Load libraries

suppressPackageStartupMessages({library(MOFA2)
library(kableExtra)
library(data.table)
library(ggplot2)
library(tidyverse)
library(here)})

Load data and Generate Mofa object

set.seed(1)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

imputationTestingList <- list()

add_cols <- function(df, cols) {
  add <- cols[!cols %in% names(df)]
  if(length(add) != 0) df[add] <- NA
  return(as.matrix(df[, sort(cols)]))
}

df_source<- readRDS(here("./data/master_normalized_data_challenge2_train_Aug25.RDS"))

metaDf <- df_source[["subject_specimen"]]
metaDf["age_at_boost"] <- as.numeric(round(difftime(metaDf$date_of_boost, metaDf$year_of_birth,units="weeks")/52, 2))

normalizedData <- list()

normalizedData[["abtiter"]] <- as.data.frame(df_source[["abtiter_wide"]]$normalized_data)
normalizedData[["cytof"]] <- as.data.frame(df_source[["pbmc_cell_frequency"]]$normalized_data)
normalizedData[["rnaseq"]] <- as.data.frame(df_source[["pbmc_gene_expression"]]$raw_data)
normalizedData[["olink"]] <- as.data.frame(df_source[["plasma_cytokine_concentrations"]]$normalized_data)

int_cols <- Reduce(intersect, lapply(normalizedData[c("abtiter", "cytof", "olink")], colnames))
cols <- unique(c(int_cols, colnames(normalizedData[["rnaseq"]])))

dataset_cols <- metaDf[metaDf$dataset=="2020_dataset", ]$specimen_id
cols <- intersect(cols, dataset_cols)

common_cols <- Reduce(intersect, lapply(normalizedData[c("rnaseq", "abtiter", "cytof", "olink")], colnames))
common_cols <- intersect(common_cols, dataset_cols)
removingNums <- sample(common_cols, 20, replace=FALSE)
# cols <- cols[! cols %in% removingNums]

normalizedData[["abtiter"]][, removingNums] <- NA
normalizedData[["cytof"]][, removingNums] <- NA
normalizedData[["rnaseq"]][, removingNums] <- NA
normalizedData[["olink"]][, removingNums] <- NA

imputationTestingList$actualData[["abtiter"]] <- normalizedData$abtiter[, removingNums]
imputationTestingList$actualData[["cytof"]] <- normalizedData$cytof[, removingNums]
imputationTestingList$actualData[["rnaseq"]] <- normalizedData$rnaseq[, removingNums]
imputationTestingList$actualData[["olink"]] <- normalizedData$olink[, removingNums]
normalizedData[["abtiter"]] <- add_cols(normalizedData[["abtiter"]],  cols)
normalizedData[["cytof"]] <- add_cols(normalizedData[["cytof"]],  cols)
normalizedData[["rnaseq"]] <- add_cols(normalizedData[["rnaseq"]],  cols)
normalizedData[["olink"]] <- add_cols(normalizedData[["olink"]],  cols)

normalizedData[["abtiter"]] <- normalizedData$abtiter[, !duplicated(cols)]
normalizedData[["cytof"]] <- normalizedData$cytof[, !duplicated(cols)]
normalizedData[["rnaseq"]] <- normalizedData$rnaseq[, !duplicated(cols)]

#
MOFAobject <- create_mofa(normalizedData)

Plot multiomic missing values

plot_data_overview(MOFAobject)

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]
samples_metadata(MOFAobject) <- metaDf1

Setting data Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)

data_opts <- get_default_data_options(MOFAobject)
data_opts
## $scale_views
## [1] FALSE
## 
## $scale_groups
## [1] FALSE
## 
## $center_groups
## [1] TRUE
## 
## $use_float32
## [1] TRUE
## 
## $views
## [1] "abtiter" "cytof"   "rnaseq"  "olink"  
## 
## $groups
## [1] "group1"

Setting model Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
model_opts <- get_default_model_options(MOFAobject)
model_opts$num_factors <- 15

model_opts
## $likelihoods
##    abtiter      cytof     rnaseq      olink 
## "gaussian" "gaussian" "gaussian" "gaussian" 
## 
## $num_factors
## [1] 15
## 
## $spikeslab_factors
## [1] FALSE
## 
## $spikeslab_weights
## [1] FALSE
## 
## $ard_factors
## [1] FALSE
## 
## $ard_weights
## [1] TRUE

Setting training Options

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
train_opts <- get_default_training_options(MOFAobject)
train_opts$convergence_mode <- "medium"
train_opts$seed <- 42

train_opts
## $maxiter
## [1] 1000
## 
## $convergence_mode
## [1] "medium"
## 
## $drop_factor_threshold
## [1] -1
## 
## $verbose
## [1] FALSE
## 
## $startELBO
## [1] 1
## 
## $freqELBO
## [1] 5
## 
## $stochastic
## [1] FALSE
## 
## $gpu_mode
## [1] FALSE
## 
## $seed
## [1] 42
## 
## $outfile
## NULL
## 
## $weight_views
## [1] FALSE
## 
## $save_interrupted
## [1] FALSE

Training Model

MOFAobject <- prepare_mofa(MOFAobject,
  data_options = data_opts,
  model_options = model_opts,
  training_options = train_opts
)
MOFAobject <- run_mofa(MOFAobject, outfile=".../MOFA2_2ndChallenge_F40.hdf5", use_basilisk = TRUE)

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 190 
##  Number of factors: 15

Impute Data

imputed_data <- impute(MOFAobject, views = "all")

Add meta data to Mofa and Imputed objects

metaDf1 <- data.frame(metaDf[metaDf$specimen_id %in% cols, ])
colnames(metaDf1)[colnames(metaDf1)=="specimen_id"] <- "sample"
rownames(metaDf1) <- metaDf1$sample
metaDf1$sample <- as.character(metaDf1$sample)
metaDf1 <- metaDf1[cols,]

samples_metadata(MOFAobject) <- metaDf1
samples_metadata(imputed_data) <- metaDf1

Mofa object

MOFAobject
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 190 
##  Number of factors: 15
slotNames(MOFAobject)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Imputed data

imputed_data
## Trained MOFA with the following characteristics: 
##  Number of views: 4 
##  Views names: abtiter cytof rnaseq olink 
##  Number of features (per view): 27 20 10269 30 
##  Number of groups: 1 
##  Groups names: group1 
##  Number of samples (per group): 190 
##  Number of factors: 15
slotNames(imputed_data)
##  [1] "data"               "covariates"         "covariates_warped" 
##  [4] "intercepts"         "imputed_data"       "interpolated_Z"    
##  [7] "samples_metadata"   "features_metadata"  "expectations"      
## [10] "training_stats"     "data_options"       "model_options"     
## [13] "training_options"   "stochastic_options" "mefisto_options"   
## [16] "dimensions"         "on_disk"            "dim_red"           
## [19] "cache"              "status"

Results for Actual Data

plot_object = MOFAobject

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 1,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 4,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

Results for Imputed Data

plot_object = imputed_data

plot_factor_cor(plot_object)

plot_factor(plot_object,
  factors = 1,
  color_by = "Factor1"
)

plot_variance_explained(plot_object, max_r2=1)

plot_variance_explained(plot_object, plot_total = T)[[2]]

correlate_factors_with_covariates(plot_object,
  covariates = c("timepoint", "infancy_vac", "biological_sex", "ethnicity", "race"),
  plot="log_pval"
)

plot_weights(plot_object,
 view = "cytof",
 factor = 15,
 nfeatures = 10,     # Top number of features to highlight
 scale = T           # Scale weights from -1 to 1
)

plot_object = imputed_data
plot_data_heatmap(plot_object,
  view = "cytof",
  factor = 12,
  features = 25,
  cluster_rows = FALSE, cluster_cols = FALSE,
  show_rownames = TRUE, show_colnames = FALSE,
  scale = "row"
)

plot_factor(plot_object,
  factors = 4,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

plot_factor(plot_object,
  factors = 1,
  color_by = "infancy_vac",
  dodge = TRUE,
  add_violin = TRUE
)

results <- imputed_data@imputed_data

imputationTestingList$imputedData[["abtiter"]] <- results$abtiter$group1[, removingNums]
imputationTestingList$imputedData[["cytof"]] <- results$cytof$group1[, removingNums]
imputationTestingList$imputedData[["rnaseq"]] <- results$rnaseq$group1[, removingNums]
imputationTestingList$imputedData[["olink"]] <- results$olink$group1[, removingNums]

saveRDS(results, file = here("./results/imputedData2020_removed20Samples.RDS"))

saveRDS(imputationTestingList, file = here("./results/2020Data_imputationTest_removed20Samples.RDS"))


knitr::kable(MOFAobject@data$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer Before Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer Before Imputation
1 102 103 104 105 106 114 115 116 117 118 131 132 133 134 135 138 139 140 141 142 146 147 148 149 150 153 154 155 156 157 160 161 162 163 164 167 168 169 170 171 174 175 176 177 178 181 182 183 184 185 19 191 192 193 194 195 2 20 201 202 203 204 205 208 209 21 210 211 212 22 223 224 225 226 227 23 241 242 243 244 245 248 249 250 251 252 255 256 257 258 259 27 274 275 276 277 278 28 281 282 283 284 285 29 293 294 295 296 297 3 30 31 324 325 326 327 328 332 333 334 335 336 342 343 344 345 346 349 350 351 352 353 355 356 357 358 359 360 361 362 363 364 369 37 370 371 372 373 38 385 386 387 388 389 39 397 398 399 4 40 400 401 405 406 407 408 409 41 45 46 47 48 49 5 70 71 72 73 74 77 78 79 80 81 87 88 89 90 91
IgG_PT 0.1826267 -1.9731314 -1.5442266 -1.2767997 -1.3585975 -0.3898735 -3.2521157 NA -2.4566026 -2.672514 1.9225113 6.4159546 4.4645405 4.2674780 5.3076077 NA -1.3337350 -2.0307870 -2.3919148 6.8381987 6.4143820 -0.0759842 0.0939107 0.6324399 5.6495485 5.7209883 1.3028891 1.5587971 -2.2007377 NA 3.7090943 2.2879384 -3.0276911 -3.3883157 -2.1580284 -1.6266918 -0.0730023 -3.2379289 -3.4471817 3.9219763 1.3502510 -3.2330735 -3.2091913 -3.2654362 0.8018954 3.6518672 -3.3486199 NA -3.3910859 -3.3980913 -2.2663865 -2.4579990 -2.8729546 NA -3.2352281 -3.0539486 -2.2953997 NA -2.8416803 -2.8993349 -3.3473489 NA -2.5221605 NA -2.8481388 -3.3473489 -3.0380459 -3.0507536 -3.5251517 -1.1584740 2.8696930 NA -2.7711215 -2.5518456 -1.6389232 0.5382321 3.4871819 -3.4328485 NA NA NA -1.7556313 -1.908591 -2.0574529 -1.9634216 4.3981800 11.3092699 -2.9979339 NA NA -2.9265153 NA NA -2.2680488 -1.7747551 -1.2873168 0.4490650 0.6608465 NA -2.4969833 -3.0312843 NA -2.0957792 -1.2979672 -1.9269168 -2.8473306 -3.0129611 -3.0728142 1.3643219 3.0492804 -1.2988312 -2.1331000 4.3421755 -2.3860905 -2.4691920 -2.4716454 4.4164152 5.3093653 -2.5500493 NA -2.7532444 -2.7812879 -2.1095815 -2.6508622 -2.7524703 NA 9.0256844 NA -3.4512930 -3.4198844 -3.5251517 -3.1311324 -1.4560885 6.2882366 7.0994911 5.8827896 9.4891539 7.4135695 1.7592070 NA 2.1088974 NA 11.7548485 -3.5251517 0.2436421 NA -3.5251517 -3.3595483 -3.5251517 -0.3978848 -3.1325905 -3.1732082 -3.3647718 -2.6516061 -0.6721869 -1.3164134 -0.6312068 NA -3.5251517 -0.3039956 2.4425843 -0.0188406 2.4407451 13.5355511 5.3111954 2.5856864 3.1798079 8.3967972 1.7728379 -3.3410370 NA NA -3.3794308 5.5745211 7.3197470 -3.3335550 -3.3608491 -3.2044892 -2.6464043 -2.6055017 -3.5251517 NA -3.5251517 -3.3015738 -3.3460808 NA -1.5847659 -1.6338494 25.5372715 19.0374737
IgG_PRN -0.3305829 -1.7474023 -1.5311012 -2.5248027 10.7205343 12.3461647 -1.8900740 NA -0.7715371 2.655693 15.4080992 -2.5313892 -2.5540173 -2.5524926 -2.5174358 NA -0.9671137 -1.6748275 -2.0305436 -2.2486837 -2.3702090 -0.3480611 -2.5118890 -2.5023661 -2.4171906 -2.3832536 -2.4265680 -2.4194942 -0.5597374 NA -2.4903882 -0.7273815 11.4845057 3.5862484 9.2296848 11.1450043 -1.4647987 -0.9635826 -2.1307211 -2.4026234 -2.4267595 -2.5805774 -2.5462883 -2.6350815 -2.3577762 32.5382652 -1.8408030 NA -1.9529635 -2.0003712 1.4729404 4.7197022 -2.1917994 NA -2.5331185 -2.3599601 3.3360109 NA 2.3585086 -1.7571013 -2.5552747 NA 2.3770361 NA -2.1339099 -2.6582470 0.7428370 -2.3274672 -2.4062493 -2.4477928 7.5438490 NA 2.1444077 3.6346788 4.9817991 -2.4198318 5.1439304 0.1445906 NA NA NA 2.2608166 -1.454200 -1.5423177 -1.5902617 -2.3251753 -2.1606266 -2.7503231 NA NA -2.7303176 NA NA -1.5779126 -0.8924890 0.1424010 -2.4776206 4.7714286 NA 1.1121812 -0.9447175 NA 1.4289031 1.6523008 1.1431899 -2.4536736 -2.5519898 -2.6082125 -2.4516883 -2.3620784 -1.5625397 0.0229516 4.8383932 1.9650736 1.4138436 1.4105663 -2.3868980 -2.3536160 -1.4541392 NA -1.7063754 -1.7546922 7.1301622 -2.2758250 -2.3426623 NA -2.2979527 NA -2.7930970 -2.7787185 -2.8642628 -1.5304977 9.3076496 -2.6067693 -2.5932155 -2.6119738 -2.3762593 -2.3956523 -2.4743598 NA -2.4668124 NA -2.2793529 -1.8889146 2.3353410 NA -2.8843067 2.1696081 -2.3458519 1.6521001 -2.6839566 -2.7022259 -2.8022878 -0.5417309 -2.3071921 0.4725285 -0.9812847 NA -2.5299556 -0.6977954 2.3573875 -2.4803252 -2.3912477 -2.5472548 -2.6987531 -2.7531462 -2.5479298 -2.4584813 2.1294651 -2.8427570 NA NA -2.8476307 -0.6766944 4.7270236 -2.7775326 -2.7829719 -0.6824377 1.0784082 1.1181502 -2.8661947 NA -2.8591902 7.8802538 6.9109612 NA 3.5439358 3.1754241 6.7741394 4.8399515
IgG_FHA 30.1677532 -2.7729707 1.1921635 -1.5418420 71.4015503 18.2466354 -2.6675782 NA -3.2872515 -2.761404 -3.7987661 -1.4338012 -1.5564439 -1.5571055 -1.4618883 NA 6.5743699 1.5940280 -3.0818119 -0.7317407 -0.7695525 -2.8228064 -2.0390007 -1.9906309 -1.5727189 -1.6392605 -1.9753207 -1.9797705 8.2170830 NA -1.3480422 10.3602848 -2.9936001 -3.5390306 13.4282627 -3.7987661 -0.4720998 -3.3634152 -3.6126654 -1.4444399 -1.5525193 -1.6578245 -1.7870660 -1.9913670 -0.7695525 63.3408890 -3.3588903 NA -3.3800106 -3.3895404 -1.7770417 -2.7867460 -3.6125677 NA -3.7256851 -3.6741979 -2.5405507 NA -3.1327353 -2.9070320 -3.5016453 NA -1.4992354 NA -1.6786175 -3.1018562 -3.2774520 -2.1272900 -1.6161544 -1.6456656 -3.7987661 NA 0.2370930 2.2089977 8.2531185 -1.3111191 7.6810060 -3.5566585 NA NA NA 2.2734818 -3.137939 -3.2163365 -3.1871600 -1.6027889 -0.5412097 -3.2926230 NA NA -3.2090318 NA NA -1.4978998 -0.4243846 3.3813753 -1.5692406 -3.7987661 NA -0.8738325 -2.4607062 NA -1.4651060 -0.4720998 -3.0633776 -3.1190543 -3.2412093 -3.2944360 -1.5458384 -0.9270601 0.5557566 -3.1772380 -0.9520571 -3.0570095 -3.1164839 -3.0778823 -1.7211964 -1.2657809 -2.8593740 NA -3.0419281 -3.0793569 0.4488187 -3.4402566 -3.4781048 NA -1.4904728 NA -3.6168289 -3.6036069 -3.7398882 0.3108220 -3.7987661 -1.8108168 -1.7717383 -1.8182991 -1.4048924 -1.3915081 -1.9229500 NA -1.9055500 NA -0.8886950 -3.4865808 -3.7987661 NA -3.7987661 -1.7548742 -1.3427293 6.6482511 -3.3543358 -3.3705566 -3.5771987 -2.4874558 -1.2037830 0.7837319 -3.7987661 NA -1.5354500 6.4543595 -3.7987661 -1.4021780 -0.8543594 -1.1400864 -0.8828659 -1.6524258 -1.7299788 -0.8668954 -3.7987661 -3.5039134 NA NA -3.4984937 6.2016091 -3.7987661 -3.5072565 -3.5478020 -3.2384975 1.9511461 2.1080737 -3.7785099 NA -3.7764380 -1.4044049 -1.6462352 NA -0.8464789 -1.0270543 15.6248398 32.1060944
IgG1_PT 2.1348767 -1.8155916 -2.2489669 -1.5068433 -0.3711414 11.3436871 -5.1510515 NA -5.0796218 -4.958407 -1.6807382 14.9185753 12.4004974 9.9223251 1.9431562 NA -2.0961764 -2.5411127 -2.8073945 1.7579393 14.4917965 0.3694081 3.3185883 0.4575591 1.3434196 11.9477444 -4.3867874 -4.3919740 -4.3706183 NA 5.9643831 -5.0518389 -5.0347776 -5.0271945 -2.8158619 -2.6480925 -5.1039705 -5.1042862 -5.0815382 7.6888380 9.3608437 -5.1099734 -5.0884891 -5.1213479 1.0071311 8.0183735 -5.1267190 NA -5.1380930 -5.1390409 -3.6791835 -3.7757390 -4.5185156 NA -4.6970272 -4.7829657 -4.5674610 NA -3.3621652 -4.3169394 -4.3630681 NA 0.3900867 NA -4.9719033 -4.9823298 -4.1385050 -5.0088696 -2.4163382 2.3788271 5.3465939 NA -4.7897949 -4.7048502 -3.8420267 -0.4071202 11.9183846 -5.1717110 NA NA NA -2.7736650 -3.550071 -2.9765279 -3.3772495 10.0499392 15.9477177 -4.4072094 NA NA -3.9885061 NA NA -2.2538297 -2.2374430 -2.7021487 0.2260470 4.0839548 NA -4.0560603 -4.5115509 NA -3.2388520 -1.4506133 -0.7926564 -4.5284634 -4.4807858 -4.6425257 3.2688017 6.0751543 3.0846395 -0.7123804 9.2269382 -3.9248610 -4.2315893 -3.0946662 8.0647974 14.3524113 -5.0351672 NA -5.1307664 -4.8764162 -4.4594173 -3.8741622 -4.5441942 NA 17.2989693 NA -5.1707869 -5.1951985 -5.1878977 -5.1441698 -5.1289601 10.3285036 3.0671654 14.3825150 15.6506214 13.4898968 7.1559391 NA 7.9700499 NA 16.6123695 -5.1945996 2.2564764 NA -5.1945996 -5.1718802 -5.0877395 0.6987157 -5.0977292 -5.1643100 -5.1277332 -4.7911024 -1.4479129 1.0154161 -4.0344419 NA -3.6343873 1.3578596 8.4770184 -1.9943323 -2.7146425 3.3911409 4.3998489 4.5844460 8.5694466 11.6638432 7.7575827 -5.1157045 NA NA -5.1590600 -4.3353000 14.1871128 -5.1951985 -5.1951985 -5.1951985 -5.1360273 -4.6998658 -5.1951985 NA -5.1951985 -5.1951985 -5.1716733 NA -3.1694601 -2.4892449 22.9058685 21.2514191
IgG1_PRN 0.5330515 -0.1993157 -0.3962686 -0.4511517 0.7135785 1.3868463 -1.5595392 NA -1.5202327 -1.386737 -0.3921682 -0.1400127 -0.3287729 -0.5154612 -0.6989410 NA -0.1678466 -0.2620096 -0.4819883 0.1983252 1.2341013 -0.1672769 0.2036593 -0.3094846 -0.1178493 0.8491502 -0.7524341 -0.6402987 -0.5890375 NA 0.1845559 1.0148330 1.4013894 1.0989377 1.4993036 1.1930537 -0.2020819 -0.2238406 -0.1294262 0.8152604 0.8316472 -1.3959357 -1.3609915 -1.4062996 0.6697321 0.6828904 -0.1937799 NA -0.2888726 -0.2958180 0.3204190 1.5198588 -1.1282654 NA -1.2122345 -1.2418611 0.2624913 NA 1.6077621 -0.4477493 -0.4734418 NA -0.4839150 NA -1.1854024 -1.2176335 1.4833300 -1.2428107 0.3916509 0.7887402 1.6678741 NA 0.9822462 1.0052211 1.1126740 1.3315177 1.9037926 0.3722317 NA NA NA 0.8292079 -1.467018 -1.4233909 -1.4596071 1.2346506 1.2107978 -1.5734509 NA NA -1.5639607 NA NA 0.5806220 0.5504797 0.2981476 0.7486768 1.1405210 NA 0.6683860 0.4868803 NA 0.4165201 0.6152568 0.9980505 -1.3100252 -1.2716544 -1.3128674 0.5907907 0.8788643 0.6107559 1.0095935 1.3035491 0.7451999 0.5627561 0.9834130 1.2909937 1.6220632 -0.4186394 NA -0.7697773 -0.1253444 1.0876431 -0.8616315 -1.1367958 NA 1.2497027 NA -1.6097591 -1.6166849 -1.6210227 -0.3037775 0.4388831 -1.3936888 -1.4577167 -1.2647336 1.0813246 0.9720395 0.1710225 NA 0.2077831 NA 1.2359488 -1.1374356 1.1183329 NA -1.1174660 0.8635759 1.2172108 0.9358635 -1.5162941 -1.5810224 -1.5466971 -0.1736298 1.0039778 1.0027845 -0.4425238 NA -0.2541584 0.4080057 1.3089554 0.8241258 1.0855370 -1.6020430 -1.5856622 -1.5767926 -0.7146888 0.0799493 1.3359869 -1.6162525 NA NA -1.6234123 -1.4026898 1.2974999 -1.5878769 -1.6027222 -1.6056446 -0.5690702 0.4060843 -1.6090636 NA -1.6280003 0.6161623 0.9984081 NA 1.2167926 1.3686037 1.7934091 1.6999514
IgG1_FHA 1.3506850 -0.2977802 0.6075326 0.5711867 0.5056711 1.6506091 -0.4257567 NA -0.4471017 -0.477857 1.0316552 0.7943434 0.6657492 0.5406431 -0.1094899 NA 0.6482202 0.5448984 0.3556803 0.4478794 1.5264968 -0.7523011 -0.4173621 -0.7596757 -0.3282365 0.4848517 -1.4186293 -1.3894570 -1.3966438 NA 0.5816485 -0.7534875 -0.6832778 -0.6664927 1.3315595 1.2289065 -1.0289313 -1.0324562 -0.9646443 0.9321696 1.1396097 0.1346369 0.1734824 0.0669689 1.1944970 1.1617900 -0.8344398 NA -0.8750117 -0.8687773 0.0982956 -0.3750523 -1.3673432 NA -1.3976043 -1.4300236 -0.7100758 NA -0.2587634 -0.5780591 -0.5997359 NA 0.0623581 NA -0.1936320 -0.1748087 -0.5320424 -0.2215912 0.1475357 0.8878089 1.0538224 NA 0.5522584 0.5614938 0.6770099 1.1042305 1.3703839 -1.2615570 NA NA NA 0.5019115 -1.062923 -0.9538963 -1.0924051 0.4927672 1.1672686 -0.7750806 NA NA -0.5454957 NA NA 0.5396284 0.4956983 0.3646978 0.7282447 1.1015285 NA 0.3940600 0.1161021 NA 0.0492946 0.3315313 -0.3099908 -1.1147962 -1.1143761 -1.1494951 0.4595512 1.1809603 1.4329895 -0.2438264 0.3454627 -0.7465454 -0.8560758 -0.4839463 0.2069417 1.4544340 -0.6198442 NA -0.9761960 -0.3855206 0.3449920 -1.1579571 -1.3571022 NA 0.9355954 NA -1.4594471 -1.5094374 -1.5245588 0.3223425 0.4196430 -0.3247627 -0.7172022 0.0217575 0.8066441 0.7195188 -0.0472527 NA -0.0118845 NA 1.3525733 -1.2840472 1.2022661 NA -1.3100265 0.2245244 1.2158409 1.0225698 -1.2072489 -1.3601164 -1.2818596 -0.5747859 0.8698355 1.1558508 0.4565169 NA 0.5471708 1.2370526 1.4364480 1.1094517 1.1644405 -0.1967018 -0.1641138 -0.1065036 0.1316295 1.0013691 1.4422122 -1.0083758 NA NA -1.1527846 -0.1089413 1.8572685 -1.2424072 -1.3474181 -1.3387465 -0.2644275 0.7718261 -1.6149327 NA -1.6352330 -1.3599993 0.2779243 NA 0.2383531 0.5570120 1.5052449 2.2293525
IgG1_TT 0.2212083 -0.2363772 0.1153790 0.1501327 0.4998592 0.6206998 -1.1879717 NA -1.1677321 -0.353964 0.3943050 0.0606662 -0.0562036 -0.1337434 -0.2190498 NA 0.2745302 0.2265518 0.1253496 0.3168206 0.6737412 -0.0914048 0.1379777 -0.1405669 0.2883382 0.5866187 -0.6133177 -0.5134034 -0.5020854 NA -0.0712787 0.1375604 0.2048780 0.1989123 0.8343232 0.6145651 -0.6087146 -0.6245129 -0.5502352 0.4305834 0.4578713 -0.7273121 -0.6750379 -0.7433865 0.4970171 0.4238074 -0.2140155 NA -0.2626072 -0.2500864 0.2452828 0.1697469 -0.3541930 NA -0.4127644 -0.4300357 0.3324347 NA 0.2355964 -0.1387620 -0.1138309 NA 0.4105803 NA -0.0911831 -0.1088042 0.1177952 -0.1418370 0.1945635 0.4386851 0.5165128 NA -0.1402802 -0.1128591 0.4287161 0.6128532 0.6137218 0.1054313 NA NA NA 0.5929229 0.122508 0.2135081 0.0626293 0.5006725 0.5483192 -0.3584005 NA NA -0.2284058 NA NA -0.1213124 -0.1046139 -0.1983784 0.1176281 0.3874810 NA -0.1602125 -0.2787660 NA -0.1509396 -0.0274665 0.4994658 -0.5925738 -0.5902869 -0.6769808 -0.2972627 -0.1687434 0.2774595 0.5103652 0.6098183 0.1288854 0.0023512 0.2975727 0.6266220 0.7670068 -0.0420759 NA -0.2286596 0.0866948 0.4114217 0.0414597 -0.1721776 NA 0.5705432 NA -0.2062715 -0.3255722 -0.3188989 0.5235603 0.5279391 -0.6958706 -0.7546335 -0.5368431 0.0187387 -0.0208020 -0.4555789 NA -0.4233707 NA 0.4874020 -0.2317325 0.3297883 NA -0.2462165 0.4039148 0.5115052 0.2617891 -0.3652931 -0.4857155 -0.4492400 0.1035992 0.3051312 0.3045197 -0.7551563 NA -0.6797618 0.1754229 0.5531147 0.4867998 0.5026983 -0.8511436 -0.8033890 -0.7974573 -0.1418537 0.2332835 0.5644479 -0.3327233 NA NA -0.4470547 0.5910554 0.6543214 -0.6583313 -0.7018538 -0.7464511 -0.0979317 0.2265518 0.1173426 NA -0.0632721 0.5020870 0.6121622 NA -0.8401834 -0.7486132 0.6866778 0.5932148
IgG1_DT 0.9618455 -0.1219424 0.5636808 0.6215144 0.0147097 0.7996684 -1.4117879 NA -1.3977960 -1.397610 -0.6326299 0.7396089 0.6152757 0.5757691 -0.0385431 NA 0.3327219 0.2109730 0.1748501 -0.0708445 0.5998486 -0.6810889 -0.4216137 -0.6852385 -0.5977430 0.0697491 -0.5768223 -0.4659923 -0.4479035 NA 0.3214171 0.5817925 0.7224320 0.6452783 1.1322016 0.9235500 -0.7190422 -0.7161835 -0.6789913 0.3987793 0.4813228 -1.1285141 -1.0842049 -1.1498942 -0.1015142 -0.0358844 -0.4233804 NA -0.4927323 -0.4596792 0.3573823 0.0966332 -0.6669016 NA -0.7500108 -0.7956302 -0.2216030 NA 0.2313665 -0.7525420 -0.7391718 NA 0.2374314 NA -1.1408122 -1.1505494 -0.0117220 -1.1743715 -0.5320106 0.2380100 0.8278466 NA 0.3106569 0.3585596 0.7394174 0.8224591 1.0991656 -0.6213020 NA NA NA 0.7874616 0.322349 0.5176784 0.2085603 0.9971415 1.0368048 -0.4312356 NA NA -0.2576829 NA NA -0.0469112 -0.0516385 -0.2004471 0.0228010 0.1154203 NA -0.6537624 -0.7790657 NA -0.0010276 0.2447321 0.6004382 0.1108874 0.1295092 0.0670279 0.1415768 0.2878871 1.0061072 0.6824151 0.7992967 0.7472397 0.5745481 0.7819825 0.8765031 0.9543737 -0.1663792 NA -0.6085284 0.0647079 0.5370405 0.3824414 -0.2727789 NA 0.4968278 NA -1.1349676 -1.2194507 -1.2107943 -0.2468946 -0.0993884 -0.9833739 -1.1214896 -0.7694778 -0.2119415 -0.3787125 0.3285273 NA 0.3390247 NA 0.5581017 0.5947877 0.8229285 NA 0.4581857 0.8195270 0.9222018 0.7221740 -0.0815792 -0.2805638 -0.1971866 0.6002721 0.7275206 0.7970933 -0.6678988 NA -0.5658232 0.9322418 1.3015691 0.7198123 0.6997091 -1.3295312 -1.2917790 -1.2859290 -0.1506715 0.6238285 1.2868150 -1.0579413 NA NA -1.1620492 0.9869462 1.2003673 -0.5547750 -0.6456937 -0.6690062 -0.2621555 -0.0935755 -0.5870612 NA -0.8028134 1.0844437 1.1131366 NA -1.3926417 -1.3735541 0.9365917 0.9168876
IgG1_OVA -4.6534700 -4.9440260 30.9856186 41.6696129 17.8935757 50.3149986 -1.9460940 NA 0.3489890 -4.440108 0.8776903 -5.2172551 -5.2293153 -4.9975972 -5.2293153 NA -5.2293153 -5.2293153 -5.1465273 -5.2293153 -5.1167412 -4.5038233 -3.7242460 -4.1784821 -5.0564332 -3.9997663 11.9134026 13.3803635 14.3260689 NA 8.3541508 -5.1749468 -5.0960135 -5.1433735 -4.8907881 -5.0012941 -5.0960135 -5.0802274 -5.0881205 -4.9539347 -4.8276420 -3.2647707 -2.3017895 -3.6910083 -1.6861129 -1.7097929 -3.7778344 NA -4.1330328 -4.0462065 -4.6888008 28.4532394 -4.3461514 NA -4.6855626 -4.7960687 -4.6888008 NA 34.2642021 -3.4384232 -3.4226365 NA -4.3481998 NA -5.0802274 -5.1118002 19.3646812 -5.1591601 -5.2293153 -4.7408156 13.3281937 NA -5.0805230 -5.0331631 -5.0963097 -5.0647364 20.0938702 -4.8279376 NA NA NA -4.9599018 -5.112096 -5.0805230 -5.1907434 -5.0418134 -5.1013851 5.8437886 NA NA 12.3557529 NA NA -3.2966397 -3.3124261 -3.5227275 -3.2397604 -0.4994488 NA -4.2911940 -4.6542854 NA -4.8184185 -4.7737393 0.7891407 -5.2293153 -5.2293153 -5.2293153 -5.2293153 -5.2293153 -4.5331912 1.1650114 -0.6542034 -5.2293153 -5.2293153 -5.2293153 -5.1244340 -5.1708651 17.7351494 NA 9.7894382 29.9155769 7.0482554 -5.0470486 -5.2293153 NA -4.7684622 NA -5.0315719 -5.2078114 -5.1166954 -5.0470486 -5.0006175 7.1024251 3.7667499 16.2803097 10.3293877 6.2511888 0.0097260 NA 0.3771720 NA -1.9772053 19.0965157 -1.1879401 NA 20.4165993 17.3630600 22.4226589 -2.5711451 -2.3106287 -3.5966907 -3.1475897 -2.4490957 -2.7885072 -2.5861800 0.7174001 NA 1.1460876 -4.8414054 -2.5185232 2.1526918 -0.9651575 -3.0523257 -2.3038242 -1.4872770 -2.3070166 -4.3119121 -2.3531401 5.1342082 NA NA 0.7214837 -1.8269207 -4.8789926 -4.8489227 -4.9391317 -4.9541669 -4.9992714 -4.6859760 -5.2293153 NA -5.2293153 -5.2293153 -5.1565375 NA -5.1413584 -5.0958200 -4.9743848 -5.0199232
IgG2_PT -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 NA -4.8417406 -4.841741 -4.8417406 0.9762440 0.0645370 -0.3977962 -0.1611032 NA -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.6582747 -4.0976048 -3.9481947 -4.7371721 -3.3959105 -3.7115016 -4.8417406 -4.8417406 -4.8417406 NA -2.2847350 -4.5482841 -4.5078635 -4.7099662 -4.3866019 -4.3866019 -4.6291251 -4.6291251 -4.6291251 -4.1440787 -4.2249198 -4.3866019 -3.1739864 -3.7398736 -3.4165094 -0.5870733 -4.8417406 NA -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 NA -4.8417406 -4.8417406 -4.8417406 NA -4.8417406 -4.8417406 -4.8417406 NA -4.5482841 NA -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.3057609 -4.8417406 NA -4.8417406 -4.8417406 -4.3351817 2.0138879 -4.8417406 -4.8417406 NA NA NA -4.8417406 -2.182955 -2.6134002 -2.2934744 1.1660848 20.4597816 -4.5504045 NA NA -4.5504045 NA NA 28.5938911 26.8721085 25.3829994 23.8749886 27.3345490 NA -2.2367604 -2.3981774 NA -2.3821812 -0.8741679 -1.5204196 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.5813551 -1.4689755 0.8460178 -4.5985036 -4.4327383 -4.8417406 -1.7804990 0.9546227 -2.9408538 NA -1.5732932 -2.2777941 -3.1066189 -4.8417406 -4.8417406 NA -4.8417406 NA -4.5156212 -4.3498559 -4.8417406 -4.5156212 -4.5985036 -3.1895013 -2.2363529 -2.7336476 -3.6867962 -2.6093240 -4.8417406 NA -4.8417406 NA -4.8417406 -4.8417406 0.2286863 NA -4.8417406 -4.8417406 -4.8417406 -1.4689755 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -1.6108489 -1.8290854 81.6821518 NA 69.6829071 -4.8417406 0.1000757 114.0673370 138.6068878 1.1284084 3.3341522 0.7313747 1.2097454 2.1499434 0.3315749 -4.8417406 NA NA -4.8417406 -4.8417406 -4.7614102 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 -4.8417406 NA -4.8417406 -4.8417406 -4.8417406 NA -4.8417406 -4.8417406 -4.2561626 -4.4147205
# abtiter <- head(results$abtiter$group1)
knitr::kable(results$abtiter$group1[1:10,], "html", align = "lccrr", booktabs=TRUE, border_left = T, 
             border_right = T, caption = "Ab-titer After Imputation")  %>% 
  kable_styling("striped", full_width = T) %>% 
  scroll_box(width = "100%", height = "400px")
Ab-titer After Imputation
1 102 103 104 105 106 114 115 116 117 118 131 132 133 134 135 138 139 140 141 142 146 147 148 149 150 153 154 155 156 157 160 161 162 163 164 167 168 169 170 171 174 175 176 177 178 181 182 183 184 185 19 191 192 193 194 195 2 20 201 202 203 204 205 208 209 21 210 211 212 22 223 224 225 226 227 23 241 242 243 244 245 248 249 250 251 252 255 256 257 258 259 27 274 275 276 277 278 28 281 282 283 284 285 29 293 294 295 296 297 3 30 31 324 325 326 327 328 332 333 334 335 336 342 343 344 345 346 349 350 351 352 353 355 356 357 358 359 360 361 362 363 364 369 37 370 371 372 373 38 385 386 387 388 389 39 397 398 399 4 40 400 401 405 406 407 408 409 41 45 46 47 48 49 5 70 71 72 73 74 77 78 79 80 81 87 88 89 90 91
IgG_PT 3.7369909 1.5812328 2.010138 2.2775645 2.195767 3.164491 0.3022485 3.554364 1.0977616 0.8818502 5.4768755 9.9703188 8.0189047 7.8218422 8.8619719 3.554364 2.2206292 1.5235772 1.1624494 10.3925629 9.9687462 3.4783800 3.6482749 4.1868041 9.2039127 9.2753525 4.8572533 5.1131613 1.3536265 3.554364 7.2634585 5.8423026 0.5266731 0.1660485 1.3963358 1.9276724 3.4813619 0.3164353 0.1071825 7.4763405 4.9046152 0.3212907 0.3451729 0.2889280 4.3562596 7.206231 0.2057443 2.855624 0.1632783 0.1562729 1.2879777 1.096365 0.6814096 3.053528 0.3191361 0.5004156 1.2589645 3.226343 0.7126839 0.6550293 0.2070153 3.554364 1.0322037 3.554364 0.7062254 0.2070153 0.5163183 0.5036106 0.0292125 2.3958902 6.4240572 3.554364 0.7832427 1.0025187 1.915441 4.0925963 7.041546 0.1215158 3.554364 3.554364 3.554364 1.7987329 1.6457729 1.4969113 1.5909426 7.9525442 14.8636341 0.5564303 3.059515 3.132579 0.6278489 3.554364 3.554364 1.286315 1.779609 2.267047 4.0034292 4.2152107 3.146933 1.0573809 0.5230799 3.554364 1.4585850 2.2563970 1.6274474 0.7070336 0.5414031 0.4815500 4.9186862 6.6036446 2.2555330 1.4212642 7.896540 1.1682737 1.0851722 1.0827188 7.9707794 8.8637295 1.0043149 3.281347 0.8011198 0.7730763 1.444783 0.9035020 0.8018939 3.554364 12.5800486 3.554364 0.1030712 0.1344798 0.0292125 0.4232318 2.0982757 9.8426008 10.6538553 9.4371538 13.0435181 10.9679337 5.3135712 3.554364 5.6632617 3.554364 15.3092127 0.0292125 3.7980063 3.554364 0.0292125 0.1948159 0.0292125 3.156479 0.4217737 0.3811560 0.1895924 0.9027581 2.882177 2.237951 2.9231575 3.554364 0.0292125 3.2503686 5.9969485 3.5355237 5.9951093 17.0899153 8.8655596 6.1400506 6.7341721 11.9511614 5.3272021 0.2133272 2.797947 3.554364 0.1749334 9.1288853 10.8741112 0.2208092 0.1935151 0.3498750 0.9079599 0.9488626 0.0292125 3.010039 0.0292125 0.2527905 0.2082834 3.554364 1.9695983 1.9205148 29.0916357 22.5918379
IgG_PRN 2.6023502 1.1855308 1.401832 0.4081304 13.653467 15.279098 1.0428591 2.932933 2.1613960 5.5886261 18.3410323 0.4015439 0.3789158 0.3804405 0.4154973 2.932933 1.9658194 1.2581056 0.9023895 0.6842494 0.5627241 2.5848720 0.4210441 0.4305670 0.5157425 0.5496795 0.5063651 0.5134389 2.3731956 2.932933 0.4425449 2.2055516 14.4174387 6.5191815 12.1626179 14.0779374 1.4681344 1.9693505 0.8022120 0.5303097 0.5061736 0.3523557 0.3866448 0.2978516 0.5751569 35.471198 1.0921301 3.163481 0.9799696 0.9325619 4.4058735 7.652635 0.7411337 3.030399 0.3998146 0.5729730 6.2689440 2.946610 5.2914417 1.1758318 0.3776584 2.932933 5.3099692 2.932933 0.7990232 0.2746861 3.6757700 0.6054659 0.5266838 0.4851403 10.4767821 2.932933 5.0773408 6.5676119 7.914732 0.5131013 8.076863 3.0775237 2.932933 2.932933 2.932933 5.1937497 1.4787329 1.3906153 1.3426714 0.6077578 0.7723064 0.1826100 2.795148 2.883554 0.2026155 2.932933 2.932933 1.355020 2.040444 3.075334 0.4553125 7.7043617 3.590483 4.0451143 1.9882156 2.932933 4.3618362 4.5852339 4.0761230 0.4792595 0.3809433 0.3247206 0.4812448 0.5708547 1.3703934 2.9558847 7.771326 4.8980067 4.3467767 4.3434994 0.5460351 0.5793171 1.4787939 2.598960 1.2265577 1.1782409 10.063095 0.6571081 0.5902708 2.932933 0.6349804 2.932933 0.1398361 0.1542146 0.0686703 1.4024354 12.2405827 0.3261638 0.3397176 0.3209593 0.5566738 0.5372808 0.4585733 2.932933 0.4661207 2.932933 0.6535802 1.0440185 5.2682741 2.932933 0.0486264 5.1025412 0.5870812 4.585033 0.2489765 0.2307072 0.1306453 2.3912022 0.625741 3.405461 1.9516484 2.932933 0.4029775 2.2351377 5.2903206 0.4526079 0.5416853 0.3856783 0.2341800 0.1797869 0.3850033 0.4744518 5.0623982 0.0901761 2.663086 2.932933 0.0853024 2.2562387 7.6599567 0.1554005 0.1499612 2.2504954 4.0113413 4.0510833 0.0667384 3.389242 0.0737429 10.8131869 9.8438942 2.932933 6.4768689 6.1083572 9.7070725 7.7728846
IgG_FHA 34.0509555 1.1102316 5.075366 2.3413603 75.284753 22.129838 1.2156241 3.883202 0.5959508 1.1217988 0.0844362 2.4494011 2.3267584 2.3260968 2.4213140 3.883202 10.4575722 5.4772303 0.8013904 3.1514616 3.1136498 1.0603960 1.8442016 1.8925714 2.3104835 2.2439418 1.9078816 1.9034318 12.1002853 3.883202 2.5351601 14.2434871 0.8896022 0.3441718 17.3114650 0.0844362 3.4111025 0.5197871 0.2705369 2.4387624 2.3306830 2.2253778 2.0961363 1.8918353 3.1136498 67.224091 0.5243120 3.674054 0.5031917 0.4936619 2.1061606 1.096456 0.2706347 3.671143 0.1575172 0.2090044 1.3426516 3.785521 0.7504671 0.9761703 0.3815570 3.883202 2.3839669 3.883202 2.2045848 0.7813461 0.6057503 1.7559123 2.2670479 2.2375367 0.0844362 3.883202 4.1202953 6.0922000 12.136321 2.5720832 11.564208 0.3265438 3.883202 3.883202 3.883202 6.1566842 0.7452638 0.6668658 0.6960423 2.2804134 3.3419926 0.5905793 3.647105 3.736402 0.6741705 3.883202 3.883202 2.385302 3.458818 7.264578 2.3139617 0.0844362 3.875440 3.0093699 1.4224961 3.883202 2.4180963 3.4111025 0.8198247 0.7641480 0.6419930 0.5887663 2.3373640 2.9561422 4.4389589 0.7059643 2.931145 0.8261929 0.7667184 0.8053200 2.1620059 2.6174214 1.0238283 3.230149 0.8412743 0.8038454 4.332021 0.4429457 0.4050975 3.883202 2.3927295 3.883202 0.2663734 0.2795954 0.1433141 4.1940243 0.0844362 2.0723855 2.1114640 2.0649033 2.4783099 2.4916942 1.9602523 3.883202 1.9776523 3.883202 2.9945073 0.3966215 0.0844362 3.883202 0.0844362 2.1283281 2.5404730 10.531453 0.5288665 0.5126457 0.3060036 1.3957465 2.679419 4.666934 0.0844362 3.883202 2.3477523 10.3375618 0.0844362 2.4810243 3.0288429 2.7431159 3.0003364 2.2307765 2.1532235 3.0163069 0.0844362 0.3792889 3.504662 3.883202 0.3847086 10.0848114 0.0844362 0.3759458 0.3354003 0.6447048 5.8343484 5.9912760 0.1046925 3.914662 0.1067643 2.4787974 2.2369671 3.883202 3.0367234 2.8561480 19.5080421 35.9892967
IgG1_PT 7.3347120 3.3842437 2.950868 3.6929920 4.828694 16.543522 0.0487838 5.199835 0.1202135 0.2414279 3.5190971 20.1184106 17.6003327 15.1221604 7.1429915 5.199835 3.1036589 2.6587226 2.3924408 6.9577746 19.6916318 5.5692434 8.5184236 5.6573944 6.5432549 17.1475797 0.8130479 0.8078613 0.8292170 5.199835 11.1642184 0.1479964 0.1650577 0.1726408 2.3839734 2.5517428 0.0958648 0.0955491 0.1182971 12.8886733 14.5606790 0.0898619 0.1113462 0.0784874 6.2069664 13.218209 0.0731163 4.642797 0.0617423 0.0607944 1.5206518 1.424096 0.6813197 4.824586 0.5028081 0.4168696 0.6323743 5.074737 1.8376701 0.8828959 0.8367672 5.199835 5.5899220 5.199835 0.2279320 0.2175055 1.0613303 0.1909657 2.7834971 7.5786624 10.5464292 5.199835 0.4100404 0.4949851 1.357809 4.7927151 17.118220 0.0281243 5.199835 5.199835 5.199835 2.4261703 1.6497641 2.2233074 1.8225858 15.2497745 21.1475530 0.7926259 4.865930 4.847702 1.2113292 5.199835 5.199835 2.946006 2.962392 2.497687 5.4258823 9.2837901 4.783921 1.1437750 0.6882844 5.199835 1.9609833 3.7492220 4.4071789 0.6713719 0.7190495 0.5573096 8.4686370 11.2749896 8.2844748 4.4874549 14.426773 1.2749743 0.9682460 2.1051691 13.2646327 19.5522466 0.1646681 4.791113 0.0690689 0.3234191 0.740418 1.3256731 0.6556411 5.199835 22.4988046 5.199835 0.0290484 0.0046368 0.0119376 0.0556655 0.0708752 15.5283389 8.2670007 19.5823503 20.8504567 18.6897321 12.3557744 5.199835 13.1698852 5.199835 21.8122048 0.0052357 7.4563117 5.199835 0.0052357 0.0279551 0.1120958 5.898551 0.1021061 0.0355253 0.0721021 0.4087329 3.751922 6.215251 1.1653934 5.199835 1.5654480 6.5576949 13.6768537 3.2055030 2.4851928 8.5909762 9.5996842 9.7842813 13.7692819 16.8636785 12.9574180 0.0841308 4.813440 5.199835 0.0407753 0.8645353 19.3869481 0.0046368 0.0046368 0.0046368 0.0638080 0.4999695 0.0046368 4.738888 0.0046368 0.0046368 0.0281620 5.199835 2.0303752 2.7105904 28.1057038 26.4512544
IgG1_PRN 2.1747831 1.4424160 1.245463 1.1905799 2.355310 3.028578 0.0821924 1.641732 0.1214989 0.2549950 1.2495635 1.5017189 1.3129587 1.1262704 0.9427906 1.641732 1.4738851 1.3797220 1.1597433 1.8400568 2.8758329 1.4744548 1.8453909 1.3322470 1.5238823 2.4908818 0.8892975 1.0014329 1.0526941 1.641732 1.8262875 2.6565646 3.0431210 2.7406694 3.1410352 2.8347853 1.4396497 1.4178910 1.5123054 2.4569920 2.4733788 0.2457960 0.2807401 0.2354320 2.3114637 2.324622 1.4479517 1.628691 1.3528590 1.3459136 1.9621506 3.161590 0.5134662 1.810468 0.4294971 0.3998705 1.9042230 1.637565 3.2494937 1.1939824 1.1682898 1.641732 1.1578166 1.641732 0.4563292 0.4240981 3.1250616 0.3989209 2.0333825 2.4304718 3.3096057 1.641732 2.6239778 2.6469527 2.754406 2.9732493 3.545524 2.0139633 1.641732 1.641732 1.641732 2.4709395 0.1747137 0.2183408 0.1821245 2.8763822 2.8525294 0.0682807 1.735234 1.557671 0.0777709 1.641732 1.641732 2.222354 2.192211 1.939879 2.3904084 2.7822527 1.791334 2.3101176 2.1286119 1.641732 2.0582517 2.2569884 2.6397821 0.3317064 0.3700773 0.3288642 2.2325224 2.5205959 2.2524875 2.6513251 2.945281 2.3869315 2.2044877 2.6251446 2.9327253 3.2637948 1.2230922 1.658701 0.8719543 1.5163872 2.729375 0.7801002 0.5049359 1.641732 2.8914343 1.641732 0.0319725 0.0250467 0.0207089 1.3379542 2.0806147 0.2480428 0.1840149 0.3769981 2.7230562 2.6137711 1.8127542 1.641732 1.8495147 1.641732 2.8776804 0.5042961 2.7600645 1.641732 0.5242656 2.5053076 2.8589424 2.577595 0.1254375 0.0607092 0.0950345 1.4681019 2.645709 2.644516 1.1992078 1.641732 1.3875732 2.0497373 2.9506871 2.4658574 2.7272686 0.0396886 0.0560694 0.0649390 0.9270428 1.7216809 2.9777185 0.0254791 2.061464 1.641732 0.0183194 0.2390418 2.9392315 0.0538547 0.0390095 0.0360870 1.0726614 2.0478159 0.0326680 1.422699 0.0137314 2.2578939 2.6401397 1.641732 2.8585242 3.0103353 3.4351407 3.3416830
IgG1_FHA 3.0132531 1.3647879 2.270101 2.2337548 2.168239 3.313177 1.2368114 1.662568 1.2154664 1.1847111 2.6942233 2.4569114 2.3283173 2.2032112 1.5530782 1.662568 2.3107883 2.2074665 2.0182484 2.1104475 3.1890649 0.9102670 1.2452060 0.9028924 1.3343316 2.1474198 0.2439388 0.2731111 0.2659243 1.662568 2.2442166 0.9090806 0.9792903 0.9960754 2.9941276 2.8914746 0.6336368 0.6301119 0.6979238 2.5947376 2.8021778 1.7972050 1.8360505 1.7295370 2.8570651 2.824358 0.8281283 1.279866 0.7875564 0.7937908 1.7608637 1.287516 0.2952249 1.565630 0.2649637 0.2325445 0.9524923 1.382448 1.4038047 1.0845090 1.0628322 1.662568 1.7249262 1.662568 1.4689361 1.4877594 1.1305257 1.4409769 1.8101038 2.5503770 2.7163905 1.662568 2.2148265 2.2240618 2.339578 2.7667986 3.032952 0.4010111 1.662568 1.662568 1.662568 2.1644796 0.5996451 0.7086718 0.5701630 2.1553353 2.8298367 0.8874875 1.548569 1.538518 1.1170723 1.662568 1.662568 2.202196 2.158266 2.027266 2.3908128 2.7640966 1.728477 2.0566281 1.7786702 1.662568 1.7118627 1.9940994 1.3525773 0.5477719 0.5481920 0.5130730 2.1221193 2.8435284 3.0955576 1.4187417 2.008031 0.9160227 0.8064923 1.1786218 1.8695098 3.1170021 1.0427239 1.654607 0.6863721 1.2770475 2.007560 0.5046110 0.3054659 1.662568 2.5981635 1.662568 0.2031209 0.1531307 0.1380093 1.9849106 2.0822111 1.3378054 0.9453659 1.6843256 2.4692122 2.3820869 1.6153154 1.662568 1.6506836 1.662568 3.0151414 0.3785208 2.8648342 1.662568 0.3525416 1.8870925 2.8784090 2.685138 0.4553192 0.3024517 0.3807085 1.0877821 2.532404 2.818419 2.1190850 1.662568 2.2097389 2.8996207 3.0990161 2.7720197 2.8270086 1.4658663 1.4984543 1.5560645 1.7941976 2.6639372 3.1047803 0.6541923 1.346454 1.662568 0.5097835 1.5536268 3.5198365 0.4201609 0.3151500 0.3238215 1.3981405 2.4343942 0.0476354 1.180319 0.0273350 0.3025688 1.9404924 1.662568 1.9009212 2.2195801 3.1678129 3.8919206
IgG1_TT 1.4288515 0.9712660 1.323022 1.3577758 1.707502 1.828343 0.0196714 1.207643 0.0399110 0.8536791 1.6019481 1.2683094 1.1514395 1.0738997 0.9885933 1.207643 1.4821733 1.4341949 1.3329928 1.5244638 1.8813844 1.1162384 1.3456209 1.0670762 1.4959813 1.7942618 0.5943255 0.6942398 0.7055577 1.207643 1.1363645 1.3452035 1.4125211 1.4065554 2.0419663 1.8222083 0.5989286 0.5831303 0.6574080 1.6382265 1.6655145 0.4803311 0.5326053 0.4642566 1.7046603 1.631450 0.9936276 1.078963 0.9450359 0.9575567 1.4529259 1.377390 0.8534502 1.308156 0.7948787 0.7776074 1.5400778 1.120224 1.4432396 1.0688812 1.0938122 1.207643 1.6182234 1.207643 1.1164601 1.0988389 1.3254384 1.0658062 1.4022067 1.6463282 1.7241559 1.207643 1.0673629 1.0947840 1.636359 1.8204963 1.821365 1.3130745 1.207643 1.207643 1.207643 1.8005661 1.3301512 1.4211513 1.2702725 1.7083156 1.7559624 0.8492426 1.305105 1.234761 0.9792374 1.207643 1.207643 1.086331 1.103029 1.009265 1.3252712 1.5951241 1.226005 1.0474306 0.9288772 1.207643 1.0567036 1.1801766 1.7071090 0.6150694 0.6173562 0.5306624 0.9103804 1.0388998 1.4851027 1.7180084 1.817462 1.3365285 1.2099943 1.5052159 1.8342651 1.9746499 1.1655673 1.421191 0.9789836 1.2943380 1.619065 1.2491028 1.0354656 1.207643 1.7781863 1.207643 1.0013716 0.8820710 0.8887442 1.7312034 1.7355822 0.5117725 0.4530096 0.6708001 1.2263819 1.1868411 0.7520642 1.207643 0.7842725 1.207643 1.6950451 0.9759107 1.5374315 1.207643 0.9614267 1.6115580 1.7191484 1.469432 0.8423500 0.7219276 0.7584032 1.3112423 1.512774 1.512163 0.4524869 1.207643 0.5278814 1.3830661 1.7607578 1.6944430 1.7103415 0.3564996 0.4042541 0.4101858 1.0657895 1.4409267 1.7720910 0.8749199 1.312631 1.207643 0.7605885 1.7986985 1.8619646 0.5493119 0.5057894 0.4611920 1.1097114 1.4341949 1.3249857 1.418585 1.1443710 1.7097301 1.8198054 1.207643 0.3674598 0.4590299 1.8943210 1.8008579
IgG1_DT 2.3891534 1.3053654 1.990989 2.0488223 1.442018 2.226976 0.0155200 1.427308 0.0295118 0.0296979 0.7946780 2.1669167 2.0425836 2.0030769 1.3887647 1.427308 1.7600298 1.6382809 1.6021580 1.3564633 2.0271565 0.7462190 1.0056942 0.7420694 0.8295648 1.4970570 0.8504856 0.9613156 0.9794043 1.427308 1.7487249 2.0091003 2.1497399 2.0725862 2.5595094 2.3508579 0.7082657 0.7111244 0.7483166 1.8260871 1.9086306 0.2987938 0.3431029 0.2774136 1.3257936 1.391423 1.0039275 1.282705 0.9345755 0.9676286 1.7846901 1.523941 0.7604063 1.421938 0.6772970 0.6316777 1.2057048 1.440349 1.6586744 0.6747659 0.6881360 1.427308 1.6647393 1.427308 0.2864957 0.2767584 1.4155859 0.2529364 0.8952973 1.6653179 2.2551545 1.427308 1.7379647 1.7858675 2.166725 2.2497669 2.526473 0.8060058 1.427308 1.427308 1.427308 2.2147695 1.7496568 1.9449862 1.6358682 2.4244493 2.4641126 0.9960722 1.479074 1.427774 1.1696249 1.427308 1.427308 1.380397 1.375669 1.226861 1.4501089 1.5427282 1.365239 0.7735454 0.6482422 1.427308 1.4262803 1.6720400 2.0277461 1.5381953 1.5568171 1.4943358 1.5688846 1.7151949 2.4334151 2.1097230 2.226605 2.1745476 2.0018560 2.2092904 2.3038110 2.3816816 1.2609286 1.624240 0.8187794 1.4920157 1.964348 1.8097492 1.1545290 1.427308 1.9241357 1.427308 0.2923403 0.2078571 0.2165135 1.1804132 1.3279195 0.4439340 0.3058182 0.6578301 1.2153664 1.0485953 1.7558352 1.427308 1.7663325 1.427308 1.9854095 2.0220956 2.2502364 1.427308 1.8854935 2.2468349 2.3495096 2.149482 1.3457286 1.1467440 1.2301213 2.0275799 2.154828 2.224401 0.7594091 1.427308 0.8614846 2.3595496 2.7288769 2.1471201 2.1270169 0.0977767 0.1355288 0.1413789 1.2766364 2.0511364 2.7141229 0.3693665 1.471891 1.427308 0.2652587 2.4142541 2.6276752 0.8725328 0.7816142 0.7583017 1.1651523 1.3337324 0.8402466 1.634760 0.6244944 2.5117515 2.5404445 1.427308 0.0346662 0.0537537 2.3638996 2.3441955
IgG1_OVA 0.6652026 0.3746467 36.304291 46.9882855 23.212248 55.633671 3.3725786 5.318673 5.6676617 0.8785644 6.1963630 0.1014175 0.0893574 0.3210754 0.0893574 5.318673 0.0893574 0.0893574 0.1721454 0.0893574 0.2019315 0.8148494 1.5944266 1.1401906 0.2622395 1.3189063 17.2320752 18.6990361 19.6447415 5.318673 13.6728234 0.1437259 0.2226591 0.1752992 0.4278846 0.3173785 0.2226591 0.2384453 0.2305522 0.3647380 0.4910307 2.0539019 3.0168831 1.6276643 3.6325598 3.608880 1.5408382 5.600546 1.1856399 1.2724662 0.6298718 33.771912 0.9725213 5.988903 0.6331100 0.5226040 0.6298718 5.832268 39.5828748 1.8802495 1.8960361 5.318673 0.9704728 5.318673 0.2384453 0.2068725 24.6833539 0.1595125 0.0893574 0.5778570 18.6468663 5.318673 0.2381496 0.2855096 0.222363 0.2539363 25.412543 0.4907351 5.318673 5.318673 5.318673 0.3587708 0.2065768 0.2381496 0.1279292 0.2768593 0.2172875 11.1624613 6.024703 5.720834 17.6744256 5.318673 5.318673 2.022033 2.006247 1.795945 2.0789123 4.8192239 3.841911 1.0274787 0.6643872 5.318673 0.5002542 0.5449333 6.1078134 0.0893574 0.0893574 0.0893574 0.0893574 0.0893574 0.7854815 6.4836841 4.664469 0.0893574 0.0893574 0.0893574 0.1942387 0.1478076 23.0538220 4.999596 15.1081109 35.2342496 12.366928 0.2716241 0.0893574 5.318673 0.5502105 5.318673 0.2871008 0.1108613 0.2019773 0.2716241 0.3180552 12.4210978 9.0854225 21.5989823 15.6480603 11.5698614 5.3283987 5.318673 5.6958447 5.318673 3.3414674 24.4151883 4.1307325 5.318673 25.7352719 22.6817327 27.7413316 2.747528 3.0080440 1.7219820 2.1710830 2.8695769 2.530165 2.732493 6.0360727 5.318673 6.4647603 0.4772673 2.8001494 7.4713645 4.3535151 2.2663469 3.0148485 3.8313956 3.0116560 1.0067606 2.9655325 10.4528809 7.286963 5.318673 6.0401564 3.4917519 0.4396801 0.4697499 0.3795409 0.3645058 0.3194013 0.6326966 0.0893574 4.862638 0.0893574 0.0893574 0.1621351 5.318673 0.1773143 0.2228527 0.3442879 0.2987494
IgG2_PT 1.0000000 1.0000000 1.000000 1.0000000 1.000000 1.000000 1.0000000 5.841741 1.0000000 1.0000000 1.0000000 6.8179846 5.9062777 5.4439445 5.6806374 5.841741 1.0000000 1.0000000 1.0000000 1.0000000 1.1834660 1.7441359 1.8935459 1.1045685 2.4458301 2.1302390 1.0000000 1.0000000 1.0000000 5.841741 3.5570056 1.2934566 1.3338771 1.1317744 1.4551387 1.4551387 1.2126155 1.2126155 1.2126155 1.6976619 1.6168208 1.4551387 2.6677542 2.1018670 2.4252312 5.254667 1.0000000 5.916438 1.0000000 1.0000000 1.0000000 1.000000 1.0000000 5.793798 1.0000000 1.0000000 1.0000000 5.685723 1.0000000 1.0000000 1.0000000 5.841741 1.2934566 5.841741 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.5359797 1.0000000 5.841741 1.0000000 1.0000000 1.506559 7.8556285 1.000000 1.0000000 5.841741 5.841741 5.841741 1.0000000 3.6587858 3.2283404 3.5482662 7.0078254 26.3015223 1.2913361 6.053704 6.117347 1.2913361 5.841741 5.841741 34.435632 32.713849 31.224740 29.7167292 33.1762896 5.833825 3.6049802 3.4435632 5.841741 3.4595594 4.9675727 4.3213210 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.2603855 4.3727651 6.687758 1.2432370 1.4090023 1.0000000 4.0612416 6.7963634 2.9008868 6.224041 4.2684474 3.5639465 2.735122 1.0000000 1.0000000 5.841741 1.0000000 5.841741 1.3261194 1.4918847 1.0000000 1.3261194 1.2432370 2.6522393 3.6053877 3.1080930 2.1549444 3.2324166 1.0000000 5.841741 1.0000000 5.841741 1.0000000 1.0000000 6.0704269 5.841741 1.0000000 1.0000000 1.0000000 4.372765 1.0000000 1.0000000 1.0000000 1.0000000 4.230892 4.012655 87.5238924 5.841741 75.5246477 1.0000000 5.9418163 119.9090776 144.4486284 6.9701490 9.1758928 6.5731153 7.0514860 7.9916840 6.1733155 1.0000000 5.848206 5.841741 1.0000000 1.0000000 1.0803304 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 5.680357 1.0000000 1.0000000 1.0000000 5.841741 1.0000000 1.0000000 1.5855780 1.4270201
# knitr::kable(head(results$rnaseq), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "RNA seq")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# knitr::kable(head(results$cytof), "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Cell Frequency")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")
# 
# olink <- head(results$olink)
# knitr::kable(, "html", align = "lccrr", booktabs=TRUE, border_left = T, 
#              border_right = T, caption = "Olink")  %>% 
#   kable_styling("striped", full_width = T) %>% 
#   scroll_box(width = "100%", height = "400px")