Load libraries

suppressPackageStartupMessages({library(MOFA2)
library(kableExtra)
library(data.table)
library(ggplot2)
library(tidyverse)
library(here)})

Load data and Generate Mofa object

set.seed(1)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

imputationTestingList <- list()

add_cols <- function(df, cols) {
  add <- cols[!cols %in% names(df)]
  if(length(add) != 0) df[add] <- NA
  return(as.matrix(df[, sort(cols)]))
}

df_source<- readRDS(here("./data/master_normalized_data_challenge2_train_Aug25.RDS"))

metaDf <- df_source[["subject_specimen"]]
metaDf["age_at_boost"] <- as.numeric(round(difftime(metaDf$date_of_boost, metaDf$year_of_birth,units="weeks")/52, 2))

normalizedData <- list()

normalizedData[["abtiter"]] <- as.data.frame(df_source[["abtiter_wide"]]$normalized_data)
normalizedData[["cytof"]] <- as.data.frame(df_source[["pbmc_cell_frequency"]]$normalized_data)
normalizedData[["rnaseq"]] <- as.data.frame(df_source[["pbmc_gene_expression"]]$raw_data)
normalizedData[["olink"]] <- as.data.frame(df_source[["plasma_cytokine_concentrations"]]$normalized_data)

int_cols <- Reduce(intersect, lapply(normalizedData[c("abtiter", "cytof", "olink")], colnames))
cols <- unique(c(int_cols, colnames(normalizedData[["rnaseq"]])))

dataset_cols <- metaDf[metaDf$dataset=="2021_dataset", ]$specimen_id
cols <- intersect(cols, dataset_cols)

common_cols <- Reduce(intersect, lapply(normalizedData[c("rnaseq", "abtiter", "cytof", "olink")], colnames))
common_cols <- intersect(common_cols, dataset_cols)
removingNums <- sample(common_cols, 20, replace=FALSE)
# cols <- cols[! cols %in% removingNums]

normalizedData[["abtiter"]][, removingNums] <- NA
normalizedData[["cytof"]][, removingNums] <- NA
normalizedData[["rnaseq"]][, removingNums] <- NA
normalizedData[["olink"]][, removingNums] <- NA


imputationTestingList$actualData[["abtiter"]] <- normalizedData$abtiter[, removingNums]
imputationTestingList$actualData[["cytof"]] <- normalizedData$cytof[, removingNums]
imputationTestingList$actualData[["rnaseq"]] <- normalizedData$rnaseq[, removingNums]
imputationTestingList$actualData[["olink"]] <- normalizedData$olink[, removingNums]
normalizedData[["abtiter"]] <- add_cols(normalizedData[["abtiter"]],  cols)
normalizedData[["cytof"]] <- add_cols(normalizedData[["cytof"]],  cols)
normalizedData[["rnaseq"]] <- add_cols(normalizedData[["rnaseq"]],  cols)
normalizedData[["olink"]] <- add_cols(normalizedData[["olink"]],  cols)

normalizedData[["abtiter"]] <- normalizedData$abtiter[, !duplicated(cols)]
normalizedData[["cytof"]] <- normalizedData$cytof[, !duplicated(cols)]
normalizedData[["rnaseq"]] <- normalizedData$rnaseq[, !duplicated(cols)]

#
MOFAobject <- create_mofa(normalizedData)

Plot multiomic missing values

plot_data_overview(MOFAobject)

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]
samples_metadata(MOFAobject) <- metaDf1

Setting data Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)

data_opts <- get_default_data_options(MOFAobject)
data_opts
## $scale_views
## [1] FALSE
## 
## $scale_groups
## [1] FALSE
## 
## $center_groups
## [1] TRUE
## 
## $use_float32
## [1] TRUE
## 
## $views
## [1] "abtiter" "cytof"   "rnaseq"  "olink"  
## 
## $groups
## [1] "group1"

Setting model Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
model_opts <- get_default_model_options(MOFAobject)
model_opts$num_factors <- 15

model_opts
## $likelihoods
##    abtiter      cytof     rnaseq      olink 
## "gaussian" "gaussian" "gaussian" "gaussian" 
## 
## $num_factors
## [1] 15
## 
## $spikeslab_factors
## [1] FALSE
## 
## $spikeslab_weights
## [1] FALSE
## 
## $ard_factors
## [1] FALSE
## 
## $ard_weights
## [1] TRUE

Setting training Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
train_opts <- get_default_training_options(MOFAobject)
train_opts$convergence_mode <- "medium"
train_opts$seed <- 42

train_opts
## $maxiter
## [1] 1000
## 
## $convergence_mode
## [1] "medium"
## 
## $drop_factor_threshold
## [1] -1
## 
## $verbose
## [1] FALSE
## 
## $startELBO
## [1] 1
## 
## $freqELBO
## [1] 5
## 
## $stochastic
## [1] FALSE
## 
## $gpu_mode
## [1] FALSE
## 
## $seed
## [1] 42
## 
## $outfile
## NULL
## 
## $weight_views
## [1] FALSE
## 
## $save_interrupted
## [1] FALSE

Training Model

MOFAobject <- prepare_mofa(MOFAobject,
  data_options = data_opts,
  model_options = model_opts,
  training_options = train_opts
)
MOFAobject <- run_mofa(MOFAobject, outfile=".../MOFA2_2ndChallenge_F40.hdf5", use_basilisk = TRUE)

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 180 
##  Number of factors: 15

Impute Data

imputed_data <- impute(MOFAobject, views = "all")

Add meta data to Mofa and Imputed objects

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]

samples_metadata(MOFAobject) <- metaDf1
samples_metadata(imputed_data) <- metaDf1

Mofa object

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 180 
##  Number of factors: 15
slotNames(MOFAobject)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Imputed data

imputed_data
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 180 
##  Number of factors: 15
slotNames(imputed_data)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Results for Actual Data

plot_object = MOFAobject

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 2,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 1,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

Results for Imputed Data

plot_object = imputed_data

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_object = imputed_data
plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 1,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 2,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

results <- imputed_data@imputed_data

imputationTestingList$imputedData[["abtiter"]] <- results$abtiter$group1[, removingNums]
imputationTestingList$imputedData[["cytof"]] <- results$cytof$group1[, removingNums]
imputationTestingList$imputedData[["rnaseq"]] <- results$rnaseq$group1[, removingNums]
imputationTestingList$imputedData[["olink"]] <- results$olink$group1[, removingNums]

saveRDS(results, file = here("./results/imputedData2021_removed20Samples.RDS"))

saveRDS(imputationTestingList, file = here("./results/2021Data_imputationTest_removed20Samples.RDS"))


knitr::kable(MOFAobject@data$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer Before Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer Before Imputation
468 469 470 471 472 475 476 477 478 479 483 484 485 486 487 490 491 492 493 494 498 499 500 501 502 506 507 508 509 510 513 514 515 516 517 521 522 523 524 525 529 530 531 532 533 537 538 539 540 541 546 547 548 549 550 554 555 556 557 558 562 563 564 565 566 569 570 571 572 573 577 578 579 580 581 585 586 587 588 589 593 594 595 596 597 601 602 603 604 605 608 609 610 611 612 616 617 618 619 620 623 624 625 626 627 630 631 632 633 634 636 637 638 639 640 643 644 645 646 647 650 651 652 653 654 657 658 659 660 661 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 681 682 683 684 685 688 689 690 691 692 695 696 697 698 699 702 703 704 705 706 709 710 711 712 713 716 717 718 719 720 723 724 725 726 727
IgG_PT -2.7206037 -2.7339075 -2.6075215 -1.7316902 -1.0243731 -2.6123884 -1.2797942 -1.3862243 3.8377225 10.0128889 -1.2487521 0.1947069 0.7002504 9.8222008 13.2789631 -0.5879982 NA 0.5073454 0.2102280 1.2324011 -2.9778099 -2.9778099 -2.8159475 NA 12.5787315 -2.2150605 -2.4101825 -2.3924441 12.6785088 14.5454712 NA -3.1312461 -3.1489844 -0.4438848 15.1570015 -2.6434646 -2.6545510 -2.6190743 4.6137419 10.1636305 -2.6168337 -2.6035299 NA NA 6.4807272 -3.3352265 NA -3.2177100 -3.2709250 -1.9361135 2.7778556 4.7889414 NA 2.6935985 4.4120016 -0.4678321 -1.1884530 -0.5321336 4.8270683 11.6785088 NA -0.8363693 -0.6612029 4.9884644 8.2501049 -3.2864799 -3.2421341 -3.1977882 -1.4949057 -0.2997839 -3.5897832 -3.6341293 -3.6163909 -3.2571890 -2.5121779 6.8825006 6.0864916 6.2505713 6.2993517 7.3392630 -3.1064129 -2.9112911 NA -1.7339075 0.7716358 -2.7272556 -2.6385636 NA NA 3.654119 0.2816136 -0.2549717 0.2372677 NA 5.3193073 -3.3370118 -3.3059695 -3.3547502 -2.5365682 NA -1.1995394 -1.1374552 -1.0642843 NA 0.8625448 NA NA NA NA NA -2.3197162 -2.4150600 -2.3662796 -0.7831309 0.1503503 -3.5059583 -3.1911023 -3.2177100 -2.3662686 0.4918244 -3.4611802 -3.4301381 -3.4345727 -2.7649496 NA NA -3.5126209 -0.4061906 0.4629891 NA NA NA NA NA NA NA NA NA NA NA -3.672289 -3.663420 -3.674507 -3.1246176 -2.5325999 -3.4549713 -3.4727097 -3.4505367 -3.0381198 -1.7520888 -2.8186307 -2.9760587 -2.7742848 -1.3219569 0.6026552 NA -3.5232644 -3.4966569 NA -0.3702712 -1.7361248 -1.8070782 -1.7627323 1.4789526 2.0022342 1.5920351 1.2217467 0.8847177 2.5742967 5.0931435 0.1968901 0.6625221 NA 2.1503270 5.8465576 -3.0221558 -2.9423332 -3.0221558 -2.4767013 -0.2971003
IgG_PRN -1.8261276 -1.8245878 -1.8244693 -0.6782091 0.5725689 -1.2534909 -0.8305632 -0.6920090 0.5466471 1.5434155 -1.8573802 -1.7972440 -1.7775803 -0.2666726 0.7740037 -1.0708711 NA -0.4372494 -0.7815619 0.0120941 -1.3778503 -1.3800220 -1.3903672 NA 1.6272233 -0.2237719 -0.2814206 -0.2297343 1.5707195 1.6354361 NA -1.6300323 -1.6736242 -0.2428719 1.1765482 0.9071398 0.8091767 0.8697867 1.3824646 1.2538214 -0.6096514 -0.5745490 NA NA 1.5522909 0.2103896 NA 0.7030880 0.2118111 1.4542577 -1.1055787 -0.6480223 NA 1.8756456 1.8453207 1.4203696 1.4838228 1.4368351 1.5792193 1.5533564 NA -0.2076111 -0.1861311 0.9040205 1.3031781 0.1136813 0.0973344 0.1568389 1.4488790 1.6525445 0.5700023 0.3656261 0.4360681 1.9617827 1.9748523 -1.8573802 -1.8573802 -1.8573802 0.0576403 0.7875667 -0.8405834 -0.8214725 NA -0.5936813 -0.1091564 -1.7444035 -1.7106040 NA NA 1.342207 -1.8292761 -1.8219318 -1.8337774 NA -0.4991720 0.0560503 -0.0849519 -0.0886636 1.1458070 NA -0.7337755 -0.7254441 -0.7657192 NA 1.3583174 NA NA NA NA NA 1.1498165 1.0547359 1.1010127 1.3485858 1.2855673 -1.5715851 -1.0288982 -0.9906763 0.4413395 1.8595355 -1.0321164 -1.0406847 -0.8588941 1.6235905 NA NA -1.7236521 1.1188600 0.8395801 NA NA NA NA NA NA NA NA NA NA NA -1.836067 -1.789711 -1.775457 1.0816257 1.4108152 0.1610241 0.1888218 0.2319791 1.3042438 1.7414653 -1.2165413 -1.3548191 -1.2465501 1.0558813 1.5490930 NA -0.9083984 -0.9720488 NA 1.4566174 0.1068494 0.0891995 -0.0030779 0.9171681 1.0268979 -0.5409684 -0.5825861 -0.6020918 -0.0074421 1.2178283 -0.9367085 -0.8335726 NA 0.8645351 0.9923491 -1.0409508 -0.9016068 -0.9825519 0.0880544 1.1846817
IgG_FHA 3.1606541 3.1899357 3.1921883 6.9154835 12.1828318 -1.4155393 3.8281584 3.9137506 16.5285835 28.2739677 -4.5971208 -3.6409569 -3.7614629 13.4742632 26.2771721 -2.0338359 NA 0.5530996 1.2423487 17.7505341 1.4578037 1.9398270 3.1324978 NA 13.5793486 4.9412136 1.3305407 3.1201096 7.9966583 12.1681910 NA -6.8804889 -3.3914480 -1.1502628 3.0888424 -6.3130145 -6.2161593 -0.9229083 1.7507467 4.2025356 -5.3386889 -4.5694780 NA NA 4.4572048 1.7266245 NA 5.0377226 3.3483868 17.0331306 16.6817474 30.0522728 NA 32.1763306 44.0647469 -7.2613692 -7.2309613 -6.6926265 -7.1205916 -6.3862934 NA -1.9027228 -0.6728868 -2.2056770 -0.4532733 -6.9403210 -6.2398100 -5.3095493 0.1379943 0.5051432 -0.1740942 -2.0864220 -3.3860841 2.5175800 21.4280014 14.7562513 10.3392038 6.4717512 11.0475969 13.5804739 -7.4340973 -7.3473783 NA -7.4070678 -7.4228354 -7.4093204 -7.3991842 NA NA -7.323728 -7.3278165 -7.3886328 -7.3233118 NA -7.2106895 -7.3789124 -7.2921934 -7.3811650 -7.3428731 NA -7.4250875 -7.3811650 -7.3586402 NA -7.3327374 NA NA NA NA NA -6.4817190 -7.2870555 -3.8182867 -1.6198983 -0.7898712 -3.5181985 2.1793671 2.5082245 13.8526735 51.8897514 1.5096102 1.2945013 3.1167307 12.5443487 NA NA -7.3736882 -3.9027536 -5.2249403 NA NA NA NA NA NA NA NA NA NA NA -7.449864 -7.449864 -7.449864 -7.4498644 -7.2658000 -6.8016529 -7.3839107 -7.4030566 0.4275761 3.0381622 -6.3040047 -7.4369860 -7.1047497 -7.1588087 1.7912903 NA -7.4498644 -7.4498644 NA -7.3661084 -7.3908854 -7.4235458 -7.3717394 -7.3751183 -7.3357000 -7.4228354 -7.3980584 -7.4239612 -7.3507566 -7.3755336 -7.1892166 -6.6711540 NA -2.3475814 1.0175753 -7.3334479 -7.4134097 -7.3075447 -7.3402052 -7.1307273
IgG1_PT -14.6289625 -12.2232771 -6.1128368 -13.4742336 -15.9761467 -16.8459854 -17.7088699 -17.7088699 19.2392921 73.8483505 -14.2478456 -17.2308960 -16.6535301 91.2655106 119.0752258 -9.3402472 NA -14.9214373 -5.3949232 0.5230618 -15.3987818 -10.2987289 68.0303802 NA -16.0723743 -14.9657583 31.9932175 63.1708984 -7.0751104 -15.3025541 NA -14.7559834 -15.5258026 -5.9992895 134.6370697 -9.2701073 -7.4899006 -7.9710379 35.6199799 104.2782364 -17.7088699 -17.3965874 NA NA 42.8842354 -17.7088699 NA -17.7088699 -17.7088699 -16.9422131 -17.6158047 -17.7088699 NA -13.0931168 -10.8798866 -6.8636456 -5.6608028 17.9630280 75.1221085 83.1570969 NA -1.1870060 -3.1596670 37.6407547 73.7260361 -17.7088699 -17.7088699 -17.5937786 -6.8163090 1.5554752 -17.7082405 -16.8421936 -13.9072571 -17.2271023 -17.7082405 -1.2052383 -0.1467381 3.9429283 -5.8722677 -2.6967640 -15.6208439 -16.1019821 NA 12.8624687 62.8044968 -17.2567101 -16.1019821 NA NA 48.610954 0.6420937 0.3534107 3.9619389 NA 62.5163193 -17.7088699 -17.7088699 -17.7088699 -13.8406372 NA -16.6793461 -16.7755737 -16.3906631 NA -4.5065784 NA NA NA NA NA -17.3541241 -17.6428051 -17.5465794 -7.0577908 0.3517208 -17.7088699 -17.7088699 -17.7088699 -15.4988022 2.0145874 -17.1308746 -14.7251902 -6.0647230 -16.6016235 NA NA -17.7088699 -8.1162920 -3.6898317 NA NA NA NA NA NA NA NA NA NA NA -17.708870 -17.708870 -17.708870 -17.7088699 -15.0145016 -17.5890408 -16.8729858 -17.3965874 -11.4361382 -4.8445606 -16.8239594 -17.4013233 -17.4201870 -12.5899534 -3.0153255 NA -17.7088699 -15.2306252 NA -4.4579601 -13.5995636 -14.0325871 -1.1862278 13.5365658 7.2817841 0.2136230 -2.7694273 -1.4222431 23.3031425 58.9072876 -2.7747574 0.0639515 NA 11.3706722 45.9644241 -17.7088699 -17.7088699 -17.6363106 -11.7712431 -7.4410095
IgG1_PRN -1.8606243 -1.3805699 -0.0803713 -1.5256454 -1.9178909 -0.9444816 -1.2996578 -1.3817399 0.5233912 2.3891132 -1.8789743 -1.9185067 -1.9100091 0.1030049 0.8204389 -0.3747710 NA -0.8501456 -0.1317881 0.4102128 -1.6699820 -0.7762531 0.7190216 NA -1.7452290 -0.6506976 0.1863186 0.8772128 -0.1532785 -0.7234817 NA -1.8806103 -1.8932952 -0.5325664 0.9705901 1.1403825 1.1321311 0.9925976 1.5912495 1.8743806 -0.6636022 -0.4469128 NA NA 1.6626542 0.6637869 NA 0.2109497 0.8879273 1.4258025 -0.8177561 -1.4922091 NA 2.7197201 2.9754498 1.4853368 1.5291796 1.5498695 1.6703756 1.9575093 NA 0.2530577 0.0864918 0.8802812 1.4724057 0.3832316 0.2796590 0.3746107 1.4610755 1.9946404 0.0643963 0.6217299 1.3302965 0.5048566 -0.0362822 -1.9208467 -1.2854335 -0.2671344 -1.5657936 -1.9230634 0.3140187 0.2918510 NA 0.9468458 1.8096013 -1.8509674 -1.7643286 NA NA 1.940514 -1.9060788 -1.9210421 -1.8695021 NA -0.9239255 0.0132767 -0.0878328 -0.0971925 0.9614396 NA -0.4516298 -0.5678872 -0.5082806 NA 1.6136017 NA NA NA NA NA 1.1701612 1.0871553 1.0470071 1.6326661 1.6125920 -1.6064345 -1.5274928 -1.5062486 0.5357683 2.7765558 -1.4062476 -0.2085747 0.9935935 -0.7664624 NA NA -1.3290035 1.4334645 1.2989187 NA NA NA NA NA NA NA NA NA NA NA -1.923962 -1.884465 -1.907213 -0.6958696 -0.2416775 0.1046326 0.3830838 0.0897310 1.3909764 1.7628400 -1.2747295 -1.4175266 -1.4511477 0.7155628 1.4525163 NA -1.2931414 -0.5973210 NA 0.7179639 -0.1774889 -0.1840161 0.3781819 0.8799114 0.8280022 -0.9579722 -1.0314952 -1.0234902 0.2952993 1.8365719 -0.9874728 -0.8760184 NA 0.7086046 1.6591690 -0.9281127 -0.7363620 -0.5468279 0.6420395 0.8355761
IgG1_FHA -1.0175102 -0.7916421 1.2024431 -0.4618347 -1.0182596 -1.4156415 -1.5103362 -1.4616146 -1.1140677 -0.8229877 -1.5465651 -1.5260770 -1.3871582 -0.8629644 -0.9419183 -1.2095120 NA -1.3769141 -1.2537360 -0.9484144 -1.2353828 -1.0077659 0.2732360 NA -1.3573117 -1.1074576 -0.8763425 0.2584946 0.6045425 -1.0377483 NA 1.3358181 0.9552903 2.2282965 5.4116869 -0.6855285 -0.6395553 -0.4858952 0.1294954 0.6481924 -0.1693028 0.5385337 NA NA 6.2177162 -1.5975353 NA -1.6385114 -1.3594244 -1.1462989 -1.4836018 -1.5840431 NA -0.8717092 -0.7043070 -0.6948097 -0.8891962 -0.4951763 0.1729333 0.6878827 NA -0.6213161 -0.6330591 -0.4756511 -0.0259137 -1.4086062 -1.3998613 -1.4810638 -0.7614841 -0.3527229 -1.3620589 -0.6297367 1.2626581 -1.0190092 -1.4082818 -0.1954902 0.7124794 2.0164678 -0.5133046 -0.5362912 0.1226423 0.1536243 NA 3.1603682 6.4971685 -0.1889256 0.1166458 NA NA 9.467434 -1.3179457 -1.2779691 -1.3904035 NA -0.9486614 0.1896033 0.1321368 0.0586798 1.7464440 NA 0.1246412 -0.0902333 -0.0699952 NA 3.4871771 NA NA NA NA NA 0.4950590 0.3096673 0.1047871 3.4033601 4.7830544 -1.7534413 -1.7534413 -1.7534413 -1.2872165 2.4955738 -1.0994623 -0.2109812 -0.1580122 -0.8436117 NA NA -0.8584003 1.1509259 1.8167870 NA NA NA NA NA NA NA NA NA NA NA -1.753441 -1.753441 -1.753441 -1.7534413 -1.5001825 0.2452049 0.6951921 0.3091676 3.4855626 6.4680700 -1.7521555 -1.6724521 -1.7534413 -1.2074736 -0.6820306 NA -1.7534413 -0.3400170 NA 2.1970012 0.1147175 -0.0626791 -0.5973667 0.7798290 0.8302994 0.9147284 0.7213414 0.7373321 3.6710699 7.0830765 -1.2167182 -1.2372062 NA -0.9266376 -0.0011783 -0.9481617 -1.0585972 -0.7597718 0.6641464 0.6546521
IgG1_TT -0.3932271 0.0333105 0.3247223 -0.1862168 -0.4071748 -0.8350003 -1.0148304 -1.0432920 0.3488859 1.0121174 0.1372265 -0.1583279 -0.0706779 1.0727363 1.1323419 0.2921711 NA 0.1272126 0.6393440 0.9628234 -0.1157035 0.0094087 0.3786951 NA -0.2001646 -0.2100888 0.0441289 0.3434384 -0.0810428 -0.2729728 NA -0.5294109 -0.5755158 0.0711750 0.5875084 -0.0580350 0.0051767 -0.0337458 0.5339677 0.8628416 -0.4984458 -0.3411168 NA NA 0.7615569 0.0555370 NA -0.1048616 0.2157866 0.4572488 -0.1097195 -0.4365370 NA 0.6951646 0.8002193 -0.2913074 -0.3053148 0.1080202 0.6235191 0.7204676 NA 0.0359629 -0.0540117 0.5328351 0.6467713 0.3859074 0.3327094 0.4078125 0.7543294 0.8640337 -0.8819929 -0.3991876 0.2672029 -0.5424795 -0.9370685 -1.0881686 -0.3793390 0.3409946 -0.5293365 -1.0662934 -0.0346160 -0.0444807 NA 0.5930308 1.0318174 0.1450651 0.2087834 NA NA 1.255279 -0.0233804 0.0209662 0.2006174 NA 0.5676389 0.3316902 0.2823665 0.3189942 0.6299565 NA -0.4352550 -0.4601105 -0.4323939 NA 0.7584066 NA NA NA NA NA 0.0630984 0.0895336 0.0543662 0.6475909 0.7474899 -0.9278659 -0.8082374 -0.8082076 0.5606645 1.2628481 -0.6213973 -0.1224091 0.4466157 -0.3276907 NA NA -0.5244339 0.5510298 0.5320157 NA NA NA NA NA NA NA NA NA NA NA -1.126808 -1.126808 -1.126808 -0.3471072 -0.2686663 -1.1268079 -0.7494151 -0.9502562 0.0058771 0.3984395 -0.7761036 -0.8782973 -0.8817247 0.4722162 0.6471885 NA -1.1268079 -0.6370199 NA 0.0655512 -0.3484693 -0.3630428 0.1315942 0.4803762 0.4979600 -0.2973247 -0.3446515 -0.3345782 0.7833514 1.0256183 0.1880765 0.2160910 NA 0.3719597 0.7594855 -1.0900819 -1.0830784 -0.7513136 -0.0554780 0.2427586
IgG1_DT -0.5234634 -0.0576270 0.3262624 -0.4188823 -0.6810507 -0.4473931 -0.6146144 -0.6480432 0.4187375 0.8600825 0.1719680 -0.0840871 -0.0018307 0.5271490 0.5196816 0.6800159 NA 0.4769671 0.7528707 0.9453956 -0.1175590 -0.0399066 0.4583912 NA -0.2139375 -0.4487129 0.0281503 0.5461805 -0.1152762 -0.5074067 NA -1.0646026 -1.0646026 -0.1755244 0.5058968 -0.6675767 -0.6469159 -0.6452135 0.3660847 0.9012548 -0.8381804 -0.7085277 NA NA 0.9070421 0.1798222 NA 0.0075711 0.8777643 1.0235122 0.5074166 0.1518875 NA 0.6011256 0.6598581 -0.1923976 -0.1554092 0.1456046 0.6300513 0.6676973 NA 0.2759353 0.2928818 0.9269842 1.0282379 -0.0909301 -0.1763593 -0.0535549 0.9842464 1.1554142 -0.4178377 0.0221145 0.4557602 -0.1862350 -0.4879066 -1.0646026 -0.9405881 -0.5963954 -1.0646026 -1.0646026 -0.0388185 -0.0415268 NA 0.5883195 1.2163087 -0.0809914 0.0227385 NA NA 1.278446 -1.0646026 -1.0502484 -0.7796841 NA 0.3017604 0.6208198 0.5283877 0.5690515 0.8661577 NA 0.8820983 0.8822917 0.8602380 NA 0.9960810 NA NA NA NA NA -0.4237640 -0.3944751 -0.4149038 0.3863424 0.3875805 -0.9892181 -0.9319558 -0.9629084 0.1672478 1.2300047 0.3337297 0.3467298 0.2435416 0.2660983 NA NA 0.1568290 0.7897319 0.8686224 NA NA NA NA NA NA NA NA NA NA NA -1.064603 -1.064603 -1.064603 -0.9756321 -0.4924235 -0.8654574 -0.6805543 -0.7616888 0.3059818 0.4475899 -0.3790213 -0.4775279 -0.4908762 0.4652103 0.5400382 NA -0.6652756 -0.4432296 NA -0.2967077 -0.1163703 -0.1395460 0.1298575 0.3117039 0.2142034 -1.0646026 -1.0646026 -1.0646026 -0.7073942 0.1460845 -0.6712136 -0.6198324 NA -0.1551181 0.5179845 0.1395302 0.0830030 0.3218796 0.6293548 0.6933879
IgG1_OVA -2.3348942 -2.6417229 -2.6323683 -2.6548193 -2.6697865 -2.8110399 -2.8110399 -2.8110399 -2.8110399 -2.7970083 -2.3666995 -2.7493000 -2.6782057 -2.5659511 -2.6220784 -1.9504226 NA -2.4368587 -2.0411615 -1.9092627 1.6351714 0.5949469 0.8942921 NA 0.4452744 -1.7371392 -1.9962599 -2.0149689 -1.7745574 -2.0898051 NA -2.8110399 -2.8110399 -2.8110399 -2.8044918 -2.8110399 -2.2013209 -2.6296604 -2.8028176 -2.7102077 4.4714670 4.7464905 NA NA 4.3077626 16.4172115 NA 11.8119717 13.4527588 12.7062654 -2.7988791 -2.8110399 NA -2.8072982 -2.7942019 5.6967144 6.3066301 6.2841797 7.1083145 7.0306721 NA -0.0778410 -1.0619383 -0.6475322 -0.7822375 -0.9852310 -1.2967372 -0.9506193 -1.1320974 -0.7045951 6.6230106 5.3002787 4.1019626 3.6192689 5.6501389 -2.6370456 -2.6304975 -2.6164656 -2.6136594 -2.6753993 0.9202979 0.8548162 NA -0.3547256 -0.2583737 -2.8102915 -2.7822278 NA NA -2.701779 -2.7139494 -2.7270458 -2.7064660 NA -2.6587577 -2.8110399 -2.8110399 -2.8110399 -2.8110399 NA -2.7522933 -2.7859697 -2.7766151 NA -2.7401323 NA NA NA NA NA 0.7072012 0.5827861 0.2806344 -0.2245107 0.2329264 -1.8475227 -1.4209559 -1.1197398 -0.0102916 1.1683798 0.2376037 0.3797925 -0.2170269 -0.4583740 NA NA -2.0196462 -1.2329297 -1.7287201 NA NA NA NA NA NA NA NA NA NA NA -2.392991 -0.490376 -1.546405 -1.9261992 -1.3247025 1.0626738 1.7025242 0.5406907 2.0196428 1.6089787 2.8258071 2.1363778 1.8912892 0.9548998 1.9586415 NA -1.3360262 -1.3809280 NA -1.7204977 -2.6316297 -2.5652125 -2.5773733 -2.6138561 -2.6082432 -1.9954178 -2.2227330 -2.2208622 -1.8972886 -1.2555674 4.4581738 5.0737023 NA 5.4534969 5.8389034 6.8482580 5.6499424 5.3936281 6.0241232 5.3113079
IgG2_PT -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 1.3326750 -6.0590849 -6.0590849 3.3114204 11.5106134 32.5942497 17.3671799 23.8093987 37.8651581 41.9647560 -2.5451450 NA -4.8877716 -1.3738317 0.9687948 -7.8452635 -7.8452635 -7.8452635 NA -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 NA -7.8452635 -7.8452635 -7.8452635 -2.7892766 -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.2596068 23.8580971 22.3939552 NA NA 31.7644615 -6.6447411 NA -6.0590849 2.1401072 2.1401072 24.9807129 14.4388952 NA 12.0962706 23.8093987 -7.8452635 -7.8452635 -7.8452635 -7.0882936 -4.1600108 NA -7.8452635 -7.8452635 -7.8452635 -7.2596068 -7.8452635 -3.7456675 -6.0882940 -4.9169807 -4.3313241 -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 12.8240309 15.7523127 9.3100901 12.5312014 13.4096861 -7.8452635 -7.8452635 NA -4.2765622 0.1158619 2.1656599 -3.1052489 NA NA 8.022225 -7.8452635 -7.8452635 -7.8452635 NA -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 NA 2.7513170 3.3369732 0.9943476 NA 8.0222254 NA NA NA NA NA 17.7087059 14.1947641 15.9517336 18.8800163 27.6648636 -6.6447411 -7.8160543 -6.6447411 -5.4734278 3.8970776 -7.8452635 -7.8452635 -7.8452635 -7.8452635 NA NA -7.8452635 -7.8452635 -7.8452635 NA NA NA NA NA NA NA NA NA NA NA -7.845263 -7.845263 -7.845263 -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.8452635 -7.4745293 -7.8452635 -7.8452635 -7.8452635 -6.0882940 -5.5026369 NA -7.8452635 -7.8452635 NA 8.1387777 2.8678684 6.9674644 2.2822113 13.4096861 15.1666574 13.2931356 12.1218214 14.4644480 12.7074785 15.0501051 -7.8452635 -7.8452635 NA -4.0384955 -4.6241522 0.5252419 2.2822113 1.6965551 5.2104950 18.6805954
# abtiter <- head(results$abtiter$group1)
knitr::kable(results$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer After Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer After Imputation
468 469 470 471 472 475 476 477 478 479 483 484 485 486 487 490 491 492 493 494 498 499 500 501 502 506 507 508 509 510 513 514 515 516 517 521 522 523 524 525 529 530 531 532 533 537 538 539 540 541 546 547 548 549 550 554 555 556 557 558 562 563 564 565 566 569 570 571 572 573 577 578 579 580 581 585 586 587 588 589 593 594 595 596 597 601 602 603 604 605 608 609 610 611 612 616 617 618 619 620 623 624 625 626 627 630 631 632 633 634 636 637 638 639 640 643 644 645 646 647 650 651 652 653 654 657 658 659 660 661 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 681 682 683 684 685 688 689 690 691 692 695 696 697 698 699 702 703 704 705 706 709 710 711 712 713 716 717 718 719 720 723 724 725 726 727
IgG_PT 0.9999998 0.9866960 1.1130819 1.9889133 2.6962304 1.1082151 2.4408092 2.3343792 7.5583260 13.7334924 2.4718513 3.9153104 4.4208539 13.5428042 16.9995666 3.1326053 3.720604 4.2279489 3.9308314 4.9530046 0.7427936 0.7427936 0.9046559 3.720604 16.2993350 1.5055430 1.3104210 1.3281593 16.399112 18.2660747 3.720604 0.5893574 0.5716190 3.2767186 18.8776050 1.0771389 1.0660524 1.1015291 8.3343453 13.8842340 1.1037698 1.1170735 3.720604 3.720604 10.201331 0.3853769 3.720604 0.5028934 0.4496784 1.7844900 6.4984591 8.5095448 3.720604 6.414202 8.1326051 3.2527714 2.5321505 3.188470 8.5476718 15.399112 3.720604 2.884234 3.059401 8.709068 11.970708 0.4341235 0.4784694 0.5228152 2.225698 3.420819 0.1308203 0.0864742 0.1042125 0.4634144 1.2084255 10.6031041 9.8070951 9.9711747 10.0199552 11.0598664 0.6141906 0.8093123 3.720604 1.9866960 4.4922392 0.9933479 1.0820398 3.720604 3.720604 7.3747227 4.0022171 3.4656317 3.9578712 3.720604 9.0399108 0.3835917 0.4146340 0.3658533 1.1840353 3.720604 2.5210640 2.5831482 2.6563191 3.720604 4.5831482 3.066388 3.726390 2.760294 2.870139 3.066015 1.4008873 1.3055434 1.3543239 2.937473 3.870954 0.2146451 0.5295012 0.5028934 1.354335 4.212428 0.2594233 0.2904654 0.2860308 0.9556539 3.720604 3.720604 0.2079825 3.314413 4.183593 3.720604 2.4481166 3.611983 2.6048893 3.5845765 3.226403 2.657566 3.013288 3.191063 3.388986 2.7732334 0.0483141 0.0571833 0.0460968 0.5959859 1.1880035 0.2656322 0.2478938 0.2700667 0.6824837 1.968515 0.9019728 0.7445447 0.9463186 2.3986466 4.323259 3.720604 0.1973391 0.2239466 3.720604 3.350332 1.9844787 1.9135252 1.9578712 5.1995561 5.7228377 5.3126385 4.9423501 4.6053212 6.2949002 8.8137469 3.9174936 4.3831255 3.720604 5.870930 9.567161 0.6984477 0.7782702 0.6984477 1.2439022 3.4235032
IgG_PRN 0.1105806 0.1121204 0.1122389 1.2584991 2.5092771 0.6832173 1.1061450 1.2446992 2.4833553 3.4801238 0.0793281 0.1394643 0.1591280 1.6700356 2.7107120 0.8658371 1.936708 1.4994588 1.1551464 1.9488024 0.5588579 0.5566862 0.5463411 1.936708 3.5639315 1.7129363 1.6552876 1.7069739 3.507428 3.5721443 1.936708 0.3066759 0.2630841 1.6938363 3.1132565 2.8438480 2.7458849 2.8064950 3.3191729 3.1905296 1.3270568 1.3621593 1.936708 1.936708 3.488999 2.1470978 1.936708 2.6397963 2.1485193 3.3909659 0.8311296 1.2886859 1.936708 3.812354 3.7820289 3.3570778 3.4205310 3.373543 3.5159276 3.490065 1.936708 1.729097 1.750577 2.840729 3.239886 2.0503895 2.0340426 2.0935471 3.385587 3.589253 2.5067105 2.3023343 2.3727763 3.8984909 3.9115605 0.0793281 0.0793281 0.0793281 1.9943485 2.7242749 1.0961248 1.1152357 1.936708 1.3430269 1.8275518 0.1923047 0.2261043 1.936708 1.936708 3.2789154 0.1074321 0.1147764 0.1029308 1.936708 1.4375362 1.9927585 1.8517563 1.8480446 3.0825152 1.936708 1.2029327 1.2112641 1.1709890 1.936708 3.2950256 1.803961 1.825191 1.444538 1.334283 1.717867 3.0865247 2.9914441 3.0377209 3.285294 3.222275 0.3651232 0.9078100 0.9460319 2.378048 3.796244 0.9045918 0.8960235 1.0778141 3.5602987 1.936708 1.936708 0.2130561 3.055568 2.776288 1.936708 1.6322304 1.608658 1.7793506 1.6503232 2.048088 1.899003 1.580604 1.749615 1.885592 1.6198284 0.1006415 0.1469973 0.1612515 3.0183339 3.3475235 2.0977323 2.1255300 2.1686873 3.2409520 3.678174 0.7201669 0.5818892 0.6901581 2.9925895 3.485801 1.936708 1.0283098 0.9646595 1.936708 3.393326 2.0435576 2.0259078 1.9336303 2.8538764 2.9636061 1.3957398 1.3541222 1.3346164 1.9292661 3.1545365 0.9999998 1.1031356 1.936708 2.801243 2.929057 0.8957574 1.0351014 0.9541563 2.0247626 3.1213899
IgG_FHA 10.6423745 10.6716561 10.6739087 14.3972039 19.6645522 6.0661812 11.3098788 11.3954711 24.0103040 35.7556882 2.8845997 3.8407636 3.7202575 20.9559836 33.7588925 5.4478846 7.481720 8.0348201 8.7240691 25.2322545 8.9395242 9.4215474 10.6142182 7.481720 21.0610690 12.4229341 8.8122611 10.6018300 15.478379 19.6499114 7.481720 0.6012316 4.0902724 6.3314576 10.5705628 1.1687059 1.2655611 6.5588121 9.2324672 11.6842561 2.1430316 2.9122424 7.481720 7.481720 11.938925 9.2083449 7.481720 12.5194430 10.8301072 24.5148511 24.1634679 37.5339932 7.481720 39.658051 51.5464673 0.2203512 0.2507591 0.789094 0.3611288 1.095427 7.481720 5.578998 6.808834 5.276043 7.028447 0.5413995 1.2419105 2.1721711 7.619715 7.986864 7.3076262 5.3952985 4.0956364 9.9993005 28.9097219 22.2379718 17.8209243 13.9534717 18.5293174 21.0621943 0.0476232 0.1343422 7.481720 0.0746527 0.0588851 0.0724001 0.0825362 7.481720 7.481720 0.1579928 0.1539040 0.0930877 0.1584086 7.481720 0.2710309 0.1028080 0.1895270 0.1005554 0.1388474 7.481720 0.0566330 0.1005554 0.1230803 7.481720 0.1489830 7.097158 7.719633 7.113578 7.461094 6.314072 1.0000014 0.1946650 3.6634338 5.861822 6.691849 3.9635220 9.6610875 9.9899449 21.334394 59.371472 8.9913306 8.7762218 10.5984511 20.0260692 7.481720 7.481720 0.1080322 3.578967 2.256780 7.481720 7.6473607 7.255055 7.5490898 8.0501546 7.302556 7.769903 7.507216 7.781509 7.811458 7.0144419 0.0318561 0.0318561 0.0318561 0.0318561 0.2159204 0.6800675 0.0978098 0.0786638 7.9092965 10.519883 1.1777158 0.0447345 0.3769708 0.3229117 9.273011 7.481720 0.0318561 0.0318561 7.481720 0.115612 0.0908351 0.0581746 0.1099811 0.1066022 0.1460204 0.0588851 0.0836620 0.0577593 0.1309638 0.1061869 0.2925038 0.8105664 7.481720 5.134139 8.499296 0.1482725 0.0683107 0.1741757 0.1415153 0.3509932
IgG1_PT 3.1949987 5.6006842 11.7111244 4.3497276 1.8478146 0.9779758 0.1150913 0.1150913 37.0632534 91.6723118 3.5761156 0.5930653 1.1704311 109.0894718 136.8991871 8.4837141 17.823961 2.9025240 12.4290380 18.3470230 2.4251795 7.5252323 85.8543415 17.823961 1.7515869 2.8582029 49.8171787 80.9948597 10.748851 2.5214071 17.823961 3.0679779 2.2981586 11.8246717 152.4610310 8.5538540 10.3340607 9.8529234 53.4439411 122.1021976 0.1150913 0.4273739 17.823961 17.823961 60.708197 0.1150913 17.823961 0.1150913 0.1150913 0.8817482 0.2081566 0.1150913 17.823961 4.730844 6.9440746 10.9603157 12.1631584 35.786989 92.9460697 100.981058 17.823961 16.636955 14.664294 55.464716 91.549997 0.1150913 0.1150913 0.2301826 11.007652 19.379437 0.1157207 0.9817677 3.9167042 0.5968590 0.1157207 16.6187229 17.6772232 21.7668896 11.9516935 15.1271973 2.2031174 1.7219791 17.823961 30.6864300 80.6284580 0.5672512 1.7219791 17.823961 17.823961 66.4349155 18.4660549 18.1773720 21.7859001 17.823961 80.3402805 0.1150913 0.1150913 0.1150913 3.9833241 17.823961 1.1446152 1.0483875 1.4332981 17.823961 13.3173828 17.436308 17.878274 17.585362 17.518275 17.980403 0.4698372 0.1811562 0.2773819 10.766170 18.175682 0.1150913 0.1150913 0.1150913 2.325159 19.838549 0.6930866 3.0987711 11.7592382 1.2223377 17.823961 17.823961 0.1150913 9.707669 14.134130 17.823961 16.7680711 18.091194 16.9300920 17.6268101 17.529355 16.998802 17.487881 17.447013 17.655288 17.3620007 0.1150913 0.1150913 0.1150913 0.1150913 2.8094597 0.2349205 0.9509754 0.4273739 6.3878231 12.979401 1.0000019 0.4226379 0.4037743 5.2340078 14.808636 17.823961 0.1150913 2.5933361 17.823961 13.366001 4.2243977 3.7913742 16.6377335 31.3605270 25.1057453 18.0375843 15.0545340 16.4017181 41.1271038 76.7312489 15.0492039 17.8879128 17.823961 29.194633 63.788385 0.1150913 0.1150913 0.1876507 6.0527182 10.3829517
IgG1_PRN 0.0674883 0.5475427 1.8477414 0.4024673 0.0102217 0.9836311 0.6284548 0.5463728 2.4515039 4.3172258 0.0491383 0.0096059 0.0181035 2.0311176 2.7485515 1.5533416 1.928113 1.0779670 1.7963245 2.3383254 0.2581307 1.1518595 2.6471342 1.928113 0.1828836 1.2774150 2.1144313 2.8053254 1.774834 1.2046310 1.928113 0.0475023 0.0348175 1.3955462 2.8987027 3.0684952 3.0602437 2.9207102 3.5193621 3.8024932 1.2645104 1.4811999 1.928113 1.928113 3.590767 2.5918995 1.928113 2.1390623 2.8160399 3.3539151 1.1103566 0.4359035 1.928113 4.647833 4.9035624 3.4134494 3.4572922 3.477982 3.5984882 3.885622 1.928113 2.181170 2.014604 2.808394 3.400518 2.3113443 2.2077717 2.3027233 3.389188 3.922753 1.9925089 2.5498425 3.2584091 2.4329692 1.8918304 0.0072659 0.6426791 1.6609782 0.3623190 0.0050492 2.2421314 2.2199637 1.928113 2.8749584 3.7377139 0.0771452 0.1637840 1.928113 1.928113 3.8686267 0.0220338 0.0070705 0.0586106 1.928113 1.0041871 1.9413893 1.8402798 1.8309201 2.8895522 1.928113 1.4764829 1.3602254 1.4198320 1.928113 3.5417143 1.619142 1.873199 1.475811 1.435509 1.773188 3.0982739 3.0152680 2.9751197 3.560779 3.540705 0.3216782 0.4006199 0.4218640 2.463881 4.704668 0.5218650 1.7195380 2.9217061 1.1616502 1.928113 1.928113 0.5991092 3.361577 3.227031 1.928113 1.4065096 1.467446 1.5128440 1.5497880 2.109586 1.789485 1.797402 1.847341 1.849795 1.5973774 0.0041511 0.0436475 0.0209000 1.2322431 1.6864351 2.0327452 2.3111964 2.0178436 3.3190891 3.690953 0.6533831 0.5105860 0.4769650 2.6436754 3.380629 1.928113 0.6349713 1.3307916 1.928113 2.646077 1.7506237 1.7440965 2.3062946 2.8080240 2.7561148 0.9701404 0.8966174 0.9046224 2.2234119 3.7646846 0.9406399 1.0520942 1.928113 2.636717 3.587282 0.9999999 1.1917506 1.3812847 2.5701522 2.7636887
IgG1_FHA 1.0819523 1.3078204 3.3019056 1.6376278 1.0812029 0.6838210 0.5891263 0.6378479 0.9853948 1.2764748 0.5528975 0.5733855 0.7123044 1.2364981 1.1575443 0.8899505 2.099463 0.7225484 0.8457265 1.1510481 0.8640797 1.0916966 2.3726985 2.099463 0.7421508 0.9920049 1.2231200 2.3579571 2.704005 1.0617142 2.099463 3.4352806 3.0547528 4.3277590 7.5111494 1.4139340 1.4599072 1.6135674 2.2289579 2.7476549 1.9301597 2.6379962 2.099463 2.099463 8.317179 0.5019273 2.099463 0.4609511 0.7400382 0.9531636 0.6158607 0.5154194 2.099463 1.227753 1.3951555 1.4046528 1.2102664 1.604286 2.2723958 2.787345 2.099463 1.478146 1.466403 1.623811 2.073549 0.6908563 0.6996012 0.6183987 1.337978 1.746740 0.7374036 1.4697258 3.3621206 1.0804533 0.6911807 1.9039723 2.8119419 4.1159303 1.5861579 1.5631713 2.2221048 2.2530868 2.099463 5.2598307 8.5966311 1.9105369 2.2161083 2.099463 2.099463 11.5668964 0.7815168 0.8214934 0.7090590 2.099463 1.1508011 2.2890658 2.2315993 2.1581423 3.8459065 2.099463 2.2241037 2.0092292 2.0294673 2.099463 5.5866396 2.614410 2.028148 2.123721 2.041209 2.610730 2.5945215 2.4091299 2.2042496 5.502823 6.882517 0.3460212 0.3460212 0.3460212 0.812246 4.595036 1.0000002 1.8884813 1.9414504 1.2558508 2.099463 2.099463 1.2410622 3.250388 3.916250 2.099463 1.5925456 1.755451 1.8860819 1.4200241 1.935972 1.499008 1.285893 1.587233 1.508129 2.0053672 0.3460212 0.3460212 0.3460212 0.3460212 0.5992800 2.3446674 2.7946546 2.4086301 5.5850251 8.567533 0.3473070 0.4270104 0.3460212 0.8919889 1.417432 2.099463 0.3460212 1.7594455 2.099463 4.296464 2.2141800 2.0367835 1.5020958 2.8792915 2.9297619 3.0141909 2.8208039 2.8367946 5.7705324 9.1825390 0.8827443 0.8622563 2.099463 1.172825 2.098284 1.1513008 1.0408653 1.3396907 2.7636089 2.7541146
IgG1_TT 0.9040976 1.3306352 1.6220469 1.1111078 0.8901499 0.4623243 0.2824943 0.2540326 1.6462106 2.3094420 1.4345511 1.1389967 1.2266468 2.3700609 2.4296665 1.5894958 1.297325 1.4245373 1.9366686 2.2601480 1.1816212 1.3067334 1.6760198 1.297325 1.0971601 1.0872358 1.3414536 1.6407630 1.216282 1.0243518 1.297325 0.7679138 0.7218089 1.3684996 1.8848331 1.2392896 1.3025013 1.2635789 1.8312924 2.1601663 0.7988788 0.9562078 1.297325 1.297325 2.058882 1.3528616 1.297325 1.1924630 1.5131112 1.7545735 1.1876051 0.8607877 1.297325 1.992489 2.0975440 1.0060172 0.9920099 1.405345 1.9208437 2.017792 1.297325 1.333288 1.243313 1.830160 1.944096 1.6832321 1.6300341 1.7051371 2.051654 2.161358 0.4153317 0.8981370 1.5645275 0.7548452 0.3602562 0.2091560 0.9179857 1.6383193 0.7679882 0.2310313 1.2627087 1.2528440 1.297325 1.8903555 2.3291421 1.4423897 1.5061080 1.297325 1.297325 2.5526035 1.2739443 1.3182908 1.4979421 1.297325 1.8649635 1.6290148 1.5796912 1.6163188 1.9272811 1.297325 0.8620697 0.8372142 0.8649307 1.297325 2.0557313 1.257185 1.387983 1.253411 1.202244 1.304506 1.3604231 1.3868582 1.3516909 1.944916 2.044815 0.3694588 0.4890872 0.4891170 1.857989 2.560173 0.6759274 1.1749156 1.7439404 0.9696339 1.297325 1.297325 0.7728908 1.848354 1.829340 1.297325 0.9178357 1.101571 0.9018899 0.9921314 1.174128 0.975423 1.052726 1.047708 1.069656 0.9008104 0.1705167 0.1705167 0.1705167 0.9502174 1.0286584 0.1705167 0.5479096 0.3470685 1.3032018 1.695764 0.5212211 0.4190273 0.4155999 1.7695409 1.944513 1.297325 0.1705167 0.6603048 1.297325 1.362876 0.9488554 0.9342819 1.4289188 1.7777009 1.7952846 1.0000000 0.9526731 0.9627465 2.0806761 2.3229430 1.4854012 1.5134157 1.297325 1.669284 2.056810 0.2072427 0.2142463 0.5460110 1.2418467 1.5400833
IgG1_DT 0.8555583 1.3213947 1.7052840 0.9601393 0.6979709 0.9316285 0.7644072 0.7309784 1.7977592 2.2391042 1.5509896 1.2949345 1.3771909 1.9061706 1.8987032 2.0590376 1.379022 1.8559887 2.1318923 2.3244172 1.2614627 1.3391150 1.8374128 1.379022 1.1650841 0.9303088 1.4071720 1.9252021 1.263745 0.8716149 1.379022 0.3144190 0.3144190 1.2034973 1.8849185 0.7114449 0.7321058 0.7338082 1.7451063 2.2802764 0.5408413 0.6704939 1.379022 1.379022 2.286064 1.5588439 1.379022 1.3865927 2.2567860 2.4025339 1.8864383 1.5309092 1.379022 1.980147 2.0388798 1.1866241 1.2236124 1.524626 2.0090729 2.046719 1.379022 1.654957 1.671903 2.306006 2.407260 1.2880915 1.2026623 1.3254668 2.363268 2.534436 0.9611840 1.4011362 1.8347819 1.1927867 0.8911151 0.3144190 0.4384335 0.7826263 0.3144190 0.3144190 1.3402032 1.3374949 1.379022 1.9673412 2.5953304 1.2980303 1.4017601 1.379022 1.379022 2.6574677 0.3144190 0.3287733 0.5993376 1.379022 1.6807821 1.9998415 1.9074093 1.9480731 2.2451793 1.379022 2.2611200 2.2613133 2.2392596 1.379022 2.3751026 1.294625 1.576297 1.507392 1.549852 1.287450 0.9552577 0.9845465 0.9641178 1.765364 1.766602 0.3898036 0.4470658 0.4161133 1.546269 2.609026 1.7127514 1.7257514 1.6225632 1.6451199 1.379022 1.379022 1.5358506 2.168753 2.247644 1.379022 1.1411844 1.154820 1.0985139 1.2933320 1.345069 1.306312 1.441670 1.451770 1.376302 1.1187486 0.3144190 0.3144190 0.3144190 0.4033896 0.8865981 0.5135643 0.6984673 0.6173328 1.6850034 1.826612 1.0000004 0.9014938 0.8881454 1.8442320 1.919060 1.379022 0.7137460 0.9357921 1.379022 1.082314 1.2626513 1.2394756 1.5088792 1.6907256 1.5932250 0.3144190 0.3144190 0.3144190 0.6716275 1.5251062 0.7078080 0.7591892 1.379022 1.223904 1.897006 1.5185518 1.4620247 1.7009013 2.0083765 2.0724095
IgG1_OVA 0.5126290 0.2058003 0.2151549 0.1927040 0.1777368 0.0364833 0.0364833 0.0364833 0.0364833 0.0505149 0.4808238 0.0982232 0.1693175 0.2815721 0.2254448 0.8971006 2.847523 0.4106646 0.8063617 0.9382606 4.4826946 3.4424701 3.7418153 2.847523 3.2927976 1.1103840 0.8512633 0.8325543 1.072966 0.7577181 2.847523 0.0364833 0.0364833 0.0364833 0.0430315 0.0364833 0.6462023 0.2178628 0.0447056 0.1373155 7.3189902 7.5940137 2.847523 2.847523 7.155286 19.2647347 2.847523 14.6594949 16.3002820 15.5537887 0.0486441 0.0364833 2.847523 0.040225 0.0533214 8.5442376 9.1541533 9.131703 9.9558377 9.878195 2.847523 2.769682 1.785585 2.199991 2.065286 1.8622922 1.5507860 1.8969039 1.715426 2.142928 9.4705338 8.1478019 6.9494858 6.4667921 8.4976621 0.2104776 0.2170258 0.2310576 0.2338638 0.1721239 3.7678211 3.7023394 2.847523 2.4927976 2.5891495 0.0372317 0.0652955 2.847523 2.847523 0.1457443 0.1335738 0.1204774 0.1410573 2.847523 0.1887655 0.0364833 0.0364833 0.0364833 0.0364833 2.847523 0.0952299 0.0615535 0.0709081 2.847523 0.1073909 2.214133 2.274892 2.079239 1.884082 2.975326 3.5547245 3.4303093 3.1281576 2.623013 3.080450 1.0000005 1.4265673 1.7277834 2.837232 4.015903 3.0851269 3.2273157 2.6304963 2.3891492 2.847523 2.847523 0.8278770 1.614594 1.118803 2.847523 2.5089412 2.706547 2.7940180 2.2188472 3.010494 3.284474 2.756807 2.562444 2.572397 3.2859900 0.4545326 2.3571472 1.3011183 0.9213240 1.5228207 3.9101970 4.5500474 3.3882139 4.8671660 4.456502 5.6733303 4.9839010 4.7388124 3.8024230 4.806165 2.847523 1.5114970 1.4665952 2.847523 1.127026 0.2158935 0.2823107 0.2701499 0.2336671 0.2392800 0.8521054 0.6247902 0.6266611 0.9502347 1.5919558 7.3056970 7.9212255 2.847523 8.301020 8.686427 9.6957812 8.4974656 8.2411513 8.8716464 8.1588311
IgG2_PT 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 10.1779385 2.7861786 2.7861786 12.1566839 20.3558769 41.4395132 26.2124434 32.6546621 46.7104216 50.8100195 6.3001184 8.845263 3.9574919 7.4714317 9.8140583 1.0000000 1.0000000 1.0000000 8.845263 1.0000000 1.0000000 1.0000000 1.0000000 1.000000 1.0000000 8.845263 1.0000000 1.0000000 1.0000000 6.0559869 1.0000000 1.0000000 1.0000000 1.0000000 1.5856566 32.7033606 31.2392187 8.845263 8.845263 40.609725 2.2005224 8.845263 2.7861786 10.9853706 10.9853706 33.8259764 23.2841587 8.845263 20.941534 32.6546621 1.0000000 1.0000000 1.000000 1.7569699 4.685253 8.845263 1.000000 1.000000 1.000000 1.585657 1.0000000 5.0995960 2.7569695 3.928283 4.513939 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 21.6692944 24.5975761 18.1553535 21.3764648 22.2549496 1.0000000 1.0000000 8.845263 4.5687013 8.9611254 11.0109234 5.7400146 8.845263 8.845263 16.8674889 1.0000000 1.0000000 1.0000000 8.845263 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 8.845263 11.5965805 12.1822367 9.8396111 8.845263 16.8674889 8.172595 8.960496 8.625087 8.462883 9.635943 26.5539694 23.0400276 24.7969971 27.725280 36.510127 2.2005224 1.0292091 2.2005224 3.371836 12.742341 1.0000000 1.0000000 1.0000000 1.0000000 8.845263 8.845263 1.0000000 1.000000 1.000000 8.845263 6.7933706 9.963354 7.2074127 8.4792544 8.300881 7.009596 8.259775 8.239843 9.028661 7.9618904 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.370734 1.0000000 1.0000000 1.0000000 2.7569695 3.342627 8.845263 1.0000000 1.0000000 8.845263 16.984041 11.7131319 15.8127279 11.1274748 22.2549496 24.0119209 22.1383991 20.9670849 23.3097115 21.5527420 23.8953686 1.0000000 1.0000000 8.845263 4.806768 4.221111 9.3705053 11.1274748 10.5418186 14.0557585 27.5258589
# knitr::kable(head(results$rnaseq), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "RNA seq")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# knitr::kable(head(results$cytof), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Cell Frequency")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# olink <- head(results$olink)
# knitr::kable(, "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Olink")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")