library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#tinytex::install_tinytex()
#library(tinytex)
hatecrimes <- read_csv("data/hateCrimes2010.csv")
## Rows: 423 Columns: 44
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): County, Crime Type
## dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
head(hatecrimes)
## # A tibble: 6 × 44
##   county    year crimetype          `anti-male` `anti-female` `anti-transgender`
##   <chr>    <dbl> <chr>                    <dbl>         <dbl>              <dbl>
## 1 Albany    2016 Crimes Against Pe…           0             0                  0
## 2 Albany    2016 Property Crimes              0             0                  0
## 3 Allegany  2016 Property Crimes              0             0                  0
## 4 Bronx     2016 Crimes Against Pe…           0             0                  4
## 5 Bronx     2016 Property Crimes              0             0                  0
## 6 Broome    2016 Crimes Against Pe…           0             0                  0
## # ℹ 38 more variables: `anti-genderidentityexpression` <dbl>,
## #   `anti-age*` <dbl>, `anti-white` <dbl>, `anti-black` <dbl>,
## #   `anti-americanindian/alaskannative` <dbl>, `anti-asian` <dbl>,
## #   `anti-nativehawaiian/pacificislander` <dbl>,
## #   `anti-multi-racialgroups` <dbl>, `anti-otherrace` <dbl>,
## #   `anti-jewish` <dbl>, `anti-catholic` <dbl>, `anti-protestant` <dbl>,
## #   `anti-islamic(muslim)` <dbl>, `anti-multi-religiousgroups` <dbl>, …
summary(hatecrimes)
##     county               year       crimetype           anti-male       
##  Length:423         Min.   :2010   Length:423         Min.   :0.000000  
##  Class :character   1st Qu.:2011   Class :character   1st Qu.:0.000000  
##  Mode  :character   Median :2013   Mode  :character   Median :0.000000  
##                     Mean   :2013                      Mean   :0.007092  
##                     3rd Qu.:2015                      3rd Qu.:0.000000  
##                     Max.   :2016                      Max.   :1.000000  
##   anti-female      anti-transgender  anti-genderidentityexpression
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000              
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000              
##  Median :0.00000   Median :0.00000   Median :0.00000              
##  Mean   :0.01655   Mean   :0.04728   Mean   :0.05674              
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000              
##  Max.   :1.00000   Max.   :5.00000   Max.   :3.00000              
##    anti-age*         anti-white        anti-black    
##  Min.   :0.00000   Min.   : 0.0000   Min.   : 0.000  
##  1st Qu.:0.00000   1st Qu.: 0.0000   1st Qu.: 0.000  
##  Median :0.00000   Median : 0.0000   Median : 1.000  
##  Mean   :0.05201   Mean   : 0.3357   Mean   : 1.761  
##  3rd Qu.:0.00000   3rd Qu.: 0.0000   3rd Qu.: 2.000  
##  Max.   :9.00000   Max.   :11.0000   Max.   :18.000  
##  anti-americanindian/alaskannative   anti-asian    
##  Min.   :0.000000                  Min.   :0.0000  
##  1st Qu.:0.000000                  1st Qu.:0.0000  
##  Median :0.000000                  Median :0.0000  
##  Mean   :0.007092                  Mean   :0.1773  
##  3rd Qu.:0.000000                  3rd Qu.:0.0000  
##  Max.   :1.000000                  Max.   :8.0000  
##  anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
##  Min.   :0                           Min.   :0.00000         Min.   :0     
##  1st Qu.:0                           1st Qu.:0.00000         1st Qu.:0     
##  Median :0                           Median :0.00000         Median :0     
##  Mean   :0                           Mean   :0.08511         Mean   :0     
##  3rd Qu.:0                           3rd Qu.:0.00000         3rd Qu.:0     
##  Max.   :0                           Max.   :3.00000         Max.   :0     
##   anti-jewish     anti-catholic     anti-protestant   anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.02364   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :1.00000   Max.   :10.0000     
##  anti-multi-religiousgroups anti-atheism/agnosticism
##  Min.   : 0.00000           Min.   :0               
##  1st Qu.: 0.00000           1st Qu.:0               
##  Median : 0.00000           Median :0               
##  Mean   : 0.07565           Mean   :0               
##  3rd Qu.: 0.00000           3rd Qu.:0               
##  Max.   :10.00000           Max.   :0               
##  anti-religiouspracticegenerally anti-otherreligion anti-buddhist
##  Min.   :0.000000                Min.   :0.000      Min.   :0    
##  1st Qu.:0.000000                1st Qu.:0.000      1st Qu.:0    
##  Median :0.000000                Median :0.000      Median :0    
##  Mean   :0.007092                Mean   :0.104      Mean   :0    
##  3rd Qu.:0.000000                3rd Qu.:0.000      3rd Qu.:0    
##  Max.   :2.000000                Max.   :4.000      Max.   :0    
##  anti-easternorthodox(greek,russian,etc.)   anti-hindu      
##  Min.   :0.000000                         Min.   :0.000000  
##  1st Qu.:0.000000                         1st Qu.:0.000000  
##  Median :0.000000                         Median :0.000000  
##  Mean   :0.002364                         Mean   :0.002364  
##  3rd Qu.:0.000000                         3rd Qu.:0.000000  
##  Max.   :1.000000                         Max.   :1.000000  
##  anti-jehovahswitness  anti-mormon anti-otherchristian   anti-sikh
##  Min.   :0            Min.   :0    Min.   :0.00000     Min.   :0  
##  1st Qu.:0            1st Qu.:0    1st Qu.:0.00000     1st Qu.:0  
##  Median :0            Median :0    Median :0.00000     Median :0  
##  Mean   :0            Mean   :0    Mean   :0.01655     Mean   :0  
##  3rd Qu.:0            3rd Qu.:0    3rd Qu.:0.00000     3rd Qu.:0  
##  Max.   :0            Max.   :0    Max.   :3.00000     Max.   :0  
##  anti-hispanic       anti-arab       anti-otherethnicity/nationalorigin
##  Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000                   
##  1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000                   
##  Median : 0.0000   Median :0.00000   Median : 0.0000                   
##  Mean   : 0.3735   Mean   :0.06619   Mean   : 0.2837                   
##  3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000                   
##  Max.   :17.0000   Max.   :2.00000   Max.   :19.0000                   
##  anti-non-hispanic*  anti-gaymale    anti-gayfemale   anti-gay(maleandfemale)
##  Min.   :0          Min.   : 0.000   Min.   :0.0000   Min.   :0.0000         
##  1st Qu.:0          1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.0000         
##  Median :0          Median : 0.000   Median :0.0000   Median :0.0000         
##  Mean   :0          Mean   : 1.499   Mean   :0.2411   Mean   :0.1017         
##  3rd Qu.:0          3rd Qu.: 1.000   3rd Qu.:0.0000   3rd Qu.:0.0000         
##  Max.   :0          Max.   :36.000   Max.   :8.0000   Max.   :4.0000         
##  anti-heterosexual  anti-bisexual      anti-physicaldisability
##  Min.   :0.000000   Min.   :0.000000   Min.   :0.00000        
##  1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.00000        
##  Median :0.000000   Median :0.000000   Median :0.00000        
##  Mean   :0.002364   Mean   :0.004728   Mean   :0.01182        
##  3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.00000        
##  Max.   :1.000000   Max.   :1.000000   Max.   :1.00000        
##  anti-mentaldisability totalincidents    totalvictims    totaloffenders  
##  Min.   :0.000000      Min.   :  1.00   Min.   :  1.00   Min.   :  1.00  
##  1st Qu.:0.000000      1st Qu.:  1.00   1st Qu.:  1.00   1st Qu.:  1.00  
##  Median :0.000000      Median :  3.00   Median :  3.00   Median :  3.00  
##  Mean   :0.009456      Mean   : 10.09   Mean   : 10.48   Mean   : 11.77  
##  3rd Qu.:0.000000      3rd Qu.: 10.00   3rd Qu.: 10.00   3rd Qu.: 11.00  
##  Max.   :1.000000      Max.   :101.00   Max.   :106.00   Max.   :113.00
hatecrimes2 <- hatecrimes |>
  select(county, year, 'anti-black', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', `anti-multi-religiousgroups`, 'anti-gaymale', 'anti-hispanic', `anti-otherethnicity/nationalorigin`) |>
  group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 × 12
## # Groups:   county, year [4]
##   county    year `anti-black` `anti-white` `anti-jewish` `anti-catholic`
##   <chr>    <dbl>        <dbl>        <dbl>         <dbl>           <dbl>
## 1 Albany    2016            1            0             0               0
## 2 Albany    2016            2            0             0               0
## 3 Allegany  2016            1            0             0               0
## 4 Bronx     2016            0            1             0               0
## 5 Bronx     2016            0            1             1               0
## 6 Broome    2016            1            0             0               0
## # ℹ 6 more variables: `anti-age*` <dbl>, `anti-islamic(muslim)` <dbl>,
## #   `anti-multi-religiousgroups` <dbl>, `anti-gaymale` <dbl>,
## #   `anti-hispanic` <dbl>, `anti-otherethnicity/nationalorigin` <dbl>
dim(hatecrimes2)
## [1] 423  12
# There are currently 12 variables with 423 rows.
summary(hatecrimes2)
##     county               year        anti-black       anti-white     
##  Length:423         Min.   :2010   Min.   : 0.000   Min.   : 0.0000  
##  Class :character   1st Qu.:2011   1st Qu.: 0.000   1st Qu.: 0.0000  
##  Mode  :character   Median :2013   Median : 1.000   Median : 0.0000  
##                     Mean   :2013   Mean   : 1.761   Mean   : 0.3357  
##                     3rd Qu.:2015   3rd Qu.: 2.000   3rd Qu.: 0.0000  
##                     Max.   :2016   Max.   :18.000   Max.   :11.0000  
##   anti-jewish     anti-catholic       anti-age*       anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.05201   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :9.00000   Max.   :10.0000     
##  anti-multi-religiousgroups  anti-gaymale    anti-hispanic    
##  Min.   : 0.00000           Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.: 0.00000           1st Qu.: 0.000   1st Qu.: 0.0000  
##  Median : 0.00000           Median : 0.000   Median : 0.0000  
##  Mean   : 0.07565           Mean   : 1.499   Mean   : 0.3735  
##  3rd Qu.: 0.00000           3rd Qu.: 1.000   3rd Qu.: 0.0000  
##  Max.   :10.00000           Max.   :36.000   Max.   :17.0000  
##  anti-otherethnicity/nationalorigin
##  Min.   : 0.0000                   
##  1st Qu.: 0.0000                   
##  Median : 0.0000                   
##  Mean   : 0.2837                   
##  3rd Qu.: 0.0000                   
##  Max.   :19.0000
hatelong <- hatecrimes2 |> 
    pivot_longer(
        cols = 3:12,
        names_to = "victim_cat",
        values_to = "crimecount")
hatecrimplot <-hatelong |> 
  ggplot(aes(year, crimecount))+
  geom_point()+
  aes(color = victim_cat)+
  facet_wrap(~victim_cat)
hatecrimplot

hatecrimplot <-hatelong |> 
  ggplot(aes(year, crimecount))+
  geom_boxplot()+
  aes(color = victim_cat)+
  facet_wrap(~victim_cat)
hatecrimplot

#2. List 2 different paths you would like to (hypothetically) study about this dataset.
#Path1
# Summing up hate crimes by county and type
county_data <- hatelong %>%
  group_by(county, victim_cat) %>%
  summarise(total_crimes = sum(crimecount, na.rm = TRUE))
## `summarise()` has grouped output by 'county'. You can override using the
## `.groups` argument.
# Creating a heatmap (this is a simplified example)
ggplot(county_data, aes(x = county, y = victim_cat)) +
  geom_tile(aes(fill = total_crimes), color = "white") +
  scale_fill_gradient(low = "blue", high = "red") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  ggtitle("Heatmap of Hate Crimes by County and Type") +
  xlab("County") +
  ylab("Type of Hate Crime")

hatenew <- hatelong |>
  filter( victim_cat %in% c("anti-black", "anti-jewish", "anti-gaymale"))|>
  group_by(year, county) |>
  arrange(desc(crimecount))
hatenew
## # A tibble: 1,269 × 4
## # Groups:   year, county [277]
##    county   year victim_cat  crimecount
##    <chr>   <dbl> <chr>            <dbl>
##  1 Kings    2012 anti-jewish         82
##  2 Kings    2016 anti-jewish         51
##  3 Suffolk  2014 anti-jewish         48
##  4 Suffolk  2012 anti-jewish         48
##  5 Kings    2011 anti-jewish         44
##  6 Kings    2013 anti-jewish         41
##  7 Kings    2010 anti-jewish         39
##  8 Nassau   2011 anti-jewish         38
##  9 Suffolk  2013 anti-jewish         37
## 10 Nassau   2016 anti-jewish         36
## # ℹ 1,259 more rows
plot2 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=year, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot2

#path2
# Summing up each type of hate crime for all counties for each year
annual_trends <- hatelong %>%
  group_by(year, victim_cat) %>%
  summarise(total_crimes = sum(crimecount, na.rm = TRUE))
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
# Plotting the trends over time
ggplot(annual_trends, aes(x = year, y = total_crimes, color = victim_cat)) +
  geom_line() +
  geom_point() +
  ggtitle("Annual Trends of Different Types of Hate Crimes") +
  xlab("Year") +
  ylab("Total Incidents")

plot3 <- hatenew |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(fill = "Hate Crime Type",
       y = "Number of Hate Crime Incidents",
       title = "Hate Crime Type in NY Counties Between 2010-2016",
       caption = "Source: NY State Division of Criminal Justice Services")
plot3

counties <- hatenew |>
  group_by(year, county)|>
  summarize(sum = sum(crimecount)) |>
  arrange(desc(sum))
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
counties
## # A tibble: 277 × 3
## # Groups:   year [7]
##     year county     sum
##    <dbl> <chr>    <dbl>
##  1  2012 Kings      136
##  2  2010 Kings      110
##  3  2016 Kings      101
##  4  2013 Kings       96
##  5  2014 Kings       94
##  6  2015 Kings       90
##  7  2011 Kings       86
##  8  2016 New York    86
##  9  2012 Suffolk     83
## 10  2013 New York    75
## # ℹ 267 more rows
counties2 <- hatenew |>
  group_by(county)|>
  summarize(sum = sum(crimecount)) |>
  slice_max(order_by = sum, n=5)
counties2
## # A tibble: 5 × 2
##   county     sum
##   <chr>    <dbl>
## 1 Kings      713
## 2 New York   459
## 3 Suffolk    360
## 4 Nassau     298
## 5 Queens     235
plot4 <- hatenew |>
  filter(county %in% c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = victim_cat),
      position = "dodge", stat = "identity") +
  labs(y = "Number of Hate Crime Incidents",
       title = "5 Counties in NY with Highest Incidents of Hate Crimes",
       subtitle = "Between 2010-2016", 
       fill = "Hate Crime Type",
      caption = "Source: NY State Division of Criminal Justice Services")
plot4

nypop <- read_csv("data/newyorkpopulation.csv")
## Rows: 62 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Geography
## dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop |>
  rename(county = Geography) |>
  gather("year", "population", 2:8) 
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 × 3
##   county                  year population
##   <chr>                  <dbl>      <dbl>
## 1 Albany , New York       2010     304078
## 2 Allegany , New York     2010      48949
## 3 Bronx , New York        2010    1388240
## 4 Broome , New York       2010     200469
## 5 Cattaraugus , New York  2010      80249
## 6 Cayuga , New York       2010      79844
nypoplong12 <- nypoplong |>
  filter(year == 2012) |>
  arrange(desc(population)) |>
  head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
## # A tibble: 10 × 3
##    county       year population
##    <chr>       <dbl>      <dbl>
##  1 Kings        2012    2572282
##  2 Queens       2012    2278024
##  3 New York     2012    1625121
##  4 Suffolk      2012    1499382
##  5 Bronx        2012    1414774
##  6 Nassau       2012    1350748
##  7 Westchester  2012     961073
##  8 Erie         2012     920792
##  9 Monroe       2012     748947
## 10 Richmond     2012     470978
counties12 <- counties |>
  filter(year == 2012) |>
  arrange(desc(sum)) 
counties12
## # A tibble: 41 × 3
## # Groups:   year [1]
##     year county        sum
##    <dbl> <chr>       <dbl>
##  1  2012 Kings         136
##  2  2012 Suffolk        83
##  3  2012 New York       71
##  4  2012 Nassau         48
##  5  2012 Queens         48
##  6  2012 Erie           28
##  7  2012 Bronx          23
##  8  2012 Richmond       18
##  9  2012 Multiple       14
## 10  2012 Westchester    13
## # ℹ 31 more rows
datajoin <- counties12 |>
  full_join(nypoplong12, by=c("county", "year"))
datajoin
## # A tibble: 41 × 4
## # Groups:   year [1]
##     year county        sum population
##    <dbl> <chr>       <dbl>      <dbl>
##  1  2012 Kings         136    2572282
##  2  2012 Suffolk        83    1499382
##  3  2012 New York       71    1625121
##  4  2012 Nassau         48    1350748
##  5  2012 Queens         48    2278024
##  6  2012 Erie           28     920792
##  7  2012 Bronx          23    1414774
##  8  2012 Richmond       18     470978
##  9  2012 Multiple       14         NA
## 10  2012 Westchester    13     961073
## # ℹ 31 more rows
datajoinrate <- datajoin |>
  mutate(rate = sum/population*100000) |>
  arrange(desc(rate))
datajoinrate
## # A tibble: 41 × 5
## # Groups:   year [1]
##     year county        sum population  rate
##    <dbl> <chr>       <dbl>      <dbl> <dbl>
##  1  2012 Suffolk        83    1499382 5.54 
##  2  2012 Kings         136    2572282 5.29 
##  3  2012 New York       71    1625121 4.37 
##  4  2012 Richmond       18     470978 3.82 
##  5  2012 Nassau         48    1350748 3.55 
##  6  2012 Erie           28     920792 3.04 
##  7  2012 Queens         48    2278024 2.11 
##  8  2012 Bronx          23    1414774 1.63 
##  9  2012 Westchester    13     961073 1.35 
## 10  2012 Monroe          5     748947 0.668
## # ℹ 31 more rows
dt <- datajoinrate[,c("county","rate")]
dt
## # A tibble: 41 × 2
##    county       rate
##    <chr>       <dbl>
##  1 Suffolk     5.54 
##  2 Kings       5.29 
##  3 New York    4.37 
##  4 Richmond    3.82 
##  5 Nassau      3.55 
##  6 Erie        3.04 
##  7 Queens      2.11 
##  8 Bronx       1.63 
##  9 Westchester 1.35 
## 10 Monroe      0.668
## # ℹ 31 more rows
aggregategroups <- hatecrimes |>
  pivot_longer(
    cols = 4:44,
    names_to = "victim_cat",
    values_to = "crimecount"
  )
unique(aggregategroups$victim_cat)
##  [1] "anti-male"                               
##  [2] "anti-female"                             
##  [3] "anti-transgender"                        
##  [4] "anti-genderidentityexpression"           
##  [5] "anti-age*"                               
##  [6] "anti-white"                              
##  [7] "anti-black"                              
##  [8] "anti-americanindian/alaskannative"       
##  [9] "anti-asian"                              
## [10] "anti-nativehawaiian/pacificislander"     
## [11] "anti-multi-racialgroups"                 
## [12] "anti-otherrace"                          
## [13] "anti-jewish"                             
## [14] "anti-catholic"                           
## [15] "anti-protestant"                         
## [16] "anti-islamic(muslim)"                    
## [17] "anti-multi-religiousgroups"              
## [18] "anti-atheism/agnosticism"                
## [19] "anti-religiouspracticegenerally"         
## [20] "anti-otherreligion"                      
## [21] "anti-buddhist"                           
## [22] "anti-easternorthodox(greek,russian,etc.)"
## [23] "anti-hindu"                              
## [24] "anti-jehovahswitness"                    
## [25] "anti-mormon"                             
## [26] "anti-otherchristian"                     
## [27] "anti-sikh"                               
## [28] "anti-hispanic"                           
## [29] "anti-arab"                               
## [30] "anti-otherethnicity/nationalorigin"      
## [31] "anti-non-hispanic*"                      
## [32] "anti-gaymale"                            
## [33] "anti-gayfemale"                          
## [34] "anti-gay(maleandfemale)"                 
## [35] "anti-heterosexual"                       
## [36] "anti-bisexual"                           
## [37] "anti-physicaldisability"                 
## [38] "anti-mentaldisability"                   
## [39] "totalincidents"                          
## [40] "totalvictims"                            
## [41] "totaloffenders"
aggregategroups <- aggregategroups |>
  mutate(group = case_when(
    victim_cat %in% c("anti-transgender", "anti-gayfemale", "anti-gendervictim_catendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual") ~ "anti-lgbtq",
    victim_cat %in% c("anti-multi-racialgroups", "anti-jewish", "anti-protestant", "anti-multi-religousgroups", "anti-religiouspracticegenerally", "anti-buddhist", "anti-hindu", "anti-mormon", "anti-sikh", "anti-catholic", "anti-islamic(muslim)", "anti-atheism/agnosticism", "anti-otherreligion", "anti-easternorthodox(greek,russian,etc.)", "anti-jehovahswitness", "anti-otherchristian") ~ "anti-religion", 
    victim_cat %in% c("anti-asian", "anti-arab", "anti-non-hispanic", "anti-white", "anti-americanindian/alaskannative", "anti-nativehawaiian/pacificislander", "anti-otherrace", "anti-hispanic", "anti-otherethnicity/nationalorigin") ~ "anti-ethnicity",
    victim_cat %in% c("anti-physicaldisability", "anti-mentaldisability") ~ "anti-disability",
    victim_cat %in% c("anti-female", "anti-male") ~ "anti-gender",
    TRUE ~ "others"))
aggregategroups
## # A tibble: 17,343 × 6
##    county  year crimetype              victim_cat               crimecount group
##    <chr>  <dbl> <chr>                  <chr>                         <dbl> <chr>
##  1 Albany  2016 Crimes Against Persons anti-male                         0 anti…
##  2 Albany  2016 Crimes Against Persons anti-female                       0 anti…
##  3 Albany  2016 Crimes Against Persons anti-transgender                  0 anti…
##  4 Albany  2016 Crimes Against Persons anti-genderidentityexpr…          0 othe…
##  5 Albany  2016 Crimes Against Persons anti-age*                         0 othe…
##  6 Albany  2016 Crimes Against Persons anti-white                        0 anti…
##  7 Albany  2016 Crimes Against Persons anti-black                        1 othe…
##  8 Albany  2016 Crimes Against Persons anti-americanindian/ala…          0 anti…
##  9 Albany  2016 Crimes Against Persons anti-asian                        0 anti…
## 10 Albany  2016 Crimes Against Persons anti-nativehawaiian/pac…          0 anti…
## # ℹ 17,333 more rows
lgbtq <- hatecrimes |>
  pivot_longer(
      cols = 4:44,
      names_to = "victim_cat",
      values_to = "crimecount") |>
filter(victim_cat %in% c("anti-transgender", "anti-gayfemale", "anti-gendervictim_catendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual"))
lgbtq
## # A tibble: 1,692 × 5
##    county    year crimetype              victim_cat       crimecount
##    <chr>    <dbl> <chr>                  <chr>                 <dbl>
##  1 Albany    2016 Crimes Against Persons anti-transgender          0
##  2 Albany    2016 Crimes Against Persons anti-gaymale              1
##  3 Albany    2016 Crimes Against Persons anti-gayfemale            0
##  4 Albany    2016 Crimes Against Persons anti-bisexual             0
##  5 Albany    2016 Property Crimes        anti-transgender          0
##  6 Albany    2016 Property Crimes        anti-gaymale              0
##  7 Albany    2016 Property Crimes        anti-gayfemale            0
##  8 Albany    2016 Property Crimes        anti-bisexual             0
##  9 Allegany  2016 Property Crimes        anti-transgender          0
## 10 Allegany  2016 Property Crimes        anti-gaymale              0
## # ℹ 1,682 more rows
#1. Write about the positive and negative aspects of this hate crimes dataset.
##Positive aspects
###Given that the data are from 2010, it is possible to conduct a concentrated study of hate crimes that occurred during that time period. This analysis can be useful for making historical comparisons or analyzing the effects of events that occurred just in that year.
###When paired with data from prior years, a 2010 dataset may form the basis for longitudinal analyses that would enable researchers to monitor trends over time.
### Policymakers' decisions on legislation, law enforcement procedures, and community outreach initiatives can be affected by data that is reliable and complete about the state of hate crimes in a given year.
##negative aspects
###The data is from 2010, thus it could not represent current social trends or conditions. Therefore, it might be inaccurate to use it to inform present policy.
###Hate crimes are frequently underreported, and different jurisdictions may use different data collection techniques. This can lead to an inaccurate or skewed depiction of the actual number of incidences.
###In order to comprehend the underlying reasons of hate crimes, the efficacy of remedies, or the lived experiences of victims, data alone may not be sufficient.
# 3.    Describe 2 things you would do to follow up after seeing the output from the hate crimes tutorial.
##I'm curious to see how hate crimes are spread among various racial and ethnic groupings. Specifically:

### Do particular racial or ethnic groups face hate crimes more frequently than others?
### What age range is most frequently involved or targeted?
### Do victims and offenders differ in terms of gender?
### Are there specific cities, states, or regions where hate crimes are more prevalent?
### Are urban areas more affected than rural areas or vice versa?
### Look for links between different forms of hate crimes. Are counties with a high rate of one form of hate crime more likely to have a high rate of another?