA -0.0990175 -0.1181526 0.1279162 -0.1540236 0.2112806 0.4763771 0.5608919 NA -0.1523331 -0.1225560 0.4655516 0.6655099 0.6664532 0.1144902 NA NA NA 0.6438673 0.1330340 0.2318529 0.0680106 0.5436907 0.5954311 -0.3891944 NA NA -0.2480305 NA NA -0.1317356 -0.1136024 -0.2154231 0.1277348 0.4207736 NA -0.1739780 -0.3027176 NA -0.1639084 -0.0298264 0.5423802 -0.6434880 -0.6410046 -0.7351473 -0.3228036 -0.1832418 0.3012990 0.5542163 0.6622144 0.1399595 0.0025532 0.3231404 0.6804616 0.8329085 -0.0456909 NA -0.2483060 0.0941437 0.4467713 0.0450220 -0.1869711 NA 0.6195647 NA -0.2239945 -0.3535454 -0.3462988 0.5685450 0.5733000 -0.7556602 -0.8194721 -0.5829688 0.0203489 -0.0225892 -0.4947224 NA -0.4597468 NA 0.5292799 -0.2516431 0.3581240 NA -0.2673715 0.4386194 0.5554541 0.2842822 -0.3966792 -0.5274484 -0.4878389 0.1125005 0.3313483 0.3306842 -0.8200397 NA -0.7381672 0.1904954 0.6006386 0.5286261 0.5458905 -0.9242743 -0.8724166 -0.8659752 -0.1540418 0.2533274 0.6129456 -0.3613109 NA NA -0.4854658 0.6418393 0.7105412 -0.7148954 -0.7621574 -0.8105866 -0.1063460 0.2460173 0.1274248 NA -0.0687084 0.5452266 0.6647595 NA -0.9123724 -0.8129344 0.7456777 0.6441841
IgG1_DT 0.9090480 -0.1152487 0.5327393 0.5873984 0.0139023 0.7557732 -1.3342921 NA -1.3210682 -1.3208923 -0.5979035 0.6990103 0.5815021 0.5441642 -0.0364273 NA 0.3144583 0.1993924 0.1652523 -0.0669557 0.5669218 -0.6437024 -0.3984704 -0.6476243 -0.5649316 0.0659206 -0.5451593 -0.4404129 -0.4233171 NA 0.3037740 0.5498568 0.6827766 0.6098579 1.0700530 0.8728546 -0.6795725 -0.6768707 -0.6417201 0.3768896 0.4549022 -1.066567 -1.0246906 -1.0867742 -0.0959418 -0.0339146 -0.4001400 NA -0.4656852 -0.4344465 0.3377650 0.0913289 -0.6302940 NA -0.7088412 -0.7519563 -0.2094387 NA 0.2186664 -0.7112334 -0.6985971 NA 0.2243984 NA -1.0781906 -1.0873934 -0.0110785 -1.1099079 -0.5028073 0.2249453 0.7824045 NA 0.2936045 0.3388777 0.6988293 0.7773129 1.0388304 -0.5871975 NA NA NA 0.7442364 0.3046547 0.4892621 0.1971122 0.9424065 0.9798926 -0.4075642 NA NA -0.2435381 NA NA -0.0443361 -0.0488038 -0.1894439 0.0215496 0.1090848 NA -0.6178760 -0.7363011 NA -0.0009711 0.2312983 0.5674790 0.1048007 0.1224004 0.0633488 0.1338054 0.2720845 0.9508802 0.6449562 0.7554220 0.7062224 0.5430101 0.7390581 0.8283902 0.9019865 -0.1572462 NA -0.5751250 0.0611560 0.5075613 0.3614485 -0.2578055 NA 0.4695561 NA -1.0726669 -1.1525127 -1.1443315 -0.2333419 -0.0939326 -0.9293945 -1.0599289 -0.7272395 -0.2003075 -0.3579241 0.3104939 NA 0.3204150 NA 0.5274665 0.5621388 0.7777566 NA 0.4330351 0.7745417 0.8715805 0.6825327 -0.0771011 -0.2651629 -0.1863625 0.5673219 0.6875857 0.7533394 -0.6312364 NA -0.5347640 0.8810693 1.2301234 0.6803006 0.6613008 -1.2565506 -1.2208707 -1.2153418 -0.1424007 0.5895854 1.2161795 -0.9998688 NA NA -1.0982620 0.9327711 1.1344770 -0.5243222 -0.6102502 -0.6322830 -0.2477652 -0.0884389 -0.5548362 NA -0.7587453 1.0249165 1.0520345 NA -1.3161968 -1.2981570 0.8851806 0.8665580
IgG1_OVA -3.8584220 -4.0993366 25.6917114 34.5503387 14.8364506 41.7186546 -1.6136026 NA 0.2893648 -3.6815131 0.7277369 -4.3258843 -4.3358836 -4.1437550 -4.3358836 NA -4.3358836 -4.3358836 -4.2672400 -4.3358836 -4.2425432 -3.7343426 -3.0879564 -3.4645863 -4.1925387 -3.3164039 9.8779926 11.0943222 11.8784542 NA 6.9268403 -4.2908039 -4.2253571 -4.2646251 -4.0551944 -4.1468205 -4.2253571 -4.2122674 -4.2188125 -4.1075521 -4.0028367 -2.706983 -1.9085271 -3.0603974 -1.3980393 -1.4176733 -3.1323893 NA -3.4269013 -3.3549097 -3.8877165 23.5919914 -3.6036088 NA -3.8850317 -3.9766579 -3.8877165 NA 28.4101505 -2.8509665 -2.8378770 NA -3.6053076 NA -4.2122674 -4.2384462 16.0562172 -4.2777147 -4.3358836 -3.9308448 11.0510654 NA -4.2125130 -4.1732445 -4.2256021 -4.1994233 16.6608238 -4.0030818 NA NA NA -4.1124997 -4.2386918 -4.2125130 -4.3039017 -4.1804166 -4.2298107 4.8453755 NA NA 10.2447662 NA NA -2.7334065 -2.7464962 -2.9208674 -2.6862454 -0.4141173 NA -3.5580411 -3.8590980 NA -3.9951887 -3.9581432 0.6543159 -4.3358836 -4.3358836 -4.3358836 -4.3358836 -4.3358836 -3.7586930 0.9659691 -0.5424323 -4.3358836 -4.3358836 -4.3358836 -4.2489214 -4.2874198 14.7050915 NA 8.1169071 24.8044891 5.8440585 -4.1847577 -4.3358836 NA -3.9537678 NA -4.1719251 -4.3180542 -4.2425051 -4.1847577 -4.1462593 5.8889728 3.1231995 13.4988117 8.5646076 5.1831708 0.0080647 NA 0.3127327 NA -1.6393983 15.8338680 -0.9849796 NA 16.9284153 14.3965740 18.5917377 -2.1318634 -1.9158564 -2.9821939 -2.6098220 -2.0306661 -2.3120890 -2.1443295 0.5948324 NA 0.9502783 -4.0142484 -2.0882318 1.7849040 -0.8002594 -2.5308340 -1.9102142 -1.2331746 -1.9128611 -3.5752192 -1.9511044 4.2570271 NA NA 0.5982184 -1.5147901 -4.0454140 -4.0204816 -4.0952783 -4.1077447 -4.1451430 -3.8853745 -4.3358836 NA -4.3358836 -4.3358836 -4.2755404 NA -4.2629542 -4.2251964 -4.1245084 -4.1622663
IgG2_PT -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 NA -4.4679184 -4.4679184 -4.4679184 0.9008713 0.0595546 -0.3670826 -0.1486640 NA -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.2986174 -3.7812362 -3.6433616 -4.3714237 -3.1337180 -3.4249430 -4.4679184 -4.4679184 -4.4679184 NA -2.1083341 -4.1971188 -4.1598196 -4.3463182 -4.0479202 -4.0479202 -4.2717185 -4.2717185 -4.2717185 -3.8241217 -3.8987212 -4.047920 -2.9289284 -3.4511244 -3.1527267 -0.5417457 -4.4679184 NA -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 NA -4.4679184 -4.4679184 -4.4679184 NA -4.4679184 -4.4679184 -4.4679184 NA -4.1971188 NA -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -3.9733207 -4.4679184 NA -4.4679184 -4.4679184 -4.0004702 1.8584003 -4.4679184 -4.4679184 NA NA NA -4.4679184 -2.0144124 -2.4116240 -2.1163993 1.0760546 18.8801212 -4.1990757 NA NA -4.1990757 NA NA 26.3862133 24.7973652 23.4232292 22.0316467 25.2241001 NA -2.0640635 -2.2130179 NA -2.1982570 -0.8066745 -1.4030304 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.2276373 -1.3555579 0.7806993 -4.2434611 -4.0904946 -4.4679184 -1.6430297 0.8809185 -2.7137957 NA -1.4518213 -2.1019292 -2.8667622 -4.4679184 -4.4679184 NA -4.4679184 NA -4.1669779 -4.0140114 -4.4679184 -4.1669779 -4.2434611 -2.9432454 -2.0636878 -2.5225873 -3.4021449 -2.4078622 -4.4679184 NA -4.4679184 NA -4.4679184 -4.4679184 0.2110305 NA -4.4679184 -4.4679184 -4.4679184 -1.3555579 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -1.4864779 -1.6878648 75.3756332 NA 64.3028336 -4.4679184 0.0923495 105.2604218 127.9053116 1.0412865 3.0767288 0.6749072 1.1163435 1.9839506 0.3059754 -4.4679184 NA NA -4.4679184 -4.4679184 -4.3937902 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 -4.4679184 NA -4.4679184 -4.4679184 -4.4679184 NA -4.4679184 -4.4679184 -3.9275520 -4.0738678
# abtiter <- head(results$abtiter$group1)
knitr::kable(results$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer After Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer After Imputation
1 102 103 104 105 106 114 115 116 117 118 131 132 133 134 135 138 139 140 141 142 146 147 148 149 150 153 154 155 156 157 160 161 162 163 164 167 168 169 170 171 174 175 176 177 178 181 182 183 184 185 19 191 192 193 194 195 2 20 201 202 203 204 205 208 209 21 210 211 212 22 223 224 225 226 227 23 241 242 243 244 245 248 249 250 251 252 255 256 257 258 259 27 274 275 276 277 278 28 281 282 283 284 285 29 293 294 295 296 297 3 30 31 324 325 326 327 328 332 333 334 335 336 342 343 344 345 346 349 350 351 352 353 355 356 357 358 359 360 361 362 363 364 369 37 370 371 372 373 38 385 386 387 388 389 39 397 398 399 4 40 400 401 405 406 407 408 409 41 45 46 47 48 49 5 70 71 72 73 74 77 78 79 80 81 87 88 89 90 91
IgG_PT 3.7817953 1.6860429 2.103009 2.3629920 2.283471 3.225231 0.4426591 3.604252 1.2160292 1.0061276 5.4732502 9.8416185 7.9445219 7.7529449 8.7641230 3.604252 2.3076417 1.6299921 1.2789164 10.2521086 9.8400898 3.5303829 3.6955488 4.2190878 9.0965452 9.1659975 4.8708751 5.1196601 1.4647720 3.604252 7.2101038 5.8285058 0.6608369 0.3102505 1.5062926 2.0228393 3.5332818 0.4564509 0.2530229 7.4170597 4.9169190 0.4611714 0.4843888 0.4297097 4.3838270 7.154469 0.3488412 3.001810 0.3075573 0.3007467 1.4009504 1.2146716 0.8112664 3.934220 0.4590766 0.6353102 1.3727450 4.253003 0.8416700 0.7856202 0.3500769 3.604252 1.152296 3.604252 0.8353913 0.3500769 0.6507704 0.6384163 0.1772230 2.4780242 6.394067 3.604252 0.9102650 1.1234374 2.0109484 4.1275022 6.994368 0.2669573 3.604252 3.604252 3.604252 1.8974888 1.7487866 1.6040683 1.6954825 7.8800087 14.5987272 0.6897657 2.966209 2.377325 0.7591965 3.604252 3.604252 1.399335 1.878897 2.352768 4.0408175 4.246704 3.056696 1.1767726 0.6573436 3.604252 1.5668092 2.3424139 1.730971 0.8361771 0.6751568 0.6169698 4.9305980 6.5686553 2.3415740 1.530527 7.825563 1.2845786 1.2037902 1.2014050 7.8977365 8.7658310 1.1251836 3.499111 0.9276445 0.9003816 1.553391 1.0271769 0.9283972 3.604252 12.3787060 3.604252 0.2490261 0.2795603 0.1772230 0.5602748 2.1886938 9.7174559 10.5061283 9.3232946 12.8292751 10.8114643 5.3144915 3.604252 5.6544483 3.604252 15.0319033 0.1772230 3.841112 3.604252 0.1772230 0.338217 0.177223 3.217442 0.5588574 0.5193701 0.3331387 1.0264537 2.950776 2.324481 2.9906149 3.604252 0.1772230 3.3087182 5.978847 3.5859358 5.9770586 16.7630405 8.7676105 6.1179659 6.6955497 11.7673235 5.327743 0.3562131 3.312713 3.604252 0.3188879 9.0236063 10.7202530 0.3634868 0.3369524 0.4889600 1.0315108 1.0712748 0.1772230 2.404909 0.1772230 0.3945780 0.3513098 3.604252 2.0635982 2.0158811 28.4306927 22.1118164
IgG_PRN 2.4563730 1.3143671 1.488713 0.6877553 11.363957 12.674273 1.1993687 2.722835 2.1009486 4.8634152 15.1422987 0.6824465 0.6642075 0.6654363 0.6936932 2.722835 1.9433068 1.3728650 1.0861454 0.9103167 0.8123631 2.4422848 0.6981642 0.7058401 0.7744945 0.8018489 0.7669361 0.7726377 2.2716663 2.722835 0.7154946 2.1365395 11.9797459 5.6134753 10.1622810 11.7060957 1.5421555 1.9461530 1.0053989 0.7862360 0.7667816 0.6427991 0.6704371 0.5988667 0.8223846 28.949809 1.2390828 3.124200 1.1486777 1.1104653 3.9100754 6.5270786 0.9561675 3.225416 0.6810527 0.8206242 5.4117751 2.631804 4.6238742 1.3065494 0.6631937 2.722835 4.638808 2.722835 1.0028285 0.5801945 3.3215866 0.8468145 0.7833135 0.7498281 8.803439 2.722835 4.4513011 5.6525121 6.7383380 0.7723655 6.869021 2.8393793 2.722835 2.722835 2.722835 4.5451312 1.5506982 1.4796723 1.4410279 0.8486619 0.9812939 0.5059781 2.382829 2.644869 0.5221031 2.722835 2.722835 1.450982 2.003457 2.837614 0.7257859 6.568772 3.613259 3.6192911 1.9613590 2.722835 3.8745797 4.0546460 3.644285 0.7450879 0.6658416 0.6205242 0.7466880 0.8189168 1.4633727 2.741334 6.622748 4.3067517 3.8624413 3.8597996 0.7989112 0.8257377 1.5507474 2.298520 1.3474363 1.3084912 8.469993 0.8884401 0.8345668 2.722835 0.8706045 2.722835 0.4715006 0.4830904 0.4141386 1.4891998 10.2251234 0.6216874 0.6326122 0.6174922 0.8074864 0.7918551 0.7284141 2.722835 0.7344975 2.722835 0.8855964 1.2003033 4.605200 2.722835 0.3979826 4.471614 0.831996 4.054484 0.5594716 0.5447459 0.4640927 2.2861803 0.863157 3.103709 1.9318845 2.722835 0.6836019 2.1603868 4.622971 0.7236058 0.7954054 0.6696582 0.5475452 0.5037024 0.6691141 0.7412126 4.439257 0.4314730 2.436757 2.722835 0.4275446 2.1773949 6.5329795 0.4840462 0.4796619 2.1727657 3.5920687 3.6241021 0.4125814 2.912221 0.4182272 9.0745926 8.2933092 2.722835 5.5793695 5.2823367 8.1830263 6.6240034
IgG_FHA 33.2427626 2.6021032 6.290375 3.7472694 71.597446 22.154033 2.7001369 5.181453 2.1237319 2.6128628 1.6479335 3.8477664 3.7336872 3.7330718 3.8216405 5.181453 11.2967730 6.6641798 2.3148267 4.5008059 4.4656343 2.5557477 3.2848244 3.3298168 3.7185485 3.6566532 3.3440580 3.3399189 12.8247833 5.181453 3.9275372 14.8183384 2.3968794 1.8895330 17.6720982 1.6479335 4.7423177 2.0528865 1.8210397 3.8378706 3.7373376 3.6393855 3.5191681 3.3291323 4.4656343 64.099608 2.0570953 4.980099 2.0374496 2.0285852 3.5284925 2.5892901 1.8211308 5.297659 1.7159116 1.7638037 2.8182948 5.353971 2.2674592 2.4774029 1.9243081 5.181453 3.786901 5.181453 3.6200442 2.2961822 2.1328473 3.2026999 3.6781459 3.6506953 1.647933 5.181453 5.4019914 7.2362094 12.8583040 3.9618824 12.326140 1.8731360 5.181453 5.181453 5.181453 7.2961907 2.2626193 2.1896954 2.2168345 3.6905780 4.6780334 2.1187356 4.457584 4.335534 2.1964900 5.181453 5.181453 3.788144 4.786701 8.326727 3.7217841 1.647933 5.407448 4.3686357 2.8925641 5.181453 3.8186474 4.7423177 2.331974 2.2801850 2.1665595 2.1170490 3.7435522 4.3191247 5.6984048 2.226064 4.295873 2.3378975 2.2825758 2.3184822 3.5804384 4.0040545 2.5217330 4.254328 2.3519258 2.3171105 5.598934 1.9814105 1.9462047 5.181453 3.7950518 5.181453 1.8171673 1.8294659 1.7027001 5.4705725 1.6479335 3.4970756 3.5334256 3.4901159 3.8746567 3.8871064 3.3927720 5.181453 3.4089572 5.181453 4.3548112 1.9383206 1.647933 5.181453 1.6479335 3.549112 3.932479 11.365495 2.0613317 2.0462437 1.8540301 2.8676822 4.061724 5.910462 1.6479335 5.181453 3.7532151 11.1851416 1.647933 3.8771815 4.3867493 4.1209726 4.3602328 3.6444070 3.5722692 4.3750882 1.647933 1.9221983 5.032903 5.181453 1.9272394 10.9500399 1.6479335 1.9190886 1.8813744 2.1690817 6.9963622 7.1423321 1.6667752 5.546084 1.6687026 3.8751101 3.6501656 5.181453 4.3940792 4.2261124 19.7152996 35.0457602
IgG1_PT 14.1694136 4.3421988 3.264131 5.1102428 7.935424 37.077318 -3.9551163 8.858671 -3.7774277 -3.4758930 4.6776605 45.9702358 39.7062473 33.5415287 13.6924877 8.858671 3.6442137 2.5373869 1.8749819 13.2317400 44.9085789 9.7776203 17.1140242 9.9969053 12.2005787 38.5799732 -2.0539284 -2.0668297 -2.0137053 8.858671 23.6957235 -3.7083139 -3.6658726 -3.6470089 1.8539186 2.2712631 -3.8379974 -3.8387833 -3.7821941 27.9854870 32.1447811 -3.8529310 -3.7994852 -3.8812256 11.3640242 28.805242 -3.8945866 8.389017 -3.9228811 -3.9252396 -0.2936859 -0.5338783 -2.3816147 9.306126 -2.8256817 -3.0394630 -2.5033722 9.353470 0.4949303 -1.8801737 -1.9949236 8.858671 9.829060 8.858671 -3.5094662 -3.5354033 -1.4362984 -3.6014233 2.8477764 14.7762661 22.158904 8.858671 -3.0564518 -2.8451424 -0.6987772 7.8459220 38.506941 -4.0065098 8.858671 8.858671 8.858671 1.9588876 0.0274935 1.4542446 0.4574060 33.8589802 48.5303364 -2.1047297 8.605161 7.925715 -1.0631599 8.858671 8.858671 3.252034 3.292798 2.136792 9.4209938 19.017955 8.870193 -1.2312088 -2.3642902 8.858671 0.8016844 5.2501211 6.886860 -2.4063625 -2.2877588 -2.6901035 16.9901724 23.9712782 16.5320520 7.086555 31.811678 -0.9048357 -1.6678562 1.1603622 28.9207287 44.5618458 -3.6668415 8.998995 -3.9046555 -3.2719316 -2.234603 -0.7787170 -2.4454937 8.858671 51.8917217 8.858671 -4.0042095 -4.0649376 -4.0467749 -3.9379978 -3.9001617 34.5519390 16.4885798 44.6367283 47.7912807 42.4162464 26.6598454 8.858671 28.6850338 8.858671 50.1837292 -4.0634480 14.471905 8.858671 -4.0634480 -4.006929 -3.797621 10.596808 -3.8224716 -3.9880981 -3.8971100 -3.0597038 5.256839 11.384635 -1.1774302 8.858671 -0.1822510 12.2364988 29.946173 3.8975616 2.1057129 17.2945051 19.8037748 20.2629786 30.1760960 37.8737431 28.156500 -3.8671865 8.857524 8.858671 -3.9750385 -1.9258471 44.1506481 -4.0649376 -4.0649376 -4.0649376 -3.9177427 -2.8327446 -4.0649376 8.334029 -4.0649376 -4.0649376 -4.0064163 8.858671 0.9743047 2.6664133 65.8394871 61.7238636
IgG1_PRN 2.3302746 1.5284057 1.312762 1.2526703 2.527934 3.265094 0.0390968 1.746636 0.0821334 0.2282984 1.3172514 1.5933365 1.3866630 1.1822579 0.9813659 1.746636 1.5628612 1.4597620 1.2189074 1.9637827 3.0978541 1.5634849 1.9696230 1.4077816 1.6176031 2.6763709 0.9227962 1.0455732 1.1016991 1.746636 1.9487066 2.8577769 3.2810175 2.9498634 3.3882239 3.0529108 1.5253769 1.5015533 1.6049277 2.6392651 2.6572070 0.2182263 0.2564867 0.2068789 2.4799259 2.494333 1.5344667 1.657471 1.4303497 1.4227452 2.0974631 3.4107299 0.5112984 1.934677 0.4193606 0.3869225 2.0340383 1.705066 3.5069752 1.2563957 1.2282648 1.746636 1.216798 1.746636 0.4487392 0.4134493 3.3707345 0.3858829 2.1754549 2.6102281 3.572792 1.746636 2.8220978 2.8472531 2.9649034 3.2045152 3.831099 2.1541932 1.746636 1.746636 1.746636 2.6545362 0.1403984 0.1881657 0.1485125 3.0984554 3.0723391 0.0238647 1.749896 1.588064 0.0342557 1.746636 1.746636 2.382360 2.349357 2.073078 2.5663626 2.995393 2.068472 2.4784524 2.2797217 1.746636 2.2026844 2.4202809 2.839402 0.3122897 0.3543019 0.3091776 2.3934934 2.7089050 2.4153531 2.852040 3.173893 2.5625560 2.3627980 2.8233752 3.1601453 3.5226333 1.2882680 1.748285 0.9038072 1.6093967 2.937497 0.8032361 0.5019586 1.746636 3.1149359 1.746636 -0.0158889 -0.0234721 -0.0282215 1.4140304 2.2271695 0.2206863 0.1505822 0.3618796 2.9305787 2.8109224 1.9338890 1.746636 1.9741381 1.746636 3.0998769 0.5012581 2.971099 1.746636 0.5231228 2.692166 3.079360 2.771313 0.0864458 0.0155748 0.0531574 1.5565292 2.845892 2.844585 1.2621170 1.746636 1.4683584 2.1933620 3.179812 2.6489718 2.9351909 -0.0074407 0.0104946 0.0202060 0.9641235 1.8341727 3.209408 -0.0229987 2.016411 1.746636 -0.0308378 0.2108313 3.1672692 0.0080699 -0.0081843 -0.0113840 1.1235614 2.1912580 -0.0151275 1.393110 -0.0358613 2.4212725 2.8397934 1.746636 3.0789027 3.2451208 3.7102401 3.6079133
IgG1_FHA 3.9798988 1.3074945 2.775140 2.7162174 2.610007 4.466120 1.1000258 1.790240 1.0654222 1.0155635 3.4627045 3.0779871 2.8695172 2.6667019 1.6127406 1.790240 2.8411001 2.6736001 2.3668500 2.5163184 4.2649156 0.5706491 1.1136346 0.5586939 1.2581203 2.5762559 -0.5095669 -0.4622742 -0.4739250 1.790240 2.7331775 0.5687258 0.6825460 0.7097572 3.9488937 3.7824780 0.1221910 0.1164767 0.2264097 3.3014239 3.6377147 2.0085062 2.0714804 1.8988063 3.7266952 3.673672 0.4374903 1.305859 0.3717171 0.3818241 1.9495915 1.1822249 -0.4264244 1.795413 -0.4754823 -0.5280386 0.6391026 1.520926 1.3707463 0.8531211 0.8179798 1.790240 1.891332 1.790240 1.4763340 1.5068493 0.9277209 1.4310080 2.0294169 3.2295088 3.498641 1.790240 2.6855320 2.7005037 2.8877727 3.5803601 4.011834 -0.2549294 1.790240 1.790240 1.790240 2.6039120 0.0670856 0.2438338 0.0192906 2.5890878 3.6825539 0.5337201 1.595256 1.541354 0.9059110 1.790240 1.790240 2.665057 2.593840 2.381469 2.9708315 3.575980 2.213841 2.4290692 1.9784584 1.790240 1.8701537 2.3277010 1.287699 -0.0170088 -0.0163276 -0.0732607 2.5352401 3.7047502 4.1133262 1.394961 2.350286 0.5799800 0.4024152 1.0056918 2.1257228 4.1480914 0.7853812 1.749422 0.2076826 1.1652544 2.349523 -0.0869789 -0.4098221 1.790240 3.3069779 1.790240 -0.5757385 -0.6567801 -0.6812941 2.3128043 2.4705430 1.2637517 0.6275496 1.8255121 3.0979286 2.9566854 1.7136364 1.790240 1.7709736 1.790240 3.9829599 -0.2913896 3.739290 1.790240 -0.3335057 2.154227 3.761297 3.447976 -0.1668882 -0.4147087 -0.2878429 0.8584273 3.200371 3.664044 2.5303210 1.790240 2.6772844 3.7956842 4.118933 3.5888242 3.6779691 1.4713575 1.5241874 1.6175820 2.0036305 3.4136065 4.128278 0.1555145 1.303303 1.790240 -0.0785934 1.6136301 4.8011452 -0.2238849 -0.3941230 -0.3800651 1.3615639 3.0414838 -0.8278035 1.296769 -0.8607134 -0.4145190 2.2407960 1.790240 2.1766454 2.6932381 4.2304631 5.4043485
IgG1_TT 1.4942536 0.9973521 1.379331 1.4170711 1.796846 1.928070 -0.0360039 1.254039 -0.0140253 0.8696622 1.6822228 1.3199177 1.1930063 1.1088042 1.0161684 1.254039 1.5521569 1.5000563 1.3901588 1.5980810 1.9856684 1.1547807 1.4038718 1.1013944 1.5671514 1.8910602 0.5880247 0.6965237 0.7088141 1.254039 1.1766360 1.4034187 1.4765202 1.4700419 2.1600475 1.9214078 0.5930234 0.5758677 0.6565273 1.7216183 1.7512509 0.4642359 0.5210015 0.4467803 1.7937601 1.714260 1.0216351 1.132771 0.9688684 0.9824650 1.5203966 1.4383706 0.8694136 1.368032 0.8058096 0.7870544 1.6150366 1.178378 1.5098779 1.1033545 1.1304276 1.254039 1.699896 1.254039 1.1550214 1.1358863 1.3819551 1.1000153 1.4653195 1.7304161 1.814931 1.254039 1.1017058 1.1314830 1.7195905 1.9195489 1.920492 1.3685291 1.254039 1.254039 1.254039 1.8979062 1.3870729 1.4858918 1.3220495 1.7977296 1.8494700 0.8648446 1.362192 1.277649 1.0060084 1.254039 1.254039 1.122303 1.140437 1.038616 1.3817737 1.674813 1.257269 1.0800610 0.9513213 1.254039 1.0901306 1.2242125 1.796419 0.6105509 0.6130343 0.5188916 0.9312353 1.0707971 1.5553379 1.808255 1.916253 1.3939984 1.2565922 1.5771793 1.9345006 2.0869474 1.2083480 1.504084 1.0057329 1.3481827 1.700810 1.2990609 1.0670679 1.254039 1.8736036 1.254039 1.0300444 0.9004935 0.9077401 1.8225839 1.8273389 0.4983788 0.4345669 0.6710701 1.2743878 1.2314497 0.7593165 1.254039 0.7942921 1.254039 1.7833189 1.0023959 1.612163 1.254039 0.9866675 1.692658 1.809493 1.538321 0.8573597 0.7265906 0.7662001 1.3665395 1.585387 1.584723 0.4339992 1.254039 0.5158718 1.4445343 1.854678 1.7826650 1.7999294 0.3297647 0.3816224 0.3880637 1.0999972 1.5073663 1.866985 0.8927280 1.392140 1.254039 0.7685731 1.8958782 1.9645802 0.5391436 0.4918815 0.4434524 1.1476929 1.5000563 1.3814638 1.517254 1.1853305 1.7992655 1.9187984 1.254039 0.3416666 0.4411045 1.9997166 1.8982230
IgG1_DT 2.3434473 1.3191507 1.967139 2.0217978 1.448302 2.190173 0.1001073 1.434399 0.1133312 0.1135070 0.8364959 2.1334096 2.0159014 1.9785635 1.3979721 1.434399 1.7488576 1.6337918 1.5996517 1.3674437 2.0013212 0.7906969 1.0359290 0.7867751 0.8694677 1.5003200 0.8892401 0.9939864 1.0110823 1.434399 1.7381734 1.9842561 2.1171759 2.0442573 2.5044523 2.3072540 0.7548269 0.7575287 0.7926793 1.8112890 1.8893015 0.3678318 0.4097087 0.3476251 1.3384576 1.400485 1.0342593 1.241297 0.9687141 0.9999529 1.7721643 1.5257282 0.8041054 1.434233 0.7255582 0.6824430 1.2249607 1.508740 1.6530658 0.7231660 0.7358022 1.434399 1.658798 1.434399 0.3562088 0.3470060 1.4233209 0.3244915 0.9315920 1.6593447 2.216804 1.434399 1.7280039 1.7732770 2.1332287 2.2117122 2.473230 0.8472019 1.434399 1.434399 1.434399 2.1786357 1.7390541 1.9236615 1.6315116 2.3768059 2.4142920 1.0268352 1.478088 1.414208 1.1908612 1.434399 1.434399 1.390063 1.385596 1.244955 1.4559489 1.543484 1.310828 0.8165234 0.6980982 1.434399 1.4334283 1.6656977 2.001878 1.5392001 1.5567998 1.4977481 1.5682048 1.7064838 2.3852795 2.079356 2.189821 2.1406218 1.9774095 2.1734575 2.2627896 2.3363858 1.2771531 1.680567 0.8592744 1.4955554 1.941961 1.7958479 1.1765939 1.434399 1.9039555 1.434399 0.3617325 0.2818867 0.2900679 1.2010574 1.3404667 0.5050049 0.3744705 0.7071598 1.2340919 1.0764753 1.7448933 1.434399 1.7548144 1.434399 1.9618659 1.9965382 2.212156 1.434399 1.8674345 2.208941 2.305980 2.116932 1.3572983 1.1692364 1.2480369 2.0017213 2.121985 2.187739 0.8031629 1.434399 0.8996354 2.3154687 2.664523 2.1147000 2.0957001 0.1778488 0.2135286 0.2190576 1.2919986 2.0239848 2.650579 0.4345306 1.505725 1.434399 0.3361374 2.3671705 2.5688764 0.9100772 0.8241492 0.8021163 1.1866342 1.3459605 0.8795632 1.661371 0.6756541 2.4593159 2.4864339 1.434399 0.1182026 0.1362424 2.3195800 2.3009573
IgG1_OVA 0.8001997 0.5592852 30.350333 39.2089605 19.495072 46.377276 3.0450191 4.658622 4.9479866 0.9771087 5.3863587 0.3327374 0.3227382 0.5148668 0.3227382 4.658622 0.3227382 0.3227382 0.3913817 0.3227382 0.4160786 0.9242792 1.5706654 1.1940355 0.4660830 1.3422179 14.5366144 15.7529440 16.5370760 4.658622 11.5854621 0.3678179 0.4332647 0.3939967 0.6034274 0.5118012 0.4332647 0.4463544 0.4398093 0.5510697 0.6557851 1.9516392 2.7500947 1.5982244 3.2605824 3.240948 1.5262325 3.837010 1.2317204 1.3037121 0.7709053 28.2506132 1.0550129 3.244612 0.7735901 0.6819639 0.7709053 4.046528 33.0687723 1.8076553 1.8207448 4.658622 1.053314 4.658622 0.4463544 0.4201756 20.7148390 0.3809071 0.3227382 0.7277770 15.709687 4.658622 0.4461088 0.4853773 0.4330196 0.4591985 21.319446 0.6555400 4.658622 4.658622 4.658622 0.5461221 0.4199300 0.4461088 0.3547201 0.4782052 0.4288111 9.5039973 4.729602 4.608910 14.9033880 4.658622 4.658622 1.925215 1.912126 1.737754 1.9723763 4.244504 3.037687 1.1005807 0.7995238 4.658622 0.6634331 0.7004786 5.312938 0.3227382 0.3227382 0.3227382 0.3227382 0.3227382 0.8999288 5.624591 4.116189 0.3227382 0.3227382 0.3227382 0.4097004 0.3712020 19.3637133 4.592201 12.7755289 29.4631109 10.502680 0.4738641 0.3227382 4.658622 0.7048540 4.658622 0.4866967 0.3405676 0.4161167 0.4738641 0.5123625 10.5475945 7.7818213 18.1574335 13.2232294 9.8417926 4.6666865 4.658622 4.9713545 4.658622 3.0192235 20.4924898 3.673642 4.658622 21.5870371 19.055196 23.250359 2.526758 2.7427654 1.6764278 2.0487998 2.6279557 2.346533 2.514292 5.2534542 4.658622 5.6089001 0.6443734 2.570390 6.4435258 3.8583624 2.1277878 2.7484076 3.4254472 2.7457607 1.0834026 2.707517 8.9156489 6.600698 4.658622 5.2568402 3.1438317 0.6132078 0.6381402 0.5633435 0.5508771 0.5134788 0.7732472 0.3227382 3.882854 0.3227382 0.3227382 0.3830814 4.658622 0.3956676 0.4334254 0.5341134 0.4963555
IgG2_PT 2.7249775 2.7249775 2.724978 2.7249775 2.724978 2.724978 2.7249775 7.192896 2.7249775 2.7249775 2.7249775 8.0937672 7.2524505 6.8258133 7.0442319 7.192896 2.7249775 2.7249775 2.7249775 2.7249775 2.8942785 3.4116597 3.5495343 2.8214722 4.0591779 3.7679529 2.7249775 2.7249775 2.7249775 7.192896 5.0845618 2.9957771 3.0330763 2.8465776 3.1449757 3.1449757 2.9211774 2.9211774 2.9211774 3.3687742 3.2941747 3.1449757 4.2639675 3.7417715 4.0401692 6.651150 2.7249775 7.311841 2.7249775 2.7249775 2.7249775 2.7249775 2.7249775 6.577191 2.7249775 2.7249775 2.7249775 6.682468 2.7249775 2.7249775 2.7249775 7.192896 2.995777 7.192896 2.7249775 2.7249775 2.7249775 2.7249775 2.7249775 3.2195752 2.724978 7.192896 2.7249775 2.7249775 3.1924257 9.0512962 2.724978 2.7249775 7.192896 7.192896 7.192896 2.7249775 5.1784835 4.7812719 5.0764966 8.2689505 26.0730171 2.9938202 7.859320 8.315373 2.9938202 7.192896 7.192896 33.579109 31.990261 30.616125 29.2245426 32.416996 6.683012 5.1288323 4.9798779 7.192896 4.9946389 6.3862214 5.789866 2.7249775 2.7249775 2.7249775 2.7249775 2.7249775 2.9652586 5.837338 7.973595 2.9494348 3.1024013 2.7249775 5.5498662 8.0738144 4.4791002 7.876591 5.7410746 5.0909667 4.326134 2.7249775 2.7249775 7.192896 2.7249775 7.192896 3.0259180 3.1788845 2.7249775 3.0259180 2.9494348 4.2496505 5.1292081 4.6703086 3.7907510 4.7850337 2.7249775 7.192896 2.7249775 7.192896 2.7249775 2.7249775 7.403926 7.192896 2.7249775 2.724978 2.724978 5.837338 2.7249775 2.7249775 2.7249775 2.7249775 5.706418 5.505031 82.5685291 7.192896 71.4957294 2.7249775 7.285245 112.4533176 135.0982075 8.2341824 10.2696247 7.8678031 8.3092394 9.1768465 7.498871 2.7249775 7.484692 7.192896 2.7249775 2.7249775 2.7991056 2.7249775 2.7249775 2.7249775 2.7249775 2.7249775 2.7249775 6.688796 2.7249775 2.7249775 2.7249775 7.192896 2.7249775 2.7249775 3.2653439 3.1190281
# knitr::kable(head(results$rnaseq), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "RNA seq")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# knitr::kable(head(results$cytof), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Cell Frequency")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# olink <- head(results$olink)
# knitr::kable(, "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Olink")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")