Load libraries

suppressPackageStartupMessages({library(MOFA2)
library(kableExtra)
library(data.table)
library(ggplot2)
library(tidyverse)
library(here)})

Load data and Generate Mofa object

set.seed(1)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

imputationTestingList <- list()

add_cols <- function(df, cols) {
  add <- cols[!cols %in% names(df)]
  if(length(add) != 0) df[add] <- NA
  return(as.matrix(df[, sort(cols)]))
}

df_source<- readRDS(here("./data/master_normalized_data_challenge2_train_Aug25.RDS"))

metaDf <- df_source[["subject_specimen"]]
metaDf["age_at_boost"] <- as.numeric(round(difftime(metaDf$date_of_boost, metaDf$year_of_birth,units="weeks")/52, 2))

normalizedData <- list()

normalizedData[["abtiter"]] <- as.data.frame(df_source[["abtiter_wide"]]$batchCorrected_data)
normalizedData[["cytof"]] <- as.data.frame(df_source[["pbmc_cell_frequency"]]$batchCorrected_data)
normalizedData[["rnaseq"]] <- as.data.frame(df_source[["pbmc_gene_expression"]]$batchCorrected_data)
normalizedData[["olink"]] <- as.data.frame(df_source[["plasma_cytokine_concentrations"]]$batchCorrected_data)

int_cols <- Reduce(intersect, lapply(normalizedData[c("abtiter", "cytof", "olink")], colnames))
cols <- unique(c(int_cols, colnames(normalizedData[["rnaseq"]])))

dataset_cols <- metaDf[metaDf$dataset=="2021_dataset", ]$specimen_id
cols <- intersect(cols, dataset_cols)

common_cols <- Reduce(intersect, lapply(normalizedData[c("rnaseq", "abtiter", "cytof", "olink")], colnames))
common_cols <- intersect(common_cols, dataset_cols)
removingNums <- sample(common_cols, 20, replace=FALSE)
# cols <- cols[! cols %in% removingNums]

normalizedData[["abtiter"]][, removingNums] <- NA
normalizedData[["cytof"]][, removingNums] <- NA
normalizedData[["rnaseq"]][, removingNums] <- NA
normalizedData[["olink"]][, removingNums] <- NA


imputationTestingList$actualData[["abtiter"]] <- normalizedData$abtiter[, removingNums]
imputationTestingList$actualData[["cytof"]] <- normalizedData$cytof[, removingNums]
imputationTestingList$actualData[["rnaseq"]] <- normalizedData$rnaseq[, removingNums]
imputationTestingList$actualData[["olink"]] <- normalizedData$olink[, removingNums]
normalizedData[["abtiter"]] <- add_cols(normalizedData[["abtiter"]],  cols)
normalizedData[["cytof"]] <- add_cols(normalizedData[["cytof"]],  cols)
normalizedData[["rnaseq"]] <- add_cols(normalizedData[["rnaseq"]],  cols)
normalizedData[["olink"]] <- add_cols(normalizedData[["olink"]],  cols)

normalizedData[["abtiter"]] <- normalizedData$abtiter[, !duplicated(cols)]
normalizedData[["cytof"]] <- normalizedData$cytof[, !duplicated(cols)]
normalizedData[["rnaseq"]] <- normalizedData$rnaseq[, !duplicated(cols)]

#
MOFAobject <- create_mofa(normalizedData)

Plot multiomic missing values

plot_data_overview(MOFAobject)

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]
samples_metadata(MOFAobject) <- metaDf1

Setting data Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)

data_opts <- get_default_data_options(MOFAobject)
data_opts
## $scale_views
## [1] FALSE
## 
## $scale_groups
## [1] FALSE
## 
## $center_groups
## [1] TRUE
## 
## $use_float32
## [1] TRUE
## 
## $views
## [1] "abtiter" "cytof"   "rnaseq"  "olink"  
## 
## $groups
## [1] "group1"

Setting model Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
model_opts <- get_default_model_options(MOFAobject)
model_opts$num_factors <- 15

model_opts
## $likelihoods
##    abtiter      cytof     rnaseq      olink 
## "gaussian" "gaussian" "gaussian" "gaussian" 
## 
## $num_factors
## [1] 15
## 
## $spikeslab_factors
## [1] FALSE
## 
## $spikeslab_weights
## [1] FALSE
## 
## $ard_factors
## [1] FALSE
## 
## $ard_weights
## [1] TRUE

Setting training Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
train_opts <- get_default_training_options(MOFAobject)
train_opts$convergence_mode <- "medium"
train_opts$seed <- 42

train_opts
## $maxiter
## [1] 1000
## 
## $convergence_mode
## [1] "medium"
## 
## $drop_factor_threshold
## [1] -1
## 
## $verbose
## [1] FALSE
## 
## $startELBO
## [1] 1
## 
## $freqELBO
## [1] 5
## 
## $stochastic
## [1] FALSE
## 
## $gpu_mode
## [1] FALSE
## 
## $seed
## [1] 42
## 
## $outfile
## NULL
## 
## $weight_views
## [1] FALSE
## 
## $save_interrupted
## [1] FALSE

Training Model

MOFAobject <- prepare_mofa(MOFAobject,
  data_options = data_opts,
  model_options = model_opts,
  training_options = train_opts
)
MOFAobject <- run_mofa(MOFAobject, outfile=".../MOFA2_2ndChallenge_F40.hdf5", use_basilisk = TRUE)

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 180 
##  Number of factors: 15

Impute Data

imputed_data <- impute(MOFAobject, views = "all")

Add meta data to Mofa and Imputed objects

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]

samples_metadata(MOFAobject) <- metaDf1
samples_metadata(imputed_data) <- metaDf1

Mofa object

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 180 
##  Number of factors: 15
slotNames(MOFAobject)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Imputed data

imputed_data
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 180 
##  Number of factors: 15
slotNames(imputed_data)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Results for Actual Data

plot_object = MOFAobject

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 9,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 15,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

Results for Imputed Data

plot_object = imputed_data

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_object = imputed_data
plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 15,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 9,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

results <- imputed_data@imputed_data

imputationTestingList$imputedData[["abtiter"]] <- results$abtiter$group1[, removingNums]
imputationTestingList$imputedData[["cytof"]] <- results$cytof$group1[, removingNums]
imputationTestingList$imputedData[["rnaseq"]] <- results$rnaseq$group1[, removingNums]
imputationTestingList$imputedData[["olink"]] <- results$olink$group1[, removingNums]

saveRDS(results, file = here("./results/imputedData2021_removed20Samples.RDS"))

saveRDS(imputationTestingList, file = here("./results/2021Data_imputationTest_removed20Samples.RDS"))


knitr::kable(MOFAobject@data$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer Before Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer Before Imputation
468 469 470 471 472 475 476 477 478 479 483 484 485 486 487 490 491 492 493 494 498 499 500 501 502 506 507 508 509 510 513 514 515 516 517 521 522 523 524 525 529 530 531 532 533 537 538 539 540 541 546 547 548 549 550 554 555 556 557 558 562 563 564 565 566 569 570 571 572 573 577 578 579 580 581 585 586 587 588 589 593 594 595 596 597 601 602 603 604 605 608 609 610 611 612 616 617 618 619 620 623 624 625 626 627 630 631 632 633 634 636 637 638 639 640 643 644 645 646 647 650 651 652 653 654 657 658 659 660 661 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 681 682 683 684 685 688 689 690 691 692 695 696 697 698 699 702 703 704 705 706 709 710 711 712 713 716 717 718 719 720 723 724 725 726 727
IgG_PT -2.8658018 -2.8798156 -2.7466848 -1.8241103 -1.0790439 -2.7518113 -1.3480966 -1.4602070 4.0425410 10.5472746 -1.3153977 0.2050982 0.7376223 10.3464098 13.9876604 -0.6193798 NA 0.5344224 0.2214477 1.2981739 -3.1367352 -3.1367352 -2.9662342 NA 13.2500544 -2.3332779 -2.5388136 -2.5201285 13.3551588 15.3217611 NA -3.2983603 -3.3170455 -0.4675748 15.9659281 -2.7845459 -2.7962241 -2.7588539 4.8599758 10.7060614 -2.7564938 -2.7424800 NA NA 6.8266020 -3.5132270 NA -3.3894386 -3.4454937 -2.0394435 2.9261088 5.0445271 NA 2.8373551 4.6474695 -0.4928002 -1.2518806 -0.5605338 5.0846872 12.3017893 NA -0.8810062 -0.6964912 5.2546978 8.6904116 -3.4618790 -3.4151664 -3.3684537 -1.5746887 -0.3157835 -3.7813694 -3.8280821 -3.8093970 -3.4310248 -2.6462526 7.2498178 6.4113264 6.5841627 6.6355467 7.7309580 -3.2722018 -3.0666661 NA -1.8264459 0.8128176 -2.8728089 -2.7793837 NA NA 3.849139 0.2966430 -0.2685797 0.2499304 NA 5.6031981 -3.5151074 -3.4824085 -3.5337925 -2.6719446 NA -1.2635586 -1.1981611 -1.1210852 NA 0.9085784 NA NA NA NA NA -2.4435191 -2.5439515 -2.4925675 -0.8249266 0.1583743 -3.6930707 -3.3614111 -3.3894386 -2.4925561 0.5180731 -3.6459029 -3.6132040 -3.6178753 -2.9125147 NA NA -3.7000890 -0.4278693 0.4876986 NA NA NA NA NA NA NA NA NA NA NA -3.868279 -3.858936 -3.870614 -3.2913780 -2.6677642 -3.6393626 -3.6580474 -3.6346912 -3.2002637 -1.8455975 -2.9690609 -3.1348906 -2.9223480 -1.3925095 0.6348186 NA -3.711301 -3.6832728 NA -0.3900325 -1.8287816 -1.9035218 -1.8568091 1.5578842 2.1090932 1.6770015 1.2869511 0.9319348 2.7116861 5.3649635 0.2073982 0.6978807 NA 2.2650895 6.1585875 -3.1834478 -3.0993650 -3.1834478 -2.6088824 -0.3129568
IgG_PRN -6.3960724 -6.3906784 -6.3902636 -2.3754485 2.0054438 -4.3903923 -2.9090738 -2.4237831 1.9146514 5.4058676 -6.5055351 -6.2949057 -6.2260332 -0.9340280 2.7109764 -3.7507606 NA -1.5314790 -2.7374449 0.0423617 -4.8259659 -4.8335724 -4.8698063 NA 5.6994057 -0.7837671 -0.9856834 -0.8046502 5.5015001 5.7281723 NA -5.7092419 -5.8619232 -0.8506650 4.1209021 3.1772897 2.8341701 3.0464590 4.8421307 4.3915539 -2.1353230 -2.0123754 NA NA 5.4369535 0.7368987 NA 2.4625914 0.7418773 5.0935888 -3.8723252 -2.2697182 NA 6.5695133 6.4632998 4.9748945 5.1971407 5.0325651 5.5312710 5.4406853 NA -0.7271632 -0.6519287 3.1663640 4.5644274 0.3981745 0.3409188 0.5493350 5.0747499 5.7880955 1.9964545 1.2806196 1.5273447 6.8712120 6.9169884 -6.5055351 -6.5055351 -6.5055351 0.2018888 2.7584813 -2.9441700 -2.8772335 NA -2.0793874 -0.3823223 -6.1098309 -5.9914465 NA NA 4.701128 -6.4070997 -6.3813763 -6.4228659 NA -1.7483649 0.1963201 -0.2975451 -0.3105452 4.0132294 NA -2.5700717 -2.5408907 -2.6819553 NA 4.7575541 NA NA NA NA NA 4.0272732 3.6942499 3.8563359 4.7234697 4.5027447 -5.5045280 -3.6037488 -3.4698756 1.5458086 6.5130873 -3.6150210 -3.6450319 -3.0083041 5.6866827 NA NA -6.0371485 3.9188468 2.9406593 NA NA NA NA NA NA NA NA NA NA NA -6.430884 -6.268521 -6.218596 3.7884324 4.9414301 0.5639937 0.6613562 0.8125169 4.5681601 6.0995426 -4.2609749 -4.7452974 -4.3660822 3.6982615 5.4257526 NA -3.181694 -3.4046319 NA 5.1018534 0.3742456 0.3124261 -0.0107783 3.2124145 3.5967467 -1.8947585 -2.0405254 -2.1088450 -0.0260645 4.2654867 -3.2808514 -2.9196148 NA 3.0280650 3.4757388 -3.6459632 -3.1579068 -3.4414194 0.3084154 4.1493893
IgG_FHA 3.6871624 3.7213221 3.7239494 8.0674820 14.2122793 -1.6513464 4.4658613 4.5657120 19.2819595 32.9839249 -5.3629251 -4.2474809 -4.3880610 15.7188425 30.6544991 -2.3726408 NA 0.6452341 1.4492998 20.7074661 1.7006459 2.2629666 3.6543159 NA 15.8414335 5.7643328 1.5521832 3.6398640 9.3287621 14.1952009 NA -8.0266628 -3.9564080 -1.3418798 3.6033888 -7.3646574 -7.2516680 -1.0766521 2.0423880 4.9026031 -6.2280254 -5.3306775 NA NA 5.1996956 2.0142484 NA 5.8769178 3.9061680 19.8705559 19.4606400 35.0584679 NA 37.5363579 51.4051781 -8.4709921 -8.4355183 -7.8075066 -8.3067627 -7.4501438 NA -2.2196867 -0.7849808 -2.5731080 -0.5287833 -8.0964632 -7.2792587 -6.1940322 0.1609788 0.5892887 -0.2030983 -2.4339869 -3.9501505 2.9369631 24.9975357 17.2143898 12.0615358 7.5498314 12.8879366 15.8427477 -8.6724939 -8.5713291 NA -8.6409616 -8.6593552 -8.6435890 -8.6317654 NA NA -8.543738 -8.5485086 -8.6194553 -8.5432529 NA -8.4118700 -8.6081161 -8.5069504 -8.6107435 -8.5660734 NA -8.6619835 -8.6107435 -8.5844669 NA -8.5542488 NA NA NA NA NA -7.5614653 -8.5009575 -4.4543509 -1.8897483 -0.9214530 -4.1042728 2.5424094 2.9260483 16.1602898 60.5336914 1.7610826 1.5101404 3.6359224 14.6340208 NA NA -8.6020212 -4.5528884 -6.0953283 NA NA NA NA NA NA NA NA NA NA NA -8.690888 -8.690888 -8.690888 -8.6908875 -8.4761610 -7.9346952 -8.6139469 -8.6362820 0.4988003 3.5442657 -7.3541470 -8.6758633 -8.2882824 -8.3513470 2.0896859 NA -8.690888 -8.6908875 NA -8.5931787 -8.6220827 -8.6601839 -8.5997477 -8.6036892 -8.5577049 -8.6593552 -8.6304512 -8.6606693 -8.5752697 -8.6041746 -8.3868198 -7.7824564 NA -2.7386510 1.1870828 -8.5550776 -8.6483593 -8.5248594 -8.5629606 -8.3185873
IgG1_PT -9.3683338 -7.8277416 -3.9146371 -8.6288490 -10.2310658 -10.7881079 -11.3406954 -11.3406954 12.3207769 47.2922211 -9.1242676 -11.0346022 -10.6648598 58.4461136 76.2553558 -5.9814596 NA -9.5556335 -3.4548879 0.3349695 -9.8613234 -6.5952678 43.5664177 NA -10.2926893 -9.5840168 20.4883461 40.4544220 -4.5308738 -9.7996998 NA -9.4496775 -9.9426670 -3.8419218 86.2211075 -5.9365420 -4.7965040 -5.1046224 22.8109093 66.7794113 -11.3406954 -11.1407108 NA NA 27.4629135 -11.3406954 NA -11.3406954 -11.3406954 -10.8497314 -11.2810974 -11.3406954 NA -8.3847837 -6.9674387 -4.3954520 -3.6251559 11.5034609 48.1079330 53.2535095 NA -0.7601519 -2.0234375 24.1050072 47.2138901 -11.3406954 -11.3406954 -11.2669916 -4.3651381 0.9961233 -11.3402920 -10.7856789 -8.9061565 -11.0321732 -11.3402920 -0.7718287 -0.0939684 2.5250387 -3.7605777 -1.7269955 -10.0035315 -10.3116493 NA 8.2370825 40.2197762 -11.0511341 -10.3116493 NA NA 31.130283 0.4111958 0.2263250 2.5372133 NA 40.0352287 -11.3406954 -11.3406954 -11.3406954 -8.8634930 NA -10.6813917 -10.7430153 -10.4965210 NA -2.8859949 NA NA NA NA NA -11.1135178 -11.2983885 -11.2367649 -4.5197821 0.2252417 -11.3406954 -11.3406954 -11.3406954 -9.9253759 1.2901363 -10.9705496 -9.4299574 -3.8838253 -10.6316195 NA NA -11.3406954 -5.1976428 -2.3629532 NA NA NA NA NA NA NA NA NA NA NA -11.340695 -11.340695 -11.340695 -11.3406954 -9.6152315 -11.2639580 -10.8053989 -11.1407108 -7.3236599 -3.1024375 -10.7740021 -11.1437445 -11.1558237 -8.0625591 -1.9310017 NA -11.340695 -9.7536364 NA -2.8548598 -8.7091103 -8.9864178 -0.7596540 8.6687708 4.6632309 0.1368055 -1.7735291 -0.9107981 14.9232531 37.7240181 -1.7769432 0.0409565 NA 7.2817392 29.4354553 -11.3406954 -11.3406954 -11.2942286 -7.5382605 -4.7651944
IgG1_PRN -1.6423014 -1.2185757 -0.0709403 -1.3466283 -1.6928484 -0.8336573 -1.1471577 -1.2196085 0.4619777 2.1087790 -1.6584982 -1.6933919 -1.6858914 0.0909190 0.7241702 -0.3307956 NA -0.7503905 -0.1163239 0.3620794 -1.4740286 -0.6851685 0.6346531 NA -1.5404464 -0.5743455 0.1644567 0.7742825 -0.1352926 -0.6385891 NA -1.6599423 -1.6711388 -0.4700756 0.8567030 1.0065722 0.9992890 0.8761282 1.4045353 1.6544442 -0.5857359 -0.3944724 NA NA 1.4675615 0.5858996 NA 0.1861974 0.7837396 1.2585015 -0.7218015 -1.3171153 NA 2.4005933 2.6263156 1.3110502 1.3497486 1.3680108 1.4743769 1.7278187 NA 0.2233647 0.0763434 0.7769909 1.2996364 0.3382642 0.2468446 0.3306549 1.2896357 1.7605929 0.0568404 0.5487773 1.1742020 0.4456179 -0.0320245 -1.6954573 -1.1346025 -0.2357889 -1.3820655 -1.6974140 0.2771728 0.2576060 NA 0.8357449 1.5972660 -1.6337776 -1.5573049 NA NA 1.712818 -1.6824224 -1.6956298 -1.6501374 NA -0.8155133 0.0117191 -0.0775263 -0.0857878 0.8486261 NA -0.3986360 -0.5012519 -0.4486395 NA 1.4242647 NA NA NA NA NA 1.0328567 0.9595907 0.9241533 1.4410923 1.4233735 -1.4179378 -1.3482589 -1.3295076 0.4729025 2.4507599 -1.2412405 -0.1841005 0.8770072 -0.6765265 NA NA -1.1730601 1.2652645 1.1465061 NA NA NA NA NA NA NA NA NA NA NA -1.698207 -1.663345 -1.683423 -0.6142170 -0.2133192 0.0923555 0.3381338 0.0792024 1.2277617 1.5559916 -1.1251545 -1.2511960 -1.2808721 0.6316001 1.2820809 NA -1.141406 -0.5272321 NA 0.6337197 -0.1566623 -0.1624236 0.3338072 0.7766645 0.7308462 -0.8455650 -0.9104609 -0.9033952 0.2606497 1.6210721 -0.8716040 -0.7732275 NA 0.6254585 1.4644852 -0.8192092 -0.6499581 -0.4826636 0.5667040 0.7375314
IgG1_FHA -0.7092298 -0.5517942 0.8381332 -0.3219101 -0.7097523 -0.9867374 -1.0527420 -1.0187819 -0.7765329 -0.5736428 -1.0779943 -1.0637138 -0.9668838 -0.6015075 -0.6565404 -0.8430600 NA -0.9597434 -0.8738853 -0.6610684 -0.8610926 -0.7024379 0.1904525 NA -0.9460800 -0.7719256 -0.6108326 0.1801773 0.4213814 -0.7233363 NA 0.9310988 0.6658615 1.5531787 3.7720819 -0.4778304 -0.4457859 -0.3386809 0.0902617 0.4518067 -0.1180081 0.3753716 NA NA 4.3339043 -1.1135219 NA -1.1420833 -0.9475526 -0.7989988 -1.0341074 -1.1041176 NA -0.6076030 -0.4909195 -0.4842997 -0.6197919 -0.3451501 0.1205391 0.4794716 NA -0.4330727 -0.4412580 -0.3315406 -0.0180624 -0.9818336 -0.9757382 -1.0323384 -0.5307734 -0.2458565 -0.9493890 -0.4389421 0.8801044 -0.7102748 -0.9816076 -0.1362615 0.4966162 1.4055287 -0.3577861 -0.3738083 0.0854850 0.1070801 NA 2.2028556 4.5286894 -0.1316857 0.0813053 NA NA 6.599039 -0.9186410 -0.8907763 -0.9691458 NA -0.6612406 0.1321584 0.0921029 0.0409014 1.2173153 NA 0.0868782 -0.0628947 -0.0487882 NA 2.4306498 NA NA NA NA NA 0.3450688 0.2158462 0.0730394 2.3722277 3.3339090 -1.2221924 -1.2221924 -1.2221924 -0.8972220 1.7394778 -0.7663525 -0.1470591 -0.1101383 -0.5880183 NA NA -0.5983264 0.8022245 1.2663463 NA NA NA NA NA NA NA NA NA NA NA -1.222192 -1.222192 -1.222192 -1.2221924 -1.0456645 0.1709143 0.4845666 0.2154979 2.4295244 4.5084071 -1.2212961 -1.1657407 -1.2221924 -0.8416392 -0.4753922 NA -1.222192 -0.2370001 NA 1.5313650 0.0799611 -0.0436887 -0.4163793 0.5435604 0.5787398 0.6375889 0.5027932 0.5139390 2.5588274 4.9370818 -0.8480829 -0.8623636 NA -0.6458895 -0.0008211 -0.6608924 -0.7378687 -0.5295798 0.4629270 0.4563090
IgG1_TT -0.3503404 0.0296774 0.2893068 -0.1659075 -0.3627669 -0.7439322 -0.9041494 -0.9295069 0.3108350 0.9017318 0.1222599 -0.1410602 -0.0629696 0.9557394 1.0088443 0.2603058 NA 0.1133382 0.5696145 0.8578142 -0.1030846 0.0083824 0.3373930 NA -0.1783340 -0.1871760 0.0393159 0.3059816 -0.0722041 -0.2432015 NA -0.4716715 -0.5127481 0.0634123 0.5234325 -0.0517056 0.0046120 -0.0300654 0.4757310 0.7687367 -0.4440836 -0.3039135 NA NA 0.6784984 0.0494797 NA -0.0934252 0.1922520 0.4073795 -0.0977533 -0.3889267 NA 0.6193472 0.7129444 -0.2595365 -0.2720162 0.0962390 0.5555156 0.6418906 NA 0.0320406 -0.0481211 0.4747220 0.5762318 0.3438188 0.2964227 0.3633348 0.6720594 0.7697988 -0.7857996 -0.3556509 0.2380606 -0.4833148 -0.8348684 -0.9694891 -0.3379670 0.3038043 -0.4716052 -0.9499996 -0.0308408 -0.0396296 NA 0.5283526 0.9192835 0.1292436 0.1860126 NA NA 1.118373 -0.0208305 0.0186794 0.1787373 NA 0.5057299 0.2955147 0.2515705 0.2842033 0.5612510 NA -0.3877846 -0.4099293 -0.3852355 NA 0.6756918 NA NA NA NA NA 0.0562166 0.0797685 0.0484368 0.5769621 0.6659657 -0.8266695 -0.7200882 -0.7200617 0.4995162 1.1251172 -0.5536255 -0.1090589 0.3979059 -0.2919517 NA NA -0.4672373 0.4909323 0.4739919 NA NA NA NA NA NA NA NA NA NA NA -1.003914 -1.003914 -1.003914 -0.3092506 -0.2393647 -1.0039142 -0.6676813 -0.8466178 0.0052360 0.3549840 -0.6914590 -0.7825071 -0.7855607 0.4207145 0.5766035 NA -1.003914 -0.5675443 NA 0.0584018 -0.3104640 -0.3234481 0.1172419 0.4279846 0.4436505 -0.2648975 -0.3070627 -0.2980880 0.6979162 0.9137605 0.1675640 0.1925232 NA 0.3313923 0.6766530 -0.9711937 -0.9649539 -0.6693727 -0.0494275 0.2162824
IgG1_DT -0.5865553 -0.0645725 0.3655865 -0.4693693 -0.7631364 -0.5013164 -0.6886927 -0.7261506 0.4692075 0.9637474 0.1926954 -0.0942218 -0.0020511 0.5906856 0.5823183 0.7619776 NA 0.5344554 0.8436133 1.0593430 -0.1317279 -0.0447162 0.5136406 NA -0.2397228 -0.5027953 0.0315435 0.6120110 -0.1291699 -0.5685634 NA -1.1929172 -1.1929172 -0.1966797 0.5668720 -0.7480384 -0.7248874 -0.7229798 0.4102086 1.0098819 -0.9392047 -0.7939252 NA NA 1.0163668 0.2014962 NA 0.0084839 0.9835600 1.1468748 0.5685750 0.1701946 NA 0.6735786 0.7393900 -0.2155867 -0.1741402 0.1631544 0.7059907 0.7481741 NA 0.3091936 0.3281827 1.0387124 1.1521701 -0.1018895 -0.1976153 -0.0600095 1.1028763 1.2946748 -0.4681987 0.0247803 0.5106926 -0.2086813 -0.5467129 -1.1929172 -1.0539554 -0.6682777 -1.1929172 -1.1929172 -0.0434970 -0.0465317 NA 0.6592289 1.3629087 -0.0907528 0.0254794 NA NA 1.432535 -1.1929172 -1.1768328 -0.8736579 NA 0.3381314 0.6956464 0.5920736 0.6376387 0.9705545 NA 0.9884163 0.9886333 0.9639214 NA 1.1161374 NA NA NA NA NA -0.4748393 -0.4420203 -0.4649113 0.4329079 0.4342953 -1.1084466 -1.0442827 -1.0789659 0.1874062 1.3782555 0.3739538 0.3885208 0.2728956 0.2981709 NA NA 0.1757317 0.8849174 0.9733163 NA NA NA NA NA NA NA NA NA NA NA -1.192917 -1.192917 -1.192917 -1.0932231 -0.5517743 -0.9697692 -0.7625802 -0.8534937 0.3428615 0.5015374 -0.4247038 -0.5350833 -0.5500404 0.5212817 0.6051284 NA -0.745460 -0.4966510 NA -0.3324692 -0.1303959 -0.1563650 0.1455094 0.3492733 0.2400211 -1.1929172 -1.1929172 -1.1929172 -0.7926551 0.1636921 -0.7521137 -0.6945395 NA -0.1738139 0.5804167 0.1563479 0.0930076 0.3606755 0.7052101 0.7769612
IgG1_OVA -4.9051704 -5.5497599 -5.5301075 -5.5772729 -5.6087160 -5.9054632 -5.9054632 -5.9054632 -5.9054632 -5.8759847 -4.9719877 -5.7757587 -5.6264029 -5.3905778 -5.5084906 -4.0974693 NA -5.1193786 -4.2880945 -4.0109997 3.4351835 1.2498693 1.8787365 NA 0.9354353 -3.6494012 -4.1937642 -4.2330685 -3.7280095 -4.3902855 NA -5.9054632 -5.9054632 -5.9054632 -5.8917065 -5.9054632 -4.6245589 -5.5244188 -5.8881893 -5.6936331 9.3937025 9.9714737 NA NA 9.0497904 34.4894409 NA 24.8147087 28.2616882 26.6934509 -5.8799152 -5.9054632 NA -5.8976021 -5.8700891 11.9677153 13.2490320 13.2018671 14.9332170 14.7701063 NA -0.1635303 -2.2309322 -1.3603437 -1.6433342 -2.0697849 -2.7242000 -1.9970720 -2.3783231 -1.4802217 13.9136858 11.1348791 8.6174440 7.6033955 11.8698683 -5.5399337 -5.5261774 -5.4966993 -5.4908037 -5.6205072 1.9333701 1.7958050 NA -0.7452123 -0.5427957 -5.9038901 -5.8449340 NA NA -5.675926 -5.7014942 -5.7290072 -5.6857724 NA -5.5855465 -5.9054632 -5.9054632 -5.9054632 -5.9054632 NA -5.7820473 -5.8527946 -5.8331428 NA -5.7564993 NA NA NA NA NA 1.4856944 1.2243214 0.5895581 -0.4716554 0.4893327 -3.8812959 -2.9851599 -2.3523622 -0.0216222 2.4545431 0.4991589 0.7978706 -0.4559338 -0.9629581 NA NA -4.2428946 -2.5901525 -3.6317141 NA NA NA NA NA NA NA NA NA NA NA -5.027220 -1.030188 -3.248705 -4.0465803 -2.7829499 2.2324743 3.5766788 1.1358871 4.2428846 3.3801575 5.9364834 4.4881229 3.9732380 2.0060620 4.1147327 NA -2.806739 -2.9010689 NA -3.6144404 -5.5285559 -5.3890257 -5.4145737 -5.4912167 -5.4794254 -4.1919956 -4.6695418 -4.6656113 -3.9858446 -2.6377101 9.3657761 10.6588850 NA 11.4567604 12.2664270 14.3868895 11.8694544 11.3309870 12.6555395 11.1580486
IgG2_PT -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 1.5892558 -7.2256622 -7.2256622 3.9489760 13.7267857 38.8697205 20.7109337 28.3934994 45.1554527 50.0443573 -3.0351727 NA -5.8288321 -1.6383429 1.1553168 -9.3557396 -9.3557396 -9.3557396 NA -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 NA -9.3557396 -9.3557396 -9.3557396 -3.3263073 -9.3557396 -9.3557396 -9.3557396 -9.3557396 -8.6573248 28.4515705 26.7055340 NA NA 37.8801689 -7.9240770 NA -7.2256622 2.5521464 2.5521464 29.7903271 17.2188606 NA 14.4251995 28.3934994 -9.3557396 -9.3557396 -9.3557396 -8.4530277 -4.9609537 NA -9.3557396 -9.3557396 -9.3557396 -8.6573248 -9.3557396 -4.4668355 -7.2604952 -5.8636651 -5.1652503 -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 15.2930794 18.7851543 11.1025887 14.9438725 15.9914932 -9.3557396 -9.3557396 NA -5.0999451 0.1381669 2.5826192 -3.7031152 NA NA 9.566769 -9.3557396 -9.3557396 -9.3557396 NA -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 NA 3.2810340 3.9794488 1.1857891 NA 9.5667686 NA NA NA NA NA 21.1182137 16.9277248 19.0229702 22.5150452 32.9912643 -7.9240770 -9.3209066 -7.9240770 -6.5272474 4.6473908 -9.3557396 -9.3557396 -9.3557396 -9.3557396 NA NA -9.3557396 -9.3557396 -9.3557396 NA NA NA NA NA NA NA NA NA NA NA -9.355740 -9.355740 -9.355740 -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 -9.3557396 -8.9136267 -9.3557396 -9.3557396 -9.3557396 -7.2604952 -6.5620799 NA -9.355740 -9.3557396 NA 9.7057590 3.4200253 8.3089294 2.7216105 15.9914932 18.0867386 15.8525028 14.4556732 17.2493324 15.1540871 17.9477463 -9.3557396 -9.3557396 NA -4.8160429 -5.5144577 0.6263657 2.7216105 2.0231957 6.2136846 22.2772274
# abtiter <- head(results$abtiter$group1)
knitr::kable(results$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer After Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer After Imputation
468 469 470 471 472 475 476 477 478 479 483 484 485 486 487 490 491 492 493 494 498 499 500 501 502 506 507 508 509 510 513 514 515 516 517 521 522 523 524 525 529 530 531 532 533 537 538 539 540 541 546 547 548 549 550 554 555 556 557 558 562 563 564 565 566 569 570 571 572 573 577 578 579 580 581 585 586 587 588 589 593 594 595 596 597 601 602 603 604 605 608 609 610 611 612 616 617 618 619 620 623 624 625 626 627 630 631 632 633 634 636 637 638 639 640 643 644 645 646 647 650 651 652 653 654 657 658 659 660 661 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 681 682 683 684 685 688 689 690 691 692 695 696 697 698 699 702 703 704 705 706 709 710 711 712 713 716 717 718 719 720 723 724 725 726 727
IgG_PT 0.7943678 0.7803540 0.9134848 1.8360593 2.5811257 0.9083583 2.3120730 2.1999626 7.702711 14.207444 2.3447719 3.8652678 4.3977919 14.006579 17.647830 3.0407898 3.660170 4.1945920 3.8816173 4.9583435 0.5234344 0.5234344 0.6939354 3.660170 16.9102240 1.3268917 1.1213560 1.1400411 17.0153284 18.9819307 3.660170 0.3618093 0.3431242 3.192595 19.626098 0.8756237 0.8639455 0.9013157 8.520145 14.366231 0.9036758 0.9176896 3.660170 3.660170 10.486772 0.1469426 3.660170 0.2707310 0.2146759 1.6207261 6.5862784 8.7046967 3.660170 6.497525 8.307639 3.1673694 2.408289 3.099636 8.744857 15.961959 3.660170 2.779163 2.963678 8.914867 12.350581 0.1982906 0.2450032 0.2917159 2.0854809 3.344386 -0.1211998 -0.1679125 -0.1492274 0.2291448 1.0139170 10.9099874 10.0714960 10.2443323 10.2957163 11.3911276 0.3879678 0.5935035 3.660170 1.8337237 4.472987 0.7873607 0.8807859 3.660170 3.660170 7.509308 3.9568126 3.3915899 3.9101000 3.660170 9.2633677 0.1450622 0.1777611 0.1263771 0.988225 3.660170 2.3966110 2.4620085 2.5390844 3.660170 4.568748 1.710877 3.264269 1.1050591 1.8281397 1.846576 1.2166505 1.1162181 1.1676021 2.835243 3.818544 -0.0329010 0.2987585 0.2707310 1.1676135 4.178243 0.0142667 0.0469656 0.0422943 0.7476549 3.660170 3.660170 -0.0399194 3.2323003 4.1478682 3.660170 2.931367 3.008275 3.069359 3.5175458 3.818175 2.0601151 3.4063709 3.471312 3.973157 2.8172638 -0.2081094 -0.1987667 -0.2104449 0.3687916 0.9924054 0.0208070 0.0021222 0.0254784 0.4599059 1.814572 0.6911087 0.5252790 0.7378216 2.2676601 4.2949882 3.660170 -0.0511310 -0.0231032 3.660170 3.2701371 1.8313880 1.7566478 1.803360 5.218054 5.769263 5.3371711 4.9471207 4.5921044 6.3718557 9.025133 3.8675678 4.3580503 3.660170 5.925259 9.8187571 0.4767218 0.5608046 0.4767218 1.051287 3.347213
IgG_PRN -4.4400501 -4.4346561 -4.4342413 -0.4194262 3.9614661 -2.4343700 -0.9530516 -0.4677608 3.870674 7.361890 -4.5495129 -4.3388834 -4.2700109 1.021994 4.666999 -1.7947383 1.956022 0.4245433 -0.7814226 1.9983840 -2.8699436 -2.8775501 -2.9137840 1.956022 7.6554279 1.1722552 0.9703388 1.1513721 7.4575224 7.6841946 1.956022 -3.7532196 -3.9059010 1.105357 6.076924 5.1333120 4.7901924 5.0024812 6.798153 6.347576 -0.1793008 -0.0563531 1.956022 1.956022 7.392976 2.6929209 1.956022 4.4186137 2.6978996 7.0496111 -1.9163029 -0.3136959 1.956022 8.525536 8.419322 6.9309168 7.153163 6.988587 7.487293 7.396707 1.956022 1.228859 1.304094 5.122386 6.520450 2.3541968 2.2969410 2.5053573 7.0307722 7.744118 3.9524767 3.2366419 3.4833670 8.8272343 8.8730106 -4.5495129 -4.5495129 -4.5495129 2.1579111 4.7145035 -0.9881477 -0.9212112 1.956022 -0.1233652 1.573700 -4.1538086 -4.0354242 1.956022 1.956022 6.657150 -4.4510775 -4.4253540 -4.4668436 1.956022 0.2076573 2.1523423 1.6584772 1.6454771 5.969252 1.956022 -0.6140494 -0.5848684 -0.7259331 1.956022 6.713576 1.659926 1.601073 0.9147029 0.3505958 1.889504 5.9832954 5.6502721 5.8123581 6.679492 6.458767 -3.5485058 -1.6477265 -1.5138533 3.5018308 8.469110 -1.6589987 -1.6890097 -1.0522819 7.6427050 1.956022 1.956022 -4.0811262 5.8748691 4.8966815 1.956022 1.340276 1.921556 1.675730 1.0649438 2.269758 1.7612128 0.8476521 1.011529 1.925124 1.1714520 -4.4748621 -4.3124990 -4.2625732 5.7444546 6.8974524 2.5200160 2.6173785 2.7685392 6.5241823 8.055565 -2.3049526 -2.7892752 -2.4100599 5.6542838 7.3817749 1.956022 -1.2256718 -1.4486096 1.956022 7.0578756 2.3302679 2.2684484 1.945244 5.168437 5.552769 0.0612638 -0.0845032 -0.1528227 1.9299577 6.221509 -1.3248291 -0.9635925 1.956022 4.984087 5.4317610 -1.6899409 -1.2018845 -1.4853971 2.264438 6.105411
IgG_FHA 8.7799115 8.8140712 8.8166986 13.1602311 19.3050284 3.4414027 9.5586104 9.6584611 24.374709 38.076674 -0.2701759 0.8452682 0.7046881 20.811592 35.747248 2.7201083 5.092749 5.7379832 6.5420489 25.8002152 6.7933950 7.3557158 8.7470651 5.092749 20.9341826 10.8570819 6.6449323 8.7326131 14.4215112 19.2879500 5.092749 -2.9339137 1.1363411 3.750869 8.696138 -2.2719083 -2.1589189 4.0160971 7.135137 9.995352 -1.1352763 -0.2379284 5.092749 5.092749 10.292445 7.1069975 5.092749 10.9696670 8.9989171 24.9633050 24.5533891 40.1512170 5.092749 42.629107 56.497927 -3.3782430 -3.342769 -2.714757 -3.214014 -2.357395 5.092749 2.873062 4.307768 2.519641 4.563966 -3.0037141 -2.1865096 -1.1012831 5.2537279 5.682038 4.8896508 2.6587622 1.1425986 8.0297122 30.0902848 22.3071389 17.1542850 12.6425805 17.9806857 20.9354968 -3.5797448 -3.4785800 5.092749 -3.5482125 -3.566606 -3.5508399 -3.5390162 5.092749 5.092749 -3.450989 -3.4557595 -3.5267062 -3.4505038 5.092749 -3.3191209 -3.5153670 -3.4142013 -3.5179944 -3.473324 5.092749 -3.5692344 -3.5179944 -3.4917178 5.092749 -3.461500 2.874670 5.113358 1.7547857 3.8373271 1.962888 -2.4687161 -3.4082084 0.6383982 3.203001 4.171296 0.9884763 7.6351585 8.0187974 21.2530389 65.626441 6.8538318 6.6028895 8.7286716 19.7267699 5.092749 5.092749 -3.5092721 0.5398607 -1.0025792 5.092749 6.531875 2.423749 6.474574 4.4484710 6.746854 3.4134853 6.0544800 6.588367 6.391343 5.2453808 -3.5981383 -3.5981383 -3.5981383 -3.5981383 -3.3834119 -2.8419461 -3.5211978 -3.5435328 5.5915494 8.637015 -2.2613978 -3.5831141 -3.1955333 -3.2585979 7.1824350 5.092749 -3.5981383 -3.5981383 5.092749 -3.5004296 -3.5293336 -3.5674348 -3.506998 -3.510940 -3.464956 -3.5666060 -3.5377021 -3.5679202 -3.4825206 -3.511426 -3.2940707 -2.6897073 5.092749 2.354098 6.2798319 -3.4623284 -3.5556102 -3.4321103 -3.470212 -3.225838
IgG1_PT 1.4537363 2.9943285 6.9074330 2.1932211 0.5910044 0.0339622 -0.5186253 -0.5186253 23.142847 58.114291 1.6978025 -0.2125320 0.1572104 69.268184 87.077426 4.8406105 10.822070 1.2664366 7.3671823 11.1570396 0.9607468 4.2268023 54.3884878 10.822070 0.5293808 1.2380533 31.3104162 51.2764921 6.2911963 1.0223703 10.822070 1.3723927 0.8794031 6.980148 97.043178 4.8855281 6.0255661 5.7174478 33.632979 77.601481 -0.5186253 -0.3186407 10.822070 10.822070 38.284984 -0.5186253 10.822070 -0.5186253 -0.5186253 -0.0276613 -0.4590273 -0.5186253 10.822070 2.437286 3.854631 6.4266181 7.196914 22.325531 58.930003 64.075580 10.822070 10.061918 8.798633 34.927077 58.035960 -0.5186253 -0.5186253 -0.4449215 6.4569321 11.818193 -0.5182219 0.0363913 1.9159136 -0.2101030 -0.5182219 10.0502415 10.7281017 13.3471088 7.0614924 9.0950747 0.8185387 0.5104208 10.822070 19.0591526 51.041846 -0.2290640 0.5104208 10.822070 10.822070 41.952354 11.2332659 11.0483952 13.3592834 10.822070 50.8572989 -0.5186253 -0.5186253 -0.5186253 1.958577 10.822070 0.1406784 0.0790548 0.3255491 10.822070 7.936075 8.915908 9.616322 7.9103791 8.4380516 10.206602 -0.2914476 -0.4763184 -0.4146948 6.302288 11.047312 -0.5186253 -0.5186253 -0.5186253 0.8966942 12.112206 -0.1484795 1.3921127 6.9382448 0.1904507 10.822070 10.822070 -0.5186253 5.6244273 8.4591169 10.822070 9.273033 11.044400 9.631159 9.9652773 10.490618 8.1661771 9.7512956 9.456814 10.344961 10.0202093 -0.5186253 -0.5186253 -0.5186253 -0.5186253 1.2068386 -0.4418879 0.0166712 -0.3186407 3.4984102 7.719633 0.0480680 -0.3216743 -0.3337536 2.7595110 8.8910685 10.822070 -0.5186253 1.0684338 10.822070 7.9672103 2.1129599 1.8356524 10.062416 19.490841 15.485301 10.9588757 9.0485411 9.9112720 25.7453232 48.546088 9.0451269 10.8630266 10.822070 18.103809 40.2575254 -0.5186253 -0.5186253 -0.4721584 3.283810 6.056876
IgG1_PRN 0.1029508 0.5266765 1.6743120 0.3986239 0.0524038 0.9115950 0.5980946 0.5256437 2.207230 3.854031 0.0867541 0.0518603 0.0593609 1.836171 2.469422 1.4144566 1.745252 0.9948617 1.6289283 2.1073316 0.2712237 1.0600837 2.3799053 1.745252 0.2048059 1.1709068 1.9097090 2.5195347 1.6099596 1.1066631 1.745252 0.0853100 0.0741135 1.275177 2.601955 2.7518245 2.7445413 2.6213804 3.149787 3.399697 1.1595163 1.3507799 1.745252 1.745252 3.212814 2.3311518 1.745252 1.9314497 2.5289918 3.0037538 1.0234507 0.4281369 1.745252 4.145846 4.371568 3.0563024 3.095001 3.113263 3.219629 3.473071 1.745252 1.968617 1.821596 2.522243 3.044889 2.0835165 1.9920969 2.0759071 3.0348879 3.505845 1.8020927 2.2940296 2.9194542 2.1908702 1.7132277 0.0497949 0.6106497 1.5094633 0.3631867 0.0478382 2.0224251 2.0028583 1.745252 2.5809971 3.342518 0.1114746 0.1879474 1.745252 1.745252 3.458070 0.0628299 0.0496224 0.0951148 1.745252 0.9297390 1.7569714 1.6677259 1.6594645 2.593878 1.745252 1.3466163 1.2440003 1.2966127 1.745252 3.169517 1.568399 1.792909 1.4101585 1.4417715 1.582079 2.7781090 2.7048429 2.6694056 3.186345 3.168626 0.3273145 0.3969934 0.4157447 2.2181548 4.196012 0.5040118 1.5611517 2.6222595 1.0687257 1.745252 1.745252 0.5721922 3.0105168 2.8917583 1.745252 1.584483 1.429016 1.603443 1.4811543 2.041468 1.6390718 1.6917725 1.697892 1.858151 1.4616760 0.0470456 0.0819075 0.0618292 1.1310352 1.5319331 1.8376077 2.0833861 1.8244547 2.9730140 3.301244 0.6200978 0.4940562 0.4643801 2.3768524 3.0273331 1.745252 0.6038464 1.2180202 1.745252 2.3789719 1.5885899 1.5828286 2.079060 2.521917 2.476098 0.8996872 0.8347914 0.8418571 2.0059019 3.366324 0.8736483 0.9720248 1.745252 2.370711 3.2097374 0.9260431 1.0952941 1.2625886 2.311956 2.482784
IgG1_FHA 1.1314962 1.2889318 2.6788592 1.5188159 1.1309737 0.8539886 0.7879840 0.8219441 1.064193 1.267083 0.7627317 0.7770122 0.8738422 1.239219 1.184186 0.9976661 1.840726 0.8809826 0.9668407 1.1796576 0.9796334 1.1382881 2.0311785 1.840726 0.8946460 1.0688004 1.2298934 2.0209033 2.2621074 1.1173897 1.840726 2.7718248 2.5065875 3.393905 5.612808 1.3628956 1.3949401 1.5020452 1.930988 2.292533 1.7227179 2.2160976 1.840726 1.840726 6.174630 0.7272041 1.840726 0.6986427 0.8931734 1.0417272 0.8066186 0.7366084 1.840726 1.233123 1.349806 1.3564264 1.220934 1.495576 1.961265 2.320198 1.840726 1.407653 1.399468 1.509185 1.822664 0.8588924 0.8649878 0.8083876 1.3099526 1.594869 0.8913370 1.4017839 2.7208304 1.1304512 0.8591185 1.7044646 2.3373423 3.2462547 1.4829400 1.4669178 1.9262110 1.9478061 1.840726 4.0435816 6.369415 1.7090403 1.9220313 1.840726 1.840726 8.439765 0.9220850 0.9499497 0.8715802 1.840726 1.1794854 1.9728844 1.9328289 1.8816274 3.058041 1.840726 1.9276042 1.7778313 1.7919378 1.840726 4.271376 2.299725 1.827573 2.0628329 2.0515828 2.288069 2.1857948 2.0565722 1.9137654 4.212954 5.174635 0.6185336 0.6185336 0.6185336 0.9435040 3.580204 1.0743735 1.6936669 1.7305877 1.2527077 1.840726 1.840726 1.2423996 2.6429505 3.1070724 1.840726 1.427675 1.503699 1.637949 1.3626002 1.610369 1.4113166 1.2392097 1.473271 1.377759 1.7223454 0.6185336 0.6185336 0.6185336 0.6185336 0.7950615 2.0116403 2.3252926 2.0562239 4.2702504 6.349133 0.6194299 0.6749853 0.6185336 0.9990868 1.3653338 1.840726 0.6185336 1.6037259 1.840726 3.3720911 1.9206871 1.7970374 1.424347 2.384286 2.419466 2.4783149 2.3435192 2.3546650 4.3995534 6.777808 0.9926431 0.9783624 1.840726 1.194837 1.8399049 1.1798337 1.1028574 1.3111463 2.303653 2.297035
IgG1_TT 0.8701398 1.2501576 1.5097870 1.0545727 0.8577133 0.4765480 0.3163308 0.2909733 1.531315 2.122212 1.3427401 1.0794200 1.1575106 2.176220 2.229325 1.4807860 1.220480 1.3338184 1.7900947 2.0782944 1.1173956 1.2288626 1.5578732 1.220480 1.0421462 1.0333042 1.2597961 1.5264618 1.1482761 0.9772787 1.220480 0.7488087 0.7077321 1.283893 1.743913 1.1687746 1.2250922 1.1904148 1.696211 1.989217 0.7763966 0.9165667 1.220480 1.220480 1.898979 1.2699599 1.220480 1.1270550 1.4127322 1.6278597 1.1227269 0.8315535 1.220480 1.839827 1.933425 0.9609437 0.948464 1.316719 1.775996 1.862371 1.220480 1.252521 1.172359 1.695202 1.796712 1.5642990 1.5169029 1.5838150 1.8925396 1.990279 0.4346806 0.8648293 1.4585408 0.7371654 0.3856118 0.2509911 0.8825132 1.5242845 0.7488750 0.2704806 1.1896394 1.1808506 1.220480 1.7488328 2.139764 1.3497238 1.4064928 1.220480 1.220480 2.338853 1.1996497 1.2391596 1.3992175 1.220480 1.7262101 1.5159949 1.4720507 1.5046835 1.781731 1.220480 0.8326956 0.8105509 0.8352447 1.220480 1.896172 1.252277 1.313783 1.1827668 1.1598632 1.209319 1.2766968 1.3002487 1.2689170 1.797442 1.886446 0.3938107 0.5003920 0.5004185 1.7199965 2.345597 0.6668547 1.1114213 1.6183861 0.9285285 1.220480 1.220480 0.7532429 1.7114125 1.6944721 1.220480 1.074661 1.063247 1.008265 0.9275647 1.190545 0.9057848 1.0341805 1.007740 1.106671 0.8782137 0.2165660 0.2165660 0.2165660 0.9112296 0.9811155 0.2165660 0.5527989 0.3738624 1.2257162 1.575464 0.5290212 0.4379731 0.4349195 1.6411947 1.7970837 1.220480 0.2165660 0.6529359 1.220480 1.2788820 0.9100162 0.8970321 1.337722 1.648465 1.664131 0.9555827 0.9134175 0.9223922 1.9183964 2.134241 1.3880442 1.4130034 1.220480 1.551872 1.8971332 0.2492865 0.2555263 0.5511075 1.171053 1.436763
IgG1_DT 0.7777871 1.2997700 1.7299290 0.8949732 0.6012061 0.8630260 0.6756498 0.6381919 1.833550 2.328090 1.5570378 1.2701206 1.3622913 1.955028 1.946661 2.1263200 1.364343 1.8987979 2.2079557 2.4236854 1.2326145 1.3196262 1.8779831 1.364343 1.1246196 0.8615472 1.3958859 1.9763534 1.2351725 0.7957790 1.364343 0.1714252 0.1714252 1.167663 1.931215 0.6163040 0.6394551 0.6413627 1.774551 2.374224 0.4251378 0.5704172 1.364343 1.364343 2.380709 1.5658387 1.364343 1.3728263 2.3479024 2.5112172 1.9329175 1.5345371 1.364343 2.037921 2.103733 1.1487558 1.190202 1.527497 2.070333 2.112516 1.364343 1.673536 1.692525 2.403055 2.516513 1.2624530 1.1667272 1.3043330 2.4672188 2.659017 0.8961437 1.3891227 1.8750350 1.1556611 0.8176295 0.1714252 0.3103870 0.6960648 0.1714252 0.1714252 1.3208455 1.3178108 1.364343 2.0235714 2.727251 1.2735896 1.3898219 1.364343 1.364343 2.796878 0.1714252 0.1875097 0.4906845 1.364343 1.7024739 2.0599889 1.9564160 2.0019811 2.334897 1.364343 2.3527588 2.3529757 2.3282639 1.364343 2.480480 1.358961 1.625156 1.5544384 1.6372918 1.265139 0.8895031 0.9223222 0.8994312 1.797250 1.798638 0.2558959 0.3200598 0.2853765 1.5517486 2.742598 1.7382963 1.7528633 1.6372380 1.6625134 1.364343 1.364343 1.5400741 2.2492598 2.3376588 1.364343 1.296283 1.101430 1.196817 1.2740205 1.386303 1.2805180 1.4820862 1.473436 1.432489 1.1023693 0.1714252 0.1714252 0.1714252 0.2711194 0.8125681 0.3945732 0.6017622 0.5108488 1.7072040 1.865880 0.9396386 0.8292592 0.8143020 1.8856242 1.9694709 1.364343 0.6188825 0.8676915 1.364343 1.0318732 1.2339466 1.2079774 1.509852 1.713616 1.604364 0.1714252 0.1714252 0.1714252 0.5716874 1.528035 0.6122288 0.6698030 1.364343 1.190529 1.9447591 1.5206903 1.4573500 1.7250179 2.069552 2.141304
IgG1_OVA -0.6993842 -1.3439736 -1.3243213 -1.3714867 -1.4029298 -1.6996770 -1.6996770 -1.6996770 -1.699677 -1.670198 -0.7662015 -1.5699725 -1.4206166 -1.184792 -1.302704 0.1083169 4.205786 -0.9135923 -0.0823083 0.1947865 7.6409698 5.4556556 6.0845227 4.205786 5.1412215 0.5563850 0.0120220 -0.0272822 0.4777768 -0.1844993 4.205786 -1.6996770 -1.6996770 -1.699677 -1.685920 -1.6996770 -0.4187727 -1.3186326 -1.682403 -1.487847 13.5994887 14.1772599 4.205786 4.205786 13.255577 38.6952271 4.205786 29.0204949 32.4674745 30.8992372 -1.6741290 -1.6996770 4.205786 -1.691816 -1.664303 16.1735015 17.454818 17.407653 19.139003 18.975893 4.205786 4.042256 1.974854 2.845442 2.562452 2.1360013 1.4815862 2.2087142 1.8274632 2.725564 18.1194720 15.3406653 12.8232303 11.8091817 16.0756545 -1.3341475 -1.3203912 -1.2909131 -1.2850175 -1.4147210 6.1391563 6.0015912 4.205786 3.4605739 3.662991 -1.6981039 -1.6391478 4.205786 4.205786 -1.470139 -1.4957080 -1.5232210 -1.4799862 4.205786 -1.3797603 -1.6996770 -1.6996770 -1.6996770 -1.699677 4.205786 -1.5762610 -1.6470084 -1.6273565 4.205786 -1.550713 4.365495 3.562846 3.7576916 3.4349387 5.132477 5.6914806 5.4301076 4.7953444 3.734131 4.695119 0.3244903 1.2206264 1.8534241 4.1841640 6.660329 4.7049451 5.0036569 3.7498524 3.2428281 4.205786 4.205786 -0.0371084 1.6156337 0.5740721 4.205786 3.945973 3.422038 4.288735 2.2908697 4.504811 4.1067821 3.2884600 3.173830 3.294553 4.4678428 -0.8214340 3.1755979 0.9570816 0.1592059 1.4228363 6.4382606 7.7824650 5.3416734 8.4486709 7.585944 10.1422696 8.6939092 8.1790242 6.2118483 8.3205190 4.205786 1.3990474 1.3047173 4.205786 0.5913458 -1.3227696 -1.1832395 -1.208787 -1.285430 -1.273639 0.0137906 -0.4637556 -0.4598250 0.2199416 1.568076 13.5715623 14.8646712 4.205786 15.662547 16.4722133 18.5926757 16.0752406 15.5367732 16.861326 15.363835
IgG2_PT -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 7.7989230 -1.0159950 -1.0159950 10.158643 19.936453 45.0793877 26.9206009 34.6031666 51.365120 56.254024 3.1744945 6.209667 0.3808351 4.5713243 7.3649840 -3.1460724 -3.1460724 -3.1460724 6.209667 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 6.209667 -3.1460724 -3.1460724 -3.146072 2.883360 -3.1460724 -3.1460724 -3.1460724 -3.146072 -2.447658 34.6612377 32.9152012 6.209667 6.209667 44.089836 -1.7144098 6.209667 -1.0159950 8.7618136 8.7618136 35.9999943 23.4285278 6.209667 20.634867 34.603167 -3.1460724 -3.146072 -3.146072 -2.243361 1.248714 6.209667 -3.146072 -3.146072 -3.146072 -2.447658 -3.1460724 1.7428317 -1.0508280 0.3460021 1.044417 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 21.5027466 24.9948215 17.3122559 21.1535397 22.2011604 -3.1460724 -3.1460724 6.209667 1.1097221 6.347834 8.7922864 2.5065520 6.209667 6.209667 15.776436 -3.1460724 -3.1460724 -3.1460724 6.209667 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.146072 6.209667 9.4907012 10.1891160 7.3954563 6.209667 15.776436 3.760733 3.431909 -0.0283578 2.5401755 5.652262 27.3278809 23.1373920 25.2326374 28.724712 39.200932 -1.7144098 -3.1112394 -1.7144098 -0.3175802 10.857058 -3.1460724 -3.1460724 -3.1460724 -3.1460724 6.209667 6.209667 -3.1460724 -3.1460724 -3.1460724 6.209667 6.561872 5.153059 7.341485 3.3878465 7.825629 0.1905924 5.0194195 5.234543 6.199418 7.1474952 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -3.1460724 -2.703959 -3.1460724 -3.1460724 -3.1460724 -1.0508280 -0.3524127 6.209667 -3.1460724 -3.1460724 6.209667 15.9154263 9.6296926 14.5185966 8.931278 22.201160 24.296406 22.0621700 20.6653404 23.4589996 21.3637543 24.157414 -3.1460724 -3.1460724 6.209667 1.393624 0.6952095 6.8360329 8.9312778 8.2328629 12.423352 28.486895
# knitr::kable(head(results$rnaseq), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "RNA seq")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# knitr::kable(head(results$cytof), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Cell Frequency")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# olink <- head(results$olink)
# knitr::kable(, "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Olink")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")