rm(list=ls())


# Load libraries ---------------------------

library(foreign)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Set wd for generated output ---------------------------
#setwd("/Volumes/caas-1/CMHIV/WISE/AK-R-output")
setwd("/Volumes/caas/CMHIV/WISE/AK-R-output")


# Read data ----- ----------------------

vuln_spss <- read.spss("../WISE_FULL_4-17.sav")
## Warning in read.spss("../WISE_FULL_4-17.sav"): ../WISE_FULL_4-17.sav: Long
## string missing values record found (record type 7, subtype 22), but ignored
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1954, 1955,
## 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968,
## 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981,
## 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 6157 added in
## variable: demo1
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 0.08333,
## 0.126, 0.14, 0.16666, 0.173, 0.219, 0.24999, 0.33332, 0.378, 0.41665, 0.49998,
## 0.58331, 0.66664, 0.74997, 0.8333, 0.91663, 1, 1.058, 1.082, 1.08333, 1.16666,
## 1.24999, 1.33332, 1.41665, 1.49998, 1.58331, 1.66664, 1.74997, 1.8333, 1.91663,
## 2, 2.033, 2.082, 2.16666, 2.24999, 2.33332, 2.41665, 2.49998, 3, 3.24999,
## 3.33332, 3.58331, 3.8333, 4, 4.16666, 4.49998, 4.8333, 5, 5.24999, 5.49998,
## 6.08333, 6.24999, 6.58331, 6.66664, 7, 7.49998, 9 added in variable: smhis1
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 9, 14, 30, 36 added in variable: smhis1y
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11 added in variable: smhis1m
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1757, 2067,
## 2804, 2807, 2809, 2813, 2816, 2818, 2825, 2828, 2830, 2832, 2838, 2840, 2842,
## 2852, 2860, 2861, 2863, 2864, 2865, 2874, 2879, 2882, 2883, 2885, 2886, 2887,
## 2888, 2889, 2891, 2892, 2893, 2895, 2896, 2903, 2904, 2905, 2906, 2907, 2908,
## 2909, 2910, 2911, 2914, 2915, 2919, 2920, 2921, 20920, 28400, 28955, 29200
## added in variable: demo8
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5 added in variable: hlth4
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 5, 6, 7,
## 8, 9, 10, 11, 12, 13, 15, 18, 20, 21, 22, 25, 28, 30, 33, 35, 38, 40, 45, 60,
## 90 added in variable: ftnd2
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 5, 6, 7, 8,
## 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32,
## 34 added in variable: smhis3
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 8, 9, 10,
## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34,
## 35 added in variable: smhis4
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
## 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 42, 44, 45, 48
## added in variable: smhis5
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 20, 24, 25, 50 added in variable: smhis6
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18 added in variable: smhis7
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 0.002738,
## 0.0054756, 0.005476, 0.008213, 0.010951, 0.013689, 0.019165, 0.021902,
## 0.027378, 0.032854, 0.038329, 0.04928, 0.068445, 0.073921, 0.079396, 0.0793962,
## 0.08333, 0.086068, 0.0888056, 0.116184, 0.124397, 0.16666, 0.180349, 0.207727,
## 0.246056, 0.24999, 0.260941, 0.266417, 0.269155, 0.277368, 0.296533, 0.33332,
## 0.41665, 0.49998, 0.527358, 0.58331, 0.74997, 0.91663, 1, 1.180349, 1.24999,
## 1.258203, 1.33332, 1.485095, 1.49998, 1.516407, 1.672116, 2, 2.099757,
## 2.349747, 2.49998, 3, 3.852465, 4.169398, 4.2554656, 4.841513, 5, 6, 15 added
## in variable: smhis9
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4.3482, 5.3482, 8.6964, 14.0446, 15.0446, 16.0446, 17.3928, 21.741, 24.741,
## 26.0892, 27.0892, 30.4374, 34.7856, 35.7856, 39.1338, 43.482, 47.8302, 52.17,
## 57.5182, 62.8664, 67.2146, 69.5628, 78.2592, 91.3038, 92.3038, 95.652,
## 101.0002, 104.34, 108.6882, 113.0364, 119.3846, 156.51, 208.68, 213.0282,
## 214.0282, 220.3764, 223.7246, 252.162, 260.85, 265.1982, 286.9392, 313.02,
## 327.0646, 330.4128, 363.8502, 365.19, 469.53, 521.7, 573.87, 626.04, 678.21,
## 692.2546, 782.55, 834.72, 991.23, 996.5782 added in variable: smhis10
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 21, 22, 25, 26, 29, 30, 32, 35,
## 36, 52, 60, 86, 90 added in variable: smhis11
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5 added in variable: smhis12
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 4, 5, 6,
## 8, 9, 10, 1010, 1907, 1993, 1994, 1995, 1999, 2000, 2001, 2002, 2003, 2004,
## 2005, 2006, 2007, 2008, 2009, 2010, 2011 added in variable: smhis17
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1, 2, 3, 4,
## 5, 6, 7, 14, 18, 22, 27, 28, 30, 32, 35, 43, 45, 60, 65, 68, 73, 78, 80, 90,
## 93, 99, 110, 120, 130, 135, 140, 145, 150, 155, 172, 180, 190, 200, 210, 217,
## 240, 260, 270, 290, 306, 350, 360, 365, 366, 369, 380, 395, 400, 425, 455, 500,
## 520, 540, 670, 700, 712, 720, 730, 732, 900, 950, 1000, 1080, 1090, 1100, 1180,
## 1200, 1260, 1300, 1360, 1385, 1460, 1500, 1533, 2190, 2400 added in variable:
## smhis18
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 0.041666,
## 0.083332, 0.124998, 0.166664, 0.249996, 0.291662, 0.333328, 0.41666, 0.958318,
## 1, 1.041666, 1.083332, 2, 2.249996, 3, 4, 7, 8.041666, 10, 14, 21, 23.041666,
## 34.499992, 35, 42, 140, 644 added in variable: smhis19
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 3, 4, 5,
## 6, 7, 8, 9 added in variable: smhis24
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 3, 4, 5,
## 6, 7, 8, 9 added in variable: smhis25
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 3, 4, 5,
## 6, 7, 8, 9 added in variable: smhis26
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1, 2, 3, 4,
## 5, 6, 7, 8 added in variable: smhis27
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3
## added in variable: smhis34
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 7, 9, 10 added in variable: smhis35
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 9, 10, 11, 14, 15, 18, 20, 21, 30, 35, 40, 50, 90 added in
## variable: smhis36
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1, 4, 5
## added in variable: smhis37
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1, 2, 3, 4,
## 5, 6, 7 added in variable: smhis38
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 7, 8, 9, 10, 14, 28 added in variable: atsq18
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 9, 20 added in variable: ssq7
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 3, 4, 5,
## 6, 7, 8, 9 added in variable: ssq9
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 2, 3, 4, 5,
## 6, 7, 8, 9 added in variable: ssq10
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 6,
## 7, 10, 12, 15, 18, 20, 21, 25, 30, 40, 45, 50, 60, 63, 65, 70, 75, 80, 90, 100,
## 112, 120, 150, 180, 200, 300, 306 added in variable: opbais7
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 25, 26, 28, 29, 30
## added in variable: drug2
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 20, 24, 30, 40 added in variable:
## drug3
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18, 20, 22, 25, 28, 29, 30 added in
## variable: drug4
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 10, 15, 20, 30 added in variable: drug7
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 17, 20, 24, 25, 28, 30 added in variable:
## drug8
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5 added in variable: drug9
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 2, 3, 5,
## 10, 30 added in variable: drug11
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 10, 12, 13, 18, 24 added in variable: drug13
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 4
## added in variable: drug14
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 9, 10, 12, 14, 15, 20, 21, 25, 30 added in variable: drug16
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 25, 30, 31, 33 added in
## variable: drug17
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5 added in variable: drug18
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5, 30 added in variable: drug20
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5, 7, 10, 25, 30 added in variable: drug21
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 1, 2, 3
## added in variable: drug22
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 19, 20, 25, 30 added in variable: drug24
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 25, 30, 33 added in variable:
## drug25
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3
## added in variable: drug26
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 20, 22, 25, 28, 29, 30 added in variable:
## drug28
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25,
## 26, 27, 28, 30, 32, 33, 36, 40 added in variable: drug29
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5 added in variable: drug30
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 5,
## 10, 30 added in variable: drug32
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 8, 9, 10, 13, 15, 18, 20, 27 added in variable: drug33
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4 added in variable: drug34
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 10, 15, 20, 21, 22, 25, 28, 29, 30 added in variable: drug36
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25,
## 27, 28, 29, 30, 35, 36, 37, 38, 40, 44 added in variable: drug37
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3
## added in variable: drug38
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 4,
## 5, 7, 8, 9, 10, 15, 20, 30 added in variable: drug40
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 25, 29, 35 added in
## variable: drug41
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3
## added in variable: drug42
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5, 6, 30 added in variable: drug44
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5, 8, 10, 16, 20 added in variable: drug45
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 25, 28, 29, 30 added
## in variable: drug47
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27,
## 28, 30, 35, 40 added in variable: drug48
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 18, 20, 30 added in variable: drug52
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 5, 10, 29, 30, 50, 60, 70, 80, 100, 120, 200, 300, 309, 400, 485, 500, 550,
## 580, 600, 636, 660, 675, 683, 700, 713, 714, 750, 798, 800, 900, 950, 1000,
## 1100, 1200, 1400, 1500, 1600, 1700, 2000, 2200, 2400, 2500, 3000, 4000, 4200,
## 4500, 5000, 6000, 7000, 10000, 20000, 30000, 50000 added in variable: sochis1
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 8 added in variable: sochis2
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 18, 22 added in variable: ftnd1h
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 10, 12, 13, 14, 15, 20, 23, 30, 31, 33, 34, 35, 39, 41, 45, 47, 59
## added in variable: ftnd1m
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 15 added in variable: smhis9y
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11 added in variable: smhis9m
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 10, 12, 14, 15, 17, 18, 25, 27, 29 added in variable: smhis9d
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 19 added in variable: smhis10y
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 7, 8, 9, 10, 11 added in variable: smhis10m
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3
## added in variable: smhis10w
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 6, 20, 92 added in variable: smhis19w
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 6 added in variable: smhis19d
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 6, 7, 8, 10, 12, 23 added in variable: smhis19h
## Warning in read.spss("../WISE_FULL_4-17.sav"): Undeclared level(s) 0, 1, 2, 3,
## 4, 5, 10, 11, 12, 13, 15, 18, 20, 22, 25, 30, 40, 45, 60 added in variable:
## w3ftnd2
vuln_dt <- as.data.frame(vuln_spss)
dim(vuln_dt)
## [1] 247 614
sort(colnames(vuln_dt))
##   [1] "ACigs21"          "ACigs3"           "ACigs7"          
##   [4] "ACigsSmk"         "age"              "Any_IDUse"       
##   [7] "Any_IVUse"        "Any_UTPos_exMar"  "Any_UTPositive"  
##  [10] "atsq1"            "atsq10"           "atsq11"          
##  [13] "atsq12"           "atsq13"           "atsq14"          
##  [16] "atsq15"           "atsq16"           "atsq17"          
##  [19] "atsq18"           "atsq2"            "atsq3"           
##  [22] "atsq4"            "atsq5"            "atsq6"           
##  [25] "atsq7"            "atsq8"            "atsq9"           
##  [28] "ATSQSC2W"         "ATSQSCRE"         "bis1"            
##  [31] "bis10"            "bis10r"           "bis11"           
##  [34] "bis12"            "bis12r"           "bis13"           
##  [37] "bis13r"           "bis14"            "bis15"           
##  [40] "bis15r"           "bis16"            "bis17"           
##  [43] "bis18"            "bis19"            "bis1r"           
##  [46] "bis2"             "bis20"            "bis20r"          
##  [49] "bis21"            "bis22"            "bis23"           
##  [52] "bis3"             "bis4"             "bis5"            
##  [55] "bis6"             "bis7"             "bis7r"           
##  [58] "bis8"             "bis8r"            "bis9"            
##  [61] "bis9r"            "cesd_scr"         "cesd1"           
##  [64] "cesd10"           "cesd2"            "cesd3"           
##  [67] "cesd4"            "cesd5"            "cesd6"           
##  [70] "cesd7"            "cesd8"            "cesd9"           
##  [73] "cid"              "Cig_diff"         "cond2"           
##  [76] "condn"            "consmk"           "crave1"          
##  [79] "crave2"           "crave3"           "crave4"          
##  [82] "crave5"           "cravescr"         "D1ATSQ"          
##  [85] "D1ATSQ1"          "D1ATSQ2"          "D1ATSQ3"         
##  [88] "D1ATSQ4"          "D1ATSQ5"          "D1ATSQ6"         
##  [91] "D1ATSQ7"          "D1ATSQ8"          "D2ATSQ"          
##  [94] "D2ATSQ1"          "D2ATSQ2"          "D2ATSQ3"         
##  [97] "D2ATSQ4"          "D2ATSQ5"          "D2ATSQ6"         
## [100] "D2ATSQ7"          "D2ATSQ8"          "D3ATSQ"          
## [103] "D3ATSQ1"          "D3ATSQ2"          "D3ATSQ3"         
## [106] "D3ATSQ4"          "D3ATSQ5"          "D3ATSQ6"         
## [109] "D3ATSQ7"          "D3ATSQ8"          "D4ATSQ"          
## [112] "D4ATSQ1"          "D4ATSQ2"          "D4ATSQ3"         
## [115] "D4ATSQ4"          "D4ATSQ5"          "D4ATSQ6"         
## [118] "D4ATSQ7"          "D4ATSQ8"          "DATSQ_Q4"        
## [121] "DATSQ1"           "DATSQ2"           "DATSQ3"          
## [124] "DATSQ4"           "DATSQ5"           "DATSQ6"          
## [127] "DATSQ7"           "DATSQ8"           "DATSQSCR"        
## [130] "Days1st"          "Days1st_inc"      "Days1stMar"      
## [133] "Days1stTrt"       "Days1stUse"       "Days2days"       
## [136] "Days3days"        "Days5cigs"        "decbal1"         
## [139] "decbal2"          "decbal3"          "decbal4"         
## [142] "decbal5"          "decbal6"          "decbalsc"        
## [145] "demo1"            "demo2"            "demo2b"          
## [148] "demo3"            "demo4"            "demo4_LEHS"      
## [151] "demo4r"           "demo4rb"          "demo5"           
## [154] "demo6"            "demo7"            "demo7b"          
## [157] "demo8"            "depr_cat"         "depress"         
## [160] "DOR"              "drug015"          "drug1"           
## [163] "drug10"           "drug11"           "drug13"          
## [166] "drug14"           "drug14a"          "drug14b"         
## [169] "drug14c"          "drug14d"          "drug14e"         
## [172] "drug16"           "drug17"           "drug18"          
## [175] "drug18a"          "drug18b"          "drug18c"         
## [178] "drug18d"          "drug18e"          "drug19"          
## [181] "drug2"            "drug20"           "drug21"          
## [184] "drug22"           "drug22a"          "drug22b"         
## [187] "drug22c"          "drug22d"          "drug22e"         
## [190] "drug23"           "drug24"           "drug25"          
## [193] "drug26"           "drug26a"          "drug26b"         
## [196] "drug26c"          "drug26d"          "drug26e"         
## [199] "drug27"           "drug28"           "drug29"          
## [202] "drug3"            "drug30"           "drug30a"         
## [205] "drug30b"          "drug30c"          "drug30d"         
## [208] "drug30e"          "drug31"           "drug32"          
## [211] "drug33"           "drug34"           "drug34a"         
## [214] "drug34b"          "drug34c"          "drug34d"         
## [217] "drug34e"          "drug35"           "drug36"          
## [220] "drug37"           "drug38"           "drug38a"         
## [223] "drug38b"          "drug38c"          "drug38d"         
## [226] "drug38e"          "drug39"           "drug4"           
## [229] "drug40"           "drug41"           "drug42"          
## [232] "drug42a"          "drug42b"          "drug42c"         
## [235] "drug42d"          "drug42e"          "drug43"          
## [238] "drug44"           "drug45"           "drug46"          
## [241] "drug47"           "drug48"           "drug49"          
## [244] "drug50"           "drug51"           "drug52"          
## [247] "drug53"           "drug54"           "drug55"          
## [250] "drug6"            "drug7"            "drug8"           
## [253] "drug9"            "drug9a"           "drug9b"          
## [256] "drug9c"           "drug9d"           "drug9e"          
## [259] "drugp1"           "educ_lehs"        "endtime"         
## [262] "Fam_Encourage"    "FF_Quit"          "fhxmeddx"        
## [265] "Final_QuitStatus" "Final_smkStatus"  "FPE"             
## [268] "FPE_CAT"          "FPV"              "FPV_CAT"         
## [271] "Friend_Encourage" "ftnd1"            "ftnd1h"          
## [274] "ftnd1m"           "FTND1R"           "ftnd2"           
## [277] "FTND2R"           "ftnd3"            "ftnd4"           
## [280] "ftnd5"            "ftnd6"            "FTND6R"          
## [283] "FTNDSCRE"         "gender"           "habaff"          
## [286] "hass1"            "hispanic"         "hlth1"           
## [289] "hlth2"            "hlth2r"           "hlth2rb"         
## [292] "hlth3"            "hlth3b"           "hlth4"           
## [295] "hlth4a"           "hlth4b"           "hlth4c"          
## [298] "hlth4d"           "hlth4e"           "hlth4f"          
## [301] "hlth5"            "hlth6"            "imp_attn"        
## [304] "imp_attn2"        "imp_motor"        "imp_nonplan"     
## [307] "INFO_Q12"         "INFO_Q12r"        "INFO_Q567"       
## [310] "INFO_Q567d"       "info1"            "info1r"          
## [313] "info2"            "info2r"           "info3"           
## [316] "info4"            "info5"            "info6"           
## [319] "info7"            "info8"            "isel_appr"       
## [322] "isel_belong"      "isel_esteem"      "isel_tang"       
## [325] "isel_total"       "JC_SMKG_Code"     "latency"         
## [328] "Latency_sample"   "LivingSitu"       "ln_ACigs21"      
## [331] "ln_ACigs3"        "ln_ACigs7"        "ln_ACigsSmk"     
## [334] "ln_TotCigs21"     "lss1"             "lss2"            
## [337] "lss3"             "lss4"             "lss5"            
## [340] "lss6"             "MedCond_Group"    "meddx_count"     
## [343] "meddx_meg"        "minority"         "negaff"          
## [346] "newID"            "noise1"           "noise10"         
## [349] "noise11"          "noise12"          "noise13"         
## [352] "noise14"          "noise2"           "noise3"          
## [355] "noise4"           "noise5"           "noise6"          
## [358] "noise7"           "noise8"           "noise9"          
## [361] "nsmmeddx"         "NumSmk_Rels"      "opbais1"         
## [364] "opbais2"          "opbais3"          "opbais4"         
## [367] "opbais5"          "opbais6"          "opbais7"         
## [370] "opbais7a"         "OPBIAS4R"         "pack_years"      
## [373] "pervul1"          "pervul2"          "pervul3"         
## [376] "pervul4"          "pervul5"          "pervul6"         
## [379] "pni_family"       "pni_friends"      "posaff"          
## [382] "PostRel_AnyUse"   "PostRel_DrugTrt"  "PostRel_MarUse"  
## [385] "prosmk"           "PSS_Grp"          "pss_scre"        
## [388] "pss1"             "pss10"            "pss2"            
## [391] "pss3"             "pss4"             "pss4r"           
## [394] "pss5"             "pss5r"            "pss6"            
## [397] "pss7"             "pss7r"            "pss8"            
## [400] "pss8r"            "pss9"             "Quit_tlfb"       
## [403] "Quit2day"         "Quit3day"         "Quit5cig"        
## [406] "race_eth"         "Release"          "ROB"             
## [409] "ROB_CAT"          "scrn7"            "scrn7r"          
## [412] "scrn7r_b"         "smdrg30r"         "smhis1"          
## [415] "smhis1_12m"       "smhis1_1m"        "smhis1_24m"      
## [418] "smhis1_3m"        "smhis1_6m"        "smhis1_8m"       
## [421] "smhis1_original"  "smhis10"          "smhis10m"        
## [424] "smhis10w"         "smhis10y"         "smhis11"         
## [427] "smhis12"          "smhis12a"         "smhis12b"        
## [430] "smhis12c"         "smhis12d"         "smhis12e"        
## [433] "smhis12i"         "smhis12j"         "smhis12k"        
## [436] "smhis12l"         "smhis12m"         "smhis12n"        
## [439] "smhis12o"         "smhis12p"         "smhis12q"        
## [442] "smhis12r"         "smhis12s"         "smhis12t"        
## [445] "smhis13"          "smhis14"          "smhis15"         
## [448] "smhis16"          "smhis17"          "smhis18"         
## [451] "smhis19"          "smhis19d"         "smhis19h"        
## [454] "smhis19w"         "smhis1m"          "smhis1y"         
## [457] "smhis2"           "smhis20"          "smhis21"         
## [460] "smhis22"          "smhis23"          "smhis24"         
## [463] "smhis25"          "smhis26"          "smhis27"         
## [466] "smhis28"          "smhis28r"         "smhis29"         
## [469] "smhis3"           "smhis30"          "smhis31"         
## [472] "smhis32"          "smhis33"          "smhis34"         
## [475] "smhis34a"         "smhis34b"         "smhis34c"        
## [478] "smhis34d"         "smhis35"          "smhis36"         
## [481] "smhis37"          "smhis38"          "smhis4"          
## [484] "smhis5"           "smhis6"           "smhis7"          
## [487] "smhis8"           "smhis9"           "smhis9d"         
## [490] "smhis9m"          "smhis9y"          "smk_drug"        
## [493] "SMKDATE"          "SmkDays_Pct"      "smkdrg30"        
## [496] "smkdxrsk"         "SMKTIME"          "smmeddx"         
## [499] "Smoke_less"       "sochis1"          "sochis2"         
## [502] "sochis2a"         "sochis2b"         "sochis2c"        
## [505] "sochis2d"         "sochis2e"         "sochis2f"        
## [508] "sochis2g"         "sochis2h"         "sochis2i"        
## [511] "sochis2j"         "sochis3"          "sochis4"         
## [514] "sochis5"          "spendyr"          "ssq_aware"       
## [517] "ssq_importance"   "ssq_kidhealth"    "ssq_smkbeh"      
## [520] "ssq_total"        "ssq1"             "ssq10"           
## [523] "ssq11"            "ssq12"            "ssq13"           
## [526] "ssq14"            "ssq15"            "ssq16"           
## [529] "ssq17"            "ssq18"            "ssq19"           
## [532] "ssq1r"            "ssq2"             "ssq20"           
## [535] "ssq21"            "ssq22"            "ssq23"           
## [538] "ssq24"            "ssq25"            "ssq26"           
## [541] "ssq27"            "ssq2r"            "ssq3"            
## [544] "ssq3r"            "ssq4"             "ssq4r"           
## [547] "ssq4rm"           "ssq5"             "ssq5r"           
## [550] "ssq6"             "ssq6r"            "ssq7"            
## [553] "ssq7_r"           "ssq7_ra"          "ssq8"            
## [556] "ssq8r"            "ssq9"             "stat1"           
## [559] "stat10"           "stat11"           "stat12"          
## [562] "stat13"           "stat14"           "stat15"          
## [565] "stat16"           "stat2"            "stat3"           
## [568] "stat4"            "stat5"            "stat6"           
## [571] "stat7"            "stat8"            "stat9"           
## [574] "Sx_group"         "temp1"            "temp2"           
## [577] "temp3"            "temp4"            "temp5"           
## [580] "temp6"            "temp7"            "temp8"           
## [583] "temp9"            "test5a"           "test5b"          
## [586] "test5c"           "test5d"           "TLFB_Days"       
## [589] "TOR"              "TOT_ATS1"         "Tot_SmkDays"     
## [592] "total_medgrp"     "TotCigs21"        "TotCigs3"        
## [595] "TotCigs7"         "trt_grp"          "UT_Missing"      
## [598] "UT1"              "UT10"             "UT11"            
## [601] "UT2"              "UT3"              "UT4"             
## [604] "UT5"              "UT6"              "UT7"             
## [607] "UT8"              "UT9"              "w3ftnd2"         
## [610] "Week3data"        "With1Day"         "With1Hr"         
## [613] "With1Wk"          "wtgain"
# Cids to be potentially ignored ---------------------------

cids.to.ignore <- as.character(
  c(4019, 4021, 4026, 4027, 4031, 4032, 4040, 
    4042, 4058, 4075, 4080, 4081, 4087, 4091, 
    4093, 4104, 4116, 4120, 4121, 4125, 4129, 
    4138, 4141, 4147, 4153, 4160, 4170, 4180,
    8009, 8016, 8027, 8029, 8031, 8033, 8035,
    8051, 8052, 8058, 8061, 8062, 8065, 8070,
    8071, 8076, 8078, 8082, 8084, 8085, 8088,
    8089, 8042)
) 

cid_num4 <- substr(vuln_dt$cid, 1, 4)
vuln_dt$cid_num4 <- cid_num4

ids.to.ignore <- which(vuln_dt$cid_num4 %in% cids.to.ignore)

vuln_dt_alt <- vuln_dt[-ids.to.ignore,]
dim(vuln_dt_alt)
## [1] 196 615
# Replace don't know/refuse to answer with NA
#vuln_dt <- na_if(vuln_dt, "Don't Know")
#vuln_dt <- na_if(vuln_dt, "Refuse to Answer")

vuln_dt <- vuln_dt %>%
  mutate(across(where(is.character), 
                ~na_if(na_if(., "Don't Know"), "Refuse to Answer")))



# Recreate Table 1  ---------------------------

n <- nrow(vuln_dt)
n_alt <- nrow(vuln_dt_alt)


## age
class(vuln_dt$age)
## [1] "numeric"
summary(vuln_dt$age) # column I
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   19.00   28.00   35.00   35.58   42.75   56.00       5
sd(vuln_dt$age, na.rm = T)
## [1] 9.187048
summary(vuln_dt_alt$age) # column I
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   19.00   27.00   35.00   34.94   42.00   55.00       3
sd(vuln_dt_alt$age, na.rm = T)
## [1] 9.195893
## race ethnicity
class(vuln_dt$race_eth)
## [1] "factor"
summary(vuln_dt$race_eth)
## White, non-Hispanic            Hispanic Black, non-Hispanic Other, non-Hispanic 
##                 127                  49                  43                  25 
##                NA's 
##                   3
summary(vuln_dt$race_eth)/n
## White, non-Hispanic            Hispanic Black, non-Hispanic Other, non-Hispanic 
##          0.51417004          0.19838057          0.17408907          0.10121457 
##                NA's 
##          0.01214575
summary(vuln_dt_alt$race_eth)
## White, non-Hispanic            Hispanic Black, non-Hispanic Other, non-Hispanic 
##                  97                  41                  35                  21 
##                NA's 
##                   2
summary(vuln_dt_alt$race_eth)/n_alt
## White, non-Hispanic            Hispanic Black, non-Hispanic Other, non-Hispanic 
##          0.49489796          0.20918367          0.17857143          0.10714286 
##                NA's 
##          0.01020408
## gender
class(vuln_dt$gender)
## [1] "factor"
summary(vuln_dt$gender)
##   Male Female 
##    161     86
summary(vuln_dt$gender)/n
##      Male    Female 
## 0.6518219 0.3481781
summary(vuln_dt_alt$gender)
##   Male Female 
##    133     63
summary(vuln_dt_alt$gender)/n_alt
##      Male    Female 
## 0.6785714 0.3214286
## education level
table(vuln_dt$demo4rb, exclude = NA)
## 
## less than HS           HS    beyond HS 
##          157           49           37
table(vuln_dt$demo4rb, exclude = NA)/n
## 
## less than HS           HS    beyond HS 
##    0.6356275    0.1983806    0.1497976
## smoking-related medical conditions
class(vuln_dt$smmeddx)
## [1] "factor"
table(vuln_dt$smmeddx, exclude=NA)
## 
##  No Yes 
## 158  89
table(vuln_dt$smmeddx)/n
## 
##        No       Yes 
## 0.6396761 0.3603239
## smoking prior to ACI #TRIED FTND2 and FTNDSCRE but the answer is different

summary(as.numeric(as.character(vuln_dt$ftnd2)))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2.00   15.00   20.00   21.65   25.00   90.00       3
sd(as.numeric(as.character(vuln_dt$ftnd2)), na.rm = TRUE)
## [1] 11.73011
summary(as.numeric(as.character(vuln_dt_alt$ftnd2)))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2.00   15.00   20.00   21.81   25.00   90.00       2
sd(as.numeric(as.character(vuln_dt_alt$ftnd2)), na.rm = TRUE)
## [1] 12.15529
## Years since smoked daily
class(vuln_dt$smhis1_original) #1_original has the correct continuous coding - 1_6m is discretized
## [1] "numeric"
table(vuln_dt$smhis1_original, exclude=NULL)
## 
##       0 0.08333   0.126    0.14 0.16666   0.173   0.219 0.24999 0.33332   0.378 
##       5      17       1       1      22       1       1      26      16       1 
## 0.41665 0.49998 0.58331 0.66664 0.74997  0.8333 0.91663       1   1.058   1.082 
##      12      14      13       6       4       6       3      17       1       1 
## 1.08333 1.16666 1.24999 1.33332 1.41665 1.49998 1.58331 1.66664 1.74997  1.8333 
##       1       4       2       2       3       3       2       6       2       2 
## 1.91663       2   2.033   2.082 2.16666 2.24999 2.33332 2.41665 2.49998       3 
##       1       6       1       1       2       3       1       1       1       4 
## 3.24999 3.33332 3.58331  3.8333       4 4.16666 4.49998  4.8333       5 5.24999 
##       2       1       1       1       1       2       2       1       3       1 
## 5.49998 6.08333 6.24999 6.58331 6.66664       7 7.49998       9      14      30 
##       2       1       2       1       1       1       1       1       1       1 
##      36    <NA> 
##       1       3
table(vuln_dt$smhis1_original, exclude=NULL)/n
## 
##           0     0.08333       0.126        0.14     0.16666       0.173 
## 0.020242915 0.068825911 0.004048583 0.004048583 0.089068826 0.004048583 
##       0.219     0.24999     0.33332       0.378     0.41665     0.49998 
## 0.004048583 0.105263158 0.064777328 0.004048583 0.048582996 0.056680162 
##     0.58331     0.66664     0.74997      0.8333     0.91663           1 
## 0.052631579 0.024291498 0.016194332 0.024291498 0.012145749 0.068825911 
##       1.058       1.082     1.08333     1.16666     1.24999     1.33332 
## 0.004048583 0.004048583 0.004048583 0.016194332 0.008097166 0.008097166 
##     1.41665     1.49998     1.58331     1.66664     1.74997      1.8333 
## 0.012145749 0.012145749 0.008097166 0.024291498 0.008097166 0.008097166 
##     1.91663           2       2.033       2.082     2.16666     2.24999 
## 0.004048583 0.024291498 0.004048583 0.004048583 0.008097166 0.012145749 
##     2.33332     2.41665     2.49998           3     3.24999     3.33332 
## 0.004048583 0.004048583 0.004048583 0.016194332 0.008097166 0.004048583 
##     3.58331      3.8333           4     4.16666     4.49998      4.8333 
## 0.004048583 0.004048583 0.004048583 0.008097166 0.008097166 0.004048583 
##           5     5.24999     5.49998     6.08333     6.24999     6.58331 
## 0.012145749 0.004048583 0.008097166 0.004048583 0.008097166 0.004048583 
##     6.66664           7     7.49998           9          14          30 
## 0.004048583 0.004048583 0.004048583 0.004048583 0.004048583 0.004048583 
##          36        <NA> 
## 0.004048583 0.012145749
summary(as.numeric(vuln_dt$smhis1_original)) # computing mean/sd not appropriate?
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.0000  0.2500  0.5833  1.5155  1.5208 36.0000       3
sd(as.numeric(vuln_dt$smhis1_original), na.rm = T)  
## [1] 3.381317
## Age started smoking daily
table(vuln_dt$smhis4)
## 
##                2                8                9               10 
##                1                1                3                5 
##               11               12               13               14 
##               12               23               23               40 
##               15               16               17               18 
##               34               33               10               17 
##               19               20               21               22 
##                8                8                4                3 
##               23               25               26               27 
##                4                2                1                1 
##               29               30               33               34 
##                1                5                1                1 
##               35       Don't Know Refuse to Answer   Not Applicable 
##                1                2                0                0
summary(as.numeric(as.character(vuln_dt$smhis4)))
## Warning in summary(as.numeric(as.character(vuln_dt$smhis4))): NAs introduced by
## coercion
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2.00   13.00   15.00   15.73   17.00   35.00       5
sd(as.numeric(as.character(vuln_dt$smhis4)), na.rm = TRUE)
## Warning in is.data.frame(x): NAs introduced by coercion
## [1] 4.474919
## Readiness  to quit                                                    
table(vuln_dt$smhis24)
## 
##        Not Ready                2                3                4 
##               10               12                8               10 
##                5                6                7                8 
##               27               15               15               23 
##                9       Very Ready       Don't Know Refuse to Answer 
##               11               47                0                0 
##   Not Applicable 
##               66
smhis24.numeric <-
  vuln_dt %>% 
  select(smhis24) %>% 
  pull()

smhis24.numeric <- recode(smhis24.numeric, 
                          "Not Ready" = "1" , 
                          "Very Ready"  = "10")
table(smhis24.numeric)  
## smhis24.numeric
##                1                2                3                4 
##               10               12                8               10 
##                5                6                7                8 
##               27               15               15               23 
##                9               10       Don't Know Refuse to Answer 
##               11               47                0                0 
##   Not Applicable 
##               66
smhis24.numeric <- as.numeric(as.character(smhis24.numeric))
## Warning: NAs introduced by coercion
summary(smhis24.numeric)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   5.000   7.000   6.635  10.000  10.000      69
sd(smhis24.numeric, na.rm=TRUE)
## [1] 2.879171
## Motivation
class(vuln_dt$smhis26)
## [1] "factor"
table(vuln_dt$smhis26)
## 
## Not at all motivated                    2                    3 
##                   15                    8                   15 
##                    4                    5                    6 
##                    6                   31                   14 
##                    7                    8                    9 
##                   16                   17                   16 
##       Very Motivated           Don't Know     Refuse to Answer 
##                   40                    0                    0 
##       Not Applicable 
##                   66
smhis26.numeric <-
  vuln_dt %>% 
  select(smhis26) %>% 
  pull()

smhis26.numeric <- recode(smhis26.numeric, 
                          "Not at all motivated" = "1" , 
                          "Very Motivated"  = "10")
table(smhis26.numeric)  
## smhis26.numeric
##                1                2                3                4 
##               15                8               15                6 
##                5                6                7                8 
##               31               14               16               17 
##                9               10       Don't Know Refuse to Answer 
##               16               40                0                0 
##   Not Applicable 
##               66
smhis26.numeric <- as.numeric(as.character(smhis26.numeric))
## Warning: NAs introduced by coercion
summary(smhis26.numeric)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   5.000   6.500   6.354   9.000  10.000      69
sd(smhis26.numeric, na.rm=TRUE)
## [1] 2.948429
## Stress Scale
summary(vuln_dt$pss_scre)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2.00   19.00   21.00   21.82   26.00   39.00       6
sd(vuln_dt$pss_scre, na.rm=TRUE)
## [1] 6.287543
## CES-D
summary(vuln_dt$cesd_scr)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##     0.0     9.0    13.0    12.7    16.0    27.0       4
sd(vuln_dt$cesd_scr, na.rm = TRUE)
## [1] 5.448129
## Health Status
table(vuln_dt$hlth2r)
## 
##         Poor/Fair Good to Excellent 
##                75               169
table(vuln_dt$hlth2r)/n
## 
##         Poor/Fair Good to Excellent 
##         0.3036437         0.6842105
table(vuln_dt$hlth2rb)
## 
##      Poor/Fair/Good Very Good/Excellent 
##                 192                  52
table(vuln_dt$hlth2rb)/n
## 
##      Poor/Fair/Good Very Good/Excellent 
##           0.7773279           0.2105263
## Family history medical conditions
class(vuln_dt$fhxmeddx)
## [1] "factor"
table(vuln_dt$fhxmeddx, exclude=NA)
## 
##  No Yes 
## 129 118
table(vuln_dt$fhxmeddx)/n
## 
##        No       Yes 
## 0.5222672 0.4777328
## health concerns (OPBAIS5): 
## "Do you have any concerns about your health because of smoking?"
table(vuln_dt$opbais5, exclude = NULL)
## 
##              None          A little A moderate amount             A lot 
##                25                89                67                62 
##        Don't Know  Refuse to Answer    Not Applicable              <NA> 
##                 1                 0                 0                 3
table(vuln_dt$opbais5, exclude = NULL)/n
## 
##              None          A little A moderate amount             A lot 
##       0.101214575       0.360323887       0.271255061       0.251012146 
##        Don't Know  Refuse to Answer    Not Applicable              <NA> 
##       0.004048583       0.000000000       0.000000000       0.012145749
  ## recode as variable ropbais5: RECODE OPBAIS5 (2,1 =0) (4,3=1) INTO ROPBAIS5.
  class(vuln_dt$opbais5)
## [1] "factor"
  levels(vuln_dt$opbais5)
## [1] "None"              "A little"          "A moderate amount"
## [4] "A lot"             "Don't Know"        "Refuse to Answer" 
## [7] "Not Applicable"
  ropbais5 <- recode(vuln_dt$opbais5, 
                     "None" = "0",
                     "A little" = "0",
                     "A moderate amount" ="1",
                     "A lot" = "1"
  )
  xtabs(~factor(ropbais5, exclude = NULL) + 
          factor(vuln_dt$opbais5, exclude = NULL))
##                                 factor(vuln_dt$opbais5, exclude = NULL)
## factor(ropbais5, exclude = NULL) None A little A moderate amount A lot
##                       0            25       89                 0     0
##                       1             0        0                67    62
##                       Don't Know    0        0                 0     0
##                       <NA>          0        0                 0     0
##                                 factor(vuln_dt$opbais5, exclude = NULL)
## factor(ropbais5, exclude = NULL) Don't Know <NA>
##                       0                   0    0
##                       1                   0    0
##                       Don't Know          1    0
##                       <NA>                0    3
  table(ropbais5)/n
## ropbais5
##                0                1       Don't Know Refuse to Answer 
##      0.461538462      0.522267206      0.004048583      0.000000000 
##   Not Applicable 
##      0.000000000
## FREQUENCIES VARIABLES =   smhis1_6m RACE_ETH GENDER demo4RB smmeddx HLTH2r fhxmeddx FTND2 SMHIS4 SMHIS24 SMHIS26 FPV  TRT_GRP scrn7r_b .
 ## DESCRIPTIVES VARIABLES =  AGE  HLTH2r  FTND2 SMHIS4 SMHIS24 SMHIS26 FPV  TRT_GRP scrn7r_b .

################################################################################  
#FUNCTION TO COMPUTE SUMMARIES OF REMAINING COLS
################################################################################  
  
  printSummaryCols <- function(X){
    age.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$age)), 
                   use="complete.obs") #age
    
    race.out <- summary(aov(as.numeric(X) ~ vuln_dt$race_eth)) #race
    
    gender.out <- summary(aov(as.numeric(X) ~ vuln_dt$gender)) #gender
    
    demo4rb.out <- summary(aov(as.numeric(X) ~ vuln_dt$demo4rb)) #education
    
    smmeddx.out <- summary(aov(as.numeric(X) ~ vuln_dt$smmeddx)) #smkg medx
    
    ftnd2.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$ftnd2)), 
                     use="complete.obs") #ciggs prior to ACL
    
    smhis1_original.out <- cor(as.numeric(X), 
                               as.numeric(as.character(vuln_dt$smhis1_original)), 
                               use="complete.obs") #yrs since smoked daily
    
    smhis4.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$smhis4)), 
                      use="complete.obs") # Age started smoking daily
    
    smhis24.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$smhis24)), 
                       use="complete.obs") #readiness to quit
    
    smhis26.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$smhis26)), 
                       use="complete.obs") #motivation
    
    pss_scre.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$pss_scre)), 
                        use="complete.obs") #stress scale
    
    cesd_scr.out <- cor(as.numeric(X), as.numeric(as.character(vuln_dt$cesd_scr)), 
                        use="complete.obs") #ces-d
    
    hlth2rb.out <- summary(aov(as.numeric(X) ~ vuln_dt$hlth2rb)) #health status
    
    fhxmeddx.out <- summary(aov(as.numeric(X) ~ vuln_dt$fhxmeddx)) #family hist
    
    return(c(age.out, 
             race.out, 
             gender.out,
             demo4rb.out,
             smmeddx.out,
             ftnd2.out,
             smhis1_original.out,
             smhis4.out,
             smhis24.out,
             smhis26.out,
             pss_scre.out,
             cesd_scr.out,
             hlth2rb.out,
             fhxmeddx.out))
  }
  
  print_summaries_cont <- function(X){
    # compute pvals and double check
    # corrs for continuous variables
    
    age.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$age)), 
                   use="complete.obs") #age
    cat("age: corr = ", age.out$estimate, "p-value = ", age.out$p.value, "\n")
    
    
    ftnd2.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$ftnd2)), 
                     use="complete.obs") #ciggs prior to ACL
    cat("cigs prior to ACI: corr = ", ftnd2.out$estimate, "p-value = ", ftnd2.out$p.value, "\n")

    
    smhis1_original.out <- cor.test(as.numeric(X), 
                               as.numeric(as.character(vuln_dt$smhis1_original)), 
                               use="complete.obs") #yrs since smoked daily
    cat("yrs since smoked daily: corr = ", smhis1_original.out$estimate, 
        "p-value = ", smhis1_original.out$p.value, "\n")
    
    
    smhis4.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$smhis4)), 
                      use="complete.obs") # Age started smoking daily
    cat("age started smoked daily: corr = ", smhis4.out$estimate, 
        "p-value = ", smhis4.out$p.value, "\n")
    
    
    smhis24.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$smhis24)), 
                       use="complete.obs") #readiness to quit
    cat("readiness to quit: corr = ", smhis24.out$estimate, 
        "p-value = ", smhis24.out$p.value, "\n")
    
    
    smhis26.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$smhis26)), 
                       use="complete.obs") #motivation
    cat("motivation: corr = ", smhis26.out$estimate, 
        "p-value = ", smhis26.out$p.value, "\n")
    
    
    pss_scre.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$pss_scre)), 
                        use="complete.obs") #stress scale
    cat("stress scale: corr = ", pss_scre.out$estimate, 
        "p-value = ", pss_scre.out$p.value, "\n")
    
    
    cesd_scr.out <- cor.test(as.numeric(X), as.numeric(as.character(vuln_dt$cesd_scr)), 
                        use="complete.obs") #ces-d
    cat("ces-d: corr = ", cesd_scr.out$estimate, 
        "p-value = ", cesd_scr.out$p.value, "\n")
    
    
    }
  
 compute_n_cont_vars <- function(v, w, df=vuln_dt){
   #compute ns of corrs for
   #continuous variables
   na.v <- which(is.na(v))
   na.w <- which(is.na(w))
   na.v.and.w <- union(na.v, na.w)
   return(nrow(df) - length(na.v.and.w))
  
 }
 
  print_n_cont <- function(v, w, df=vuln_dt){
    #print "effective" ns
    
    age.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$age)),
                                 w=w)
    cat("age: eff n = ", age.n, "\n")
    
    ftnd2.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$ftnd2)),
                                 w=w)
    cat("cigs prior to ACI: eff n = ", ftnd2.n, "\n")
    
    smhis1_original.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$smhis1_original)),
                                   w=w)
    cat("yrs since smoked daily: eff n = ", smhis1_original.n, "\n")

    smhis4.out.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$smhis4.out)),
                                   w=w)
    cat("age started smoking dailyI: eff n = ", smhis4.out.n, "\n")
    
    smhis24.out.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$smhis24.out )),
                                   w=w)
    cat("readiness to quit: eff n = ", smhis24.out.n, "\n")
    
    smhis26.out.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$smhis26.out)),
                                   w=w)
    cat("motivation: eff n = ", smhis26.out.n, "\n")
    
    pss_scre.out.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$pss_scre.out )),
                                   w=w)
    cat("stress scale: eff n = ", pss_scre.out.n, "\n")
    
    cesd_scr.out.n <- compute_n_cont_vars(v=as.numeric(as.character(vuln_dt$cesd_scr.out )),
                                   w=w)
    cat("ces-d eff n = ", cesd_scr.out.n, "\n")
    
  }
    

################################################################################  
# COMPUTE SUMMARIES
################################################################################  

##perceived future vulnerability
FPV <- vuln_dt$FPV  
printSummaryCols(X=FPV) 
## Warning in is.data.frame(y): NAs introduced by coercion
## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion
## [[1]]
## [1] 0.00181169
## 
## [[2]]
##                   Df Sum Sq Mean Sq F value  Pr(>F)  
## vuln_dt$race_eth   3  153.2  51.066  3.1604 0.02537 *
## Residuals        237 3829.5  16.158                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[3]]
##                 Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$gender   1    6.8  6.7885  0.4081 0.5236
## Residuals      239 3975.9 16.6354               
## 
## [[4]]
##                  Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$demo4rb   2   19.3  9.6603  0.5778 0.5619
## Residuals       237 3962.5 16.7193               
## 
## [[5]]
##                  Df Sum Sq Mean Sq F value  Pr(>F)  
## vuln_dt$smmeddx   1   93.9  93.896  5.7708 0.01706 *
## Residuals       239 3888.8  16.271                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[6]]
## [1] 0.1445911
## 
## [[7]]
## [1] -0.01019719
## 
## [[8]]
## [1] -0.09489258
## 
## [[9]]
## [1] -0.1228293
## 
## [[10]]
## [1] 0.07327107
## 
## [[11]]
## [1] 0.08670143
## 
## [[12]]
## [1] 0.1164361
## 
## [[13]]
##                  Df Sum Sq Mean Sq F value  Pr(>F)   
## vuln_dt$hlth2rb   1  152.6 152.591  9.5218 0.00227 **
## Residuals       239 3830.1  16.025                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[14]]
##                   Df Sum Sq Mean Sq F value  Pr(>F)  
## vuln_dt$fhxmeddx   1   96.4  96.380  5.9272 0.01564 *
## Residuals        239 3886.3  16.261                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print_summaries_cont(X=FPV) 
## age: corr =  0.00181169 p-value =  0.9777728 
## cigs prior to ACI: corr =  0.1445911 p-value =  0.02478125 
## yrs since smoked daily: corr =  -0.01019719 p-value =  0.8753849
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis4)), : NAs introduced by coercion
## age started smoked daily: corr =  -0.09489258 p-value =  0.1435728
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis24)), : NAs introduced by coercion
## readiness to quit: corr =  -0.1228293 p-value =  0.1832511
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis26)), : NAs introduced by coercion
## motivation: corr =  0.07327107 p-value =  0.4244702 
## stress scale: corr =  0.08670143 p-value =  0.1825207 
## ces-d: corr =  0.1164361 p-value =  0.07177658
print_n_cont(w=FPV)
## age: eff n =  239 
## cigs prior to ACI: eff n =  241 
## yrs since smoked daily: eff n =  239 
## age started smoking dailyI: eff n =  241 
## readiness to quit: eff n =  241 
## motivation: eff n =  241 
## stress scale: eff n =  241 
## ces-d eff n =  241
## future precaution  
table(as.numeric(vuln_dt$pervul4))  
## 
##   1   2   3   4   5   6   7 
##  10  26  53 133  18   3   1
table(as.numeric(vuln_dt$pervul5))
## 
##   1   2   3   4   5   6   8 
##   9  23  51 135  20   5   1
table(as.numeric(vuln_dt$pervul6))
## 
##   1   2   3   4   5   6   8 
##   9  25  56 128  19   6   1
future_precaution <- matrix(cbind(as.numeric(vuln_dt$pervul4), 
                                  as.numeric(vuln_dt$pervul5),
                                  as.numeric(vuln_dt$pervul6)),
                            ncol = 3)
FUTPREC <- apply(future_precaution, 1, mean)
printSummaryCols(X=FUTPREC)
## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion
## [[1]]
## [1] -0.1187524
## 
## [[2]]
##                   Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$race_eth   3   3.136 1.04533  1.2942  0.277
## Residuals        240 193.855 0.80773               
## 
## [[3]]
##                 Df  Sum Sq Mean Sq F value   Pr(>F)   
## vuln_dt$gender   1   6.043  6.0429  7.6585 0.006087 **
## Residuals      242 190.948  0.7890                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[4]]
##                  Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$demo4rb   2   1.192 0.59603  0.7403 0.4781
## Residuals       240 193.242 0.80518               
## 
## [[5]]
##                  Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$smmeddx   1   0.505 0.50518  0.6222  0.431
## Residuals       242 196.486 0.81192               
## 
## [[6]]
## [1] -0.04848875
## 
## [[7]]
## [1] 0.08582246
## 
## [[8]]
## [1] 0.1030699
## 
## [[9]]
## [1] -0.01240651
## 
## [[10]]
## [1] 0.007016251
## 
## [[11]]
## [1] 0.02582342
## 
## [[12]]
## [1] 0.01479429
## 
## [[13]]
##                  Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$hlth2rb   1   0.618 0.61767  0.7612 0.3838
## Residuals       242 196.373 0.81146               
## 
## [[14]]
##                   Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$fhxmeddx   1   0.256 0.25616  0.3151 0.5751
## Residuals        242 196.735 0.81295
print_summaries_cont(X=FUTPREC)
## age: corr =  -0.1187524 p-value =  0.06513642 
## cigs prior to ACI: corr =  -0.04848875 p-value =  0.4508656 
## yrs since smoked daily: corr =  0.08582246 p-value =  0.1833114
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis4)), : NAs introduced by coercion
## age started smoked daily: corr =  0.1030699 p-value =  0.1097424
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis24)), : NAs introduced by coercion
## readiness to quit: corr =  -0.01240651 p-value =  0.8925642
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis26)), : NAs introduced by coercion
## motivation: corr =  0.007016251 p-value =  0.9386073 
## stress scale: corr =  0.02582342 p-value =  0.6899894 
## ces-d: corr =  0.01479429 p-value =  0.8185242
print_n_cont(w=FUTPREC)
## age: eff n =  242 
## cigs prior to ACI: eff n =  244 
## yrs since smoked daily: eff n =  242 
## age started smoking dailyI: eff n =  244 
## readiness to quit: eff n =  244 
## motivation: eff n =  244 
## stress scale: eff n =  244 
## ces-d eff n =  244
## relative pessimism
table(as.numeric(vuln_dt$opbais1))  
## 
##  1  2  3  4  5  6  8 
## 29 45 98 49 17  5  1
table(as.numeric(vuln_dt$opbais2))
## 
##   1   2   3   4   5   6   8 
##  26  39 107  46  17   8   1
table(as.numeric(vuln_dt$opbais3))
## 
##  1  2  3  4  5  6  8 
## 26 44 98 50 16  9  1
rel_pess <- matrix(cbind(as.numeric(vuln_dt$opbais1), 
                         as.numeric(vuln_dt$opbais2),
                         as.numeric(vuln_dt$opbais3)),
                   ncol = 3)
RELPESS <- apply(rel_pess, 1, mean)
printSummaryCols(X=RELPESS)
## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion
## [[1]]
## [1] 0.1149278
## 
## [[2]]
##                   Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$race_eth   3   1.665 0.55502  0.4338  0.729
## Residuals        240 307.078 1.27949               
## 
## [[3]]
##                 Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$gender   1   1.30  1.3002  1.0234 0.3127
## Residuals      242 307.44  1.2704               
## 
## [[4]]
##                  Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$demo4rb   2   0.763 0.38138  0.3013 0.7401
## Residuals       240 303.764 1.26568               
## 
## [[5]]
##                  Df  Sum Sq Mean Sq F value   Pr(>F)   
## vuln_dt$smmeddx   1   8.788  8.7877  7.0898 0.008273 **
## Residuals       242 299.956  1.2395                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[6]]
## [1] 0.06563944
## 
## [[7]]
## [1] 0.09860434
## 
## [[8]]
## [1] -0.08485841
## 
## [[9]]
## [1] -0.1612643
## 
## [[10]]
## [1] 0.01984565
## 
## [[11]]
## [1] 0.1192447
## 
## [[12]]
## [1] 0.1342592
## 
## [[13]]
##                  Df  Sum Sq Mean Sq F value  Pr(>F)  
## vuln_dt$hlth2rb   1   4.945  4.9446  3.9388 0.04831 *
## Residuals       242 303.799  1.2554                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[14]]
##                   Df  Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$fhxmeddx   1   0.443  0.4432  0.3479 0.5559
## Residuals        242 308.300  1.2740
print_summaries_cont(X=RELPESS) 
## age: corr =  0.1149278 p-value =  0.07433952 
## cigs prior to ACI: corr =  0.06563944 p-value =  0.3071798 
## yrs since smoked daily: corr =  0.09860434 p-value =  0.1260881
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis4)), : NAs introduced by coercion
## age started smoked daily: corr =  -0.08485841 p-value =  0.1882994
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis24)), : NAs introduced by coercion
## readiness to quit: corr =  -0.1612643 p-value =  0.07721493
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis26)), : NAs introduced by coercion
## motivation: corr =  0.01984565 p-value =  0.827528 
## stress scale: corr =  0.1192447 p-value =  0.06458051 
## ces-d: corr =  0.1342592 p-value =  0.03647607
print_n_cont(w=RELPESS)
## age: eff n =  242 
## cigs prior to ACI: eff n =  244 
## yrs since smoked daily: eff n =  242 
## age started smoking dailyI: eff n =  244 
## readiness to quit: eff n =  244 
## motivation: eff n =  244 
## stress scale: eff n =  244 
## ces-d eff n =  244
##current vulnerability
printSummaryCols(X=ropbais5)
## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion
## [[1]]
## [1] 0.1620779
## 
## [[2]]
##                   Df Sum Sq Mean Sq F value  Pr(>F)  
## vuln_dt$race_eth   3  1.753 0.58439  2.3025 0.07773 .
## Residuals        240 60.915 0.25381                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[3]]
##                 Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$gender   1  0.239 0.23858  0.9248 0.3372
## Residuals      242 62.429 0.25797               
## 
## [[4]]
##                  Df Sum Sq  Mean Sq F value Pr(>F)
## vuln_dt$demo4rb   2  0.126 0.062773   0.242 0.7852
## Residuals       240 62.253 0.259388               
## 
## [[5]]
##                  Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$smmeddx   1  0.684 0.68369  2.6693 0.1036
## Residuals       242 61.984 0.25613               
## 
## [[6]]
## [1] 0.01946218
## 
## [[7]]
## [1] 0.1362904
## 
## [[8]]
## [1] -0.01742725
## 
## [[9]]
## [1] 0.09267698
## 
## [[10]]
## [1] 0.1378037
## 
## [[11]]
## [1] 0.03071973
## 
## [[12]]
## [1] 0.04982805
## 
## [[13]]
##                  Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$hlth2rb   1  0.591 0.59111  2.3044 0.1303
## Residuals       242 62.077 0.25652               
## 
## [[14]]
##                   Df Sum Sq Mean Sq F value   Pr(>F)   
## vuln_dt$fhxmeddx   1  1.861 1.86053  7.4045 0.006979 **
## Residuals        242 60.808 0.25127                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print_summaries_cont(X=ropbais5) 
## age: corr =  0.1620779 p-value =  0.01156973 
## cigs prior to ACI: corr =  0.01946218 p-value =  0.7622888 
## yrs since smoked daily: corr =  0.1362904 p-value =  0.03408195
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis4)), : NAs introduced by coercion
## age started smoked daily: corr =  -0.01742725 p-value =  0.7873747
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis24)), : NAs introduced by coercion
## readiness to quit: corr =  0.09267698 p-value =  0.311996
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis26)), : NAs introduced by coercion
## motivation: corr =  0.1378037 p-value =  0.1285177 
## stress scale: corr =  0.03071973 p-value =  0.6351213 
## ces-d: corr =  0.04982805 p-value =  0.4393935
print_n_cont(w=ropbais5)
## age: eff n =  242 
## cigs prior to ACI: eff n =  244 
## yrs since smoked daily: eff n =  242 
## age started smoking dailyI: eff n =  244 
## readiness to quit: eff n =  244 
## motivation: eff n =  244 
## stress scale: eff n =  244 
## ces-d eff n =  244
## future pessimism
OPBIAS4R <- vuln_dt$OPBIAS4R
table(OPBIAS4R)
## OPBIAS4R
## Less serious   About same More serious 
##           34          120           86
OPBIAS4R_2way <- recode(OPBIAS4R, 
                        "Less serious" = "0" , 
                        "About same"  = "0",
                        "More serious" = "1")

table(OPBIAS4R_2way, exclude = NULL)
## OPBIAS4R_2way
##    0    1 <NA> 
##  154   86    7
printSummaryCols(X=OPBIAS4R_2way) 
## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion

## Warning in is.data.frame(y): NAs introduced by coercion
## [[1]]
## [1] 0.07927809
## 
## [[2]]
##                   Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$race_eth   3  1.413 0.47108  2.0676 0.1052
## Residuals        236 53.770 0.22784               
## 
## [[3]]
##                 Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$gender   1  0.279 0.27857  1.2075 0.2729
## Residuals      238 54.905 0.23069               
## 
## [[4]]
##                  Df Sum Sq Mean Sq F value Pr(>F)
## vuln_dt$demo4rb   2  0.826 0.41276  1.7963 0.1682
## Residuals       236 54.229 0.22978               
## 
## [[5]]
##                  Df Sum Sq Mean Sq F value Pr(>F)   
## vuln_dt$smmeddx   1  1.740 1.74047  7.7509 0.0058 **
## Residuals       238 53.443 0.22455                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[6]]
## [1] 0.03328334
## 
## [[7]]
## [1] 0.1149167
## 
## [[8]]
## [1] -0.1886454
## 
## [[9]]
## [1] -0.175277
## 
## [[10]]
## [1] -0.1228072
## 
## [[11]]
## [1] 0.0151374
## 
## [[12]]
## [1] 0.1047836
## 
## [[13]]
##                  Df Sum Sq Mean Sq F value  Pr(>F)  
## vuln_dt$hlth2rb   1  0.980 0.98041  4.3049 0.03908 *
## Residuals       238 54.203 0.22774                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## [[14]]
##                   Df Sum Sq  Mean Sq F value Pr(>F)
## vuln_dt$fhxmeddx   1  0.034 0.034279  0.1479 0.7009
## Residuals        238 55.149 0.231719
print_summaries_cont(X=OPBIAS4R_2way) 
## age: corr =  0.07927809 p-value =  0.2230255 
## cigs prior to ACI: corr =  0.03328334 p-value =  0.6078999 
## yrs since smoked daily: corr =  0.1149167 p-value =  0.07683041
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis4)), : NAs introduced by coercion
## age started smoked daily: corr =  -0.1886454 p-value =  0.003486515
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis24)), : NAs introduced by coercion
## readiness to quit: corr =  -0.175277 p-value =  0.05763666
## Warning in cor.test.default(as.numeric(X),
## as.numeric(as.character(vuln_dt$smhis26)), : NAs introduced by coercion
## motivation: corr =  -0.1228072 p-value =  0.1814615 
## stress scale: corr =  0.0151374 p-value =  0.816679 
## ces-d: corr =  0.1047836 p-value =  0.1061216
print_n_cont(w=OPBIAS4R_2way)
## age: eff n =  238 
## cigs prior to ACI: eff n =  240 
## yrs since smoked daily: eff n =  238 
## age started smoking dailyI: eff n =  240 
## readiness to quit: eff n =  240 
## motivation: eff n =  240 
## stress scale: eff n =  240 
## ces-d eff n =  240
# Compute correlations between the variables ---------------------------

indices <- cbind(FPV, FUTPREC, RELPESS, ropbais5, OPBIAS4R_2way)
cor(FPV, FUTPREC, use="complete.obs")
## [1] 0.1203358
cor.indices <- round(cor(indices, use="complete.obs"), 3)

write.csv(cor.indices, file = "vuln-indices-correlations.csv")

# Save object ---------------------------

save.image(file="table1.RData")