# Load packages
library(tidyverse)
library(tidyquant)
1 Get stock prices and convert to returns
Ra <- c("NKE", "AAPL", "SBUX") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 63 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NKE 2022-01-31 -0.101
## 2 NKE 2022-02-28 -0.0778
## 3 NKE 2022-03-31 -0.0123
## 4 NKE 2022-04-29 -0.0733
## 5 NKE 2022-05-31 -0.0469
## 6 NKE 2022-06-30 -0.138
## 7 NKE 2022-07-29 0.124
## 8 NKE 2022-08-31 -0.0737
## 9 NKE 2022-09-30 -0.217
## 10 NKE 2022-10-31 0.115
## # ℹ 53 more rows
2 Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 21 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 11 more rows
3 Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 63 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NKE 2022-01-31 -0.101 -0.101
## 2 NKE 2022-02-28 -0.0778 -0.0343
## 3 NKE 2022-03-31 -0.0123 0.0341
## 4 NKE 2022-04-29 -0.0733 -0.133
## 5 NKE 2022-05-31 -0.0469 -0.0205
## 6 NKE 2022-06-30 -0.138 -0.0871
## 7 NKE 2022-07-29 0.124 0.123
## 8 NKE 2022-08-31 -0.0737 -0.0464
## 9 NKE 2022-09-30 -0.217 -0.105
## 10 NKE 2022-10-31 0.115 0.0390
## # ℹ 53 more rows
4 Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NKE -0.183 -0.0161 -0.177 0.876 0.369 0.588 0.614
## 2 AAPL 0.0766 0.0079 0.0996 1.07 0.719 1.28 0.896
## 3 SBUX -0.0091 -0.0007 -0.0079 0.727 0.892 0.292 0.586
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Which Stock Has a positively skewed distribution of return?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = CoSkewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol CoSkewness.1
## <chr> <dbl>
## 1 NKE 0.0000258
## 2 AAPL 0.0000423
## 3 SBUX -0.0000592